QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#316536#8169. R-Connected Componentsucup-team296#WA 39ms2508kbRust17.9kb2024-01-27 21:39:472024-01-27 21:39:47

Judging History

你现在查看的是最新测评结果

  • [2024-01-27 21:39:47]
  • 评测
  • 测评结果:WA
  • 用时:39ms
  • 内存:2508kb
  • [2024-01-27 21:39:47]
  • 提交

answer

// 
pub mod solution {
//{"name":"ucup20_e","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""}],"testType":"single","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"ucup20_e"}}}

use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::numbers::gcd::gcd;
use crate::algo_lib::numbers::integer_sqrt::IntegerSqrt;

type PreCalc = ();

fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &PreCalc) {
let r = input.read_long();

let mut xs = Vec::new();
let sqrt = r.lower_sqrt();
for x in 0..=sqrt {
if let Some(_) = (r - x * x).sqrt() {
xs.push(x);
}
}
if xs.is_empty() {
out.print_line("inf");
return;
}
if xs.len() == 1 {
out.print_line(2 * xs[0] * xs[0]);
return;
}
let g = xs.iter().fold(0, |acc, &x| gcd(acc, x));
let mut all_odd = true;
for i in xs {
if i / g % 2 == 0 {
all_odd = false;
break;
}
}
if all_odd {
out.print_line(2 * g * g);
} else {
out.print_line(g * g);
}
}

pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let pre_calc = ();

#[allow(dead_code)]
enum TestType {
Single,
MultiNumber,
MultiEof,
}
let test_type = TestType::MultiNumber;
match test_type {
TestType::Single => solve(&mut input, &mut output, 1, &pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &pre_calc);
i += 1;
}
}
}
output.flush();
input.skip_whitespace();
input.peek().is_none()
}

}
pub mod algo_lib {
pub mod collections {
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;

pub struct Input<'s> {
input: &'s mut dyn Read,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}

macro_rules! read_impl {
($t: ty, $read_name: ident, $read_vec_name: ident) => {
pub fn $read_name(&mut self) -> $t {
self.read()
}

pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
self.read_vec(len)
}
};

($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
read_impl!($t, $read_name, $read_vec_name);

pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
self.read_vec(len)
}
};
}

impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;

pub fn new(input: &'s mut dyn Read) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
}
}

pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
}
}

pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
Some(res)
} else {
None
}
}

pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}

pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !char::from(b).is_whitespace() {
return;
}
self.get();
}
}

pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if char::from(c).is_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}

//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}

//noinspection RsSelfConvention
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}

pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}

pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}

pub fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}

read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);

fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
}

pub trait Readable {
fn read(input: &mut Input) -> Self;
}

impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}

impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}

macro_rules! read_integer {
($($t:ident)+) => {$(
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.skip_whitespace();
let mut c = input.get().unwrap();
let sgn = match c {
b'-' => {
c = input.get().unwrap();
true
}
b'+' => {
c = input.get().unwrap();
false
}
_ => false,
};
let mut res = 0;
loop {
assert!(c.is_ascii_digit());
res *= 10;
let d = (c - b'0') as $t;
if sgn {
res -= d;
} else {
res += d;
}
match input.get() {
None => break,
Some(ch) => {
if ch.is_ascii_whitespace() {
break;
} else {
c = ch;
}
}
}
}
res
}
}
)+};
}

read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);

macro_rules! tuple_readable {
($($name:ident)+) => {
impl<$($name: Readable), +> Readable for ($($name,)+) {
fn read(input: &mut Input) -> Self {
($($name::read(input),)+)
}
}
}
}

tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}

impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;

#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}

impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}

fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}

fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}

pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
}

impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;

pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
}
}

pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
}
}

pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}

pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}

pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}

pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}

pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}

pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
for i in arg {
i.write(self);
self.put(b'\n');
}
}

pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}

pub fn print_iter_ref<'a, T: 'a + Writable, I: Iterator<Item = &'a T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}

pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
}

impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}

fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}

pub trait Writable {
fn write(&self, output: &mut Output);
}

impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}

impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}

impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}

impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter_ref(self.iter());
}
}

impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter_ref(self.iter());
}
}

impl<T: Writable> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}

impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}

impl Writable for () {
fn write(&self, _output: &mut Output) {}
}

macro_rules! write_to_string {
($($t:ident)+) => {$(
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
)+};
}

write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);

macro_rules! tuple_writable {
($name0:ident $($name:ident: $id:tt )*) => {
impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
fn write(&self, out: &mut Output) {
self.0.write(out);
$(
out.put(b' ');
self.$id.write(out);
)*
}
}
}
}

tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}

impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}

impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}

static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod numbers {
pub mod gcd {
use crate::algo_lib::numbers::num_traits::algebra::IntegerMultiplicationMonoid;
use crate::algo_lib::numbers::num_traits::algebra::IntegerSemiRingWithSub;
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::SemiRingWithSub;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use crate::algo_lib::numbers::num_traits::wideable::Wideable;
use std::mem::swap;

pub fn extended_gcd<T: IntegerSemiRingWithSub + Wideable + Copy>(a: T, b: T) -> (T, T::W, T::W)
where
T::W: Copy + SemiRingWithSub,
{
if a == T::zero() {
(b, T::W::zero(), T::W::one())
} else {
let (d, y, mut x) = extended_gcd(b % a, a);
x -= T::W::from(b / a) * y;
(d, x, y)
}
}

pub fn gcd<T: Copy + Zero + IntegerMultiplicationMonoid>(mut a: T, mut b: T) -> T {
while b != T::zero() {
a %= b;
swap(&mut a, &mut b);
}
a
}

