QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#314459 | #7730. Convex Checker | lmf_up | WA | 71ms | 18716kb | C++20 | 4.6kb