pub fn lcm<T: Copy + Zero + IntegerMultiplicationMonoid>(a: T, b: T) -> T {
(a / gcd(a, b)) * b
}
}
pub mod integer_sqrt {
use crate::algo_lib::numbers::number_ext::Power;

pub trait IntegerSqrt: Sized {
fn sqrt(self) -> Option<Self> {
self.root(2)
}
fn lower_sqrt(self) -> Self {
self.lower_root(2)
}
fn upper_sqrt(self) -> Self {
self.upper_root(2)
}

fn root(self, k: usize) -> Option<Self>;
fn lower_root(self, k: usize) -> Self;
fn upper_root(self, k: usize) -> Self;
}

impl IntegerSqrt for i64 {
fn root(self, k: usize) -> Option<Self> {
let s = self.lower_root(k);
if self.power(k) == self {
Some(s)
} else {
None
}
}

fn lower_root(self, k: usize) -> Self {
assert!(self >= 0);
let mut s = (self as f64).powf(1. / (k as f64)).round() as i64;
while s.power(k) > self {
s -= 1;
}
while (s + 1).power(k) <= self {
s += 1;
}
s
}

fn upper_root(self, k: usize) -> Self {
let s = self.lower_root(k);
if s.power(k) == self {
s
} else {
s + 1
}
}
}
}
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;

pub trait Zero {
fn zero() -> Self;
}

pub trait One {
fn one() -> Self;
}

pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}

impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}

pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}

impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}

pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}

impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}

pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}

impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}

pub trait IntegerMultiplicationMonoid:
MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}

impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
IntegerMultiplicationMonoid for T
{
}

pub trait MultiplicationGroup:
MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}

impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
MultiplicationGroup for T
{
}

pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}

impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}

pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}

impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}

pub trait Ring: SemiRing + AdditionGroup {}

impl<T: SemiRing + AdditionGroup> Ring for T {}

pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}

impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}

pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}

impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}

pub trait IntegerRing: IntegerSemiRing + Ring {}

impl<T: IntegerSemiRing + Ring> IntegerRing for T {}

pub trait Field: Ring + MultiplicationGroup {}

impl<T: Ring + MultiplicationGroup> Field for T {}

macro_rules! zero_one_integer_impl {
($($t: ident)+) => {$(
impl Zero for $t {
fn zero() -> Self {
0
}
}

impl One for $t {
fn one() -> Self {
1
}
}
)+};
}

zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod as_index {
pub trait AsIndex {
fn from_index(idx: usize) -> Self;
fn to_index(self) -> usize;
}

macro_rules! from_index_impl {
($($t: ident)+) => {$(
impl AsIndex for $t {
fn from_index(idx: usize) -> Self {
idx as $t
}

fn to_index(self) -> usize {
self as usize
}
}
)+};
}

from_index_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod invertible {
pub trait Invertible {
type Output;

fn inv(&self) -> Option<Self::Output>;
}
}
pub mod wideable {
use std::convert::From;

pub trait Wideable: Sized {
type W: From<Self>;

fn downcast(w: Self::W) -> Self;
}

macro_rules! wideable_impl {
($($t: ident $w: ident),+) => {$(
impl Wideable for $t {
type W = $w;

fn downcast(w: Self::W) -> Self {
w as $t
}
}
)+};
}

wideable_impl!(i64 i128, i32 i64, i16 i32, i8 i16, u64 u128, u32 u64, u16 u32, u8 u16);
}
}
pub mod number_ext {
use crate::algo_lib::numbers::num_traits::algebra::IntegerSemiRing;
use crate::algo_lib::numbers::num_traits::algebra::MultiplicationMonoid;
use crate::algo_lib::numbers::num_traits::as_index::AsIndex;
use std::ops::Mul;

pub trait Power {
#[must_use]
fn power<T: IntegerSemiRing + Copy>(&self, exp: T) -> Self;
}

impl<S: MultiplicationMonoid + Copy> Power for S {
fn power<T: IntegerSemiRing + Copy>(&self, exp: T) -> Self {
if exp == T::zero() {
S::one()
} else {
let mut res = self.power(exp / (T::one() + T::one()));
res *= res;
if exp % (T::one() + T::one()) == T::one() {
res *= *self;
}
res
}
}
}

pub trait NumDigs {
fn num_digs(&self) -> usize;
}

impl<S: IntegerSemiRing + AsIndex + Copy> NumDigs for S {
fn num_digs(&self) -> usize {
let mut copy = *self;
let ten = S::from_index(10);
let mut res = 0;
while copy != S::zero() {
copy /= ten;
res += 1;
}
res
}
}

pub trait Square {
fn square(self) -> Self;
}

impl<T: Mul<Output = T> + Copy> Square for T {
fn square(self) -> Self {
self * self
}
}
}
}
}
fn main() {
    let mut sin = std::io::stdin();
    let input = if false {
        algo_lib::io::input::Input::new_with_size(&mut sin, 1)
    } else {
        algo_lib::io::input::Input::new(&mut sin)
    };
    let mut stdout = std::io::stdout();
    let output = if false {
        algo_lib::io::output::Output::new_with_auto_flush(&mut stdout)
    } else {
        algo_lib::io::output::Output::new(&mut stdout)
    };
    solution::run(input, output);
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 2508kb

input:

3
1
2
3

output:

1
2
inf

result:

ok 3 tokens

Test #2:

score: -100
Wrong Answer
time: 39ms
memory: 2432kb

input:

100
971962039
377418539
436722941
974460973
408831757
674955527
838941797
566099869
224191573
85539073
544795513
157335071
243499759
907206901
570172403
871918511
594778897
773009569
9371917
23810669
169348601
804358351
78636461
382633897
182514781
846151963
274168729
929192339
91532527
172531889
18...

output:

inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
inf
...

result:

wrong answer 3rd words differ - expected: '1', found: 'inf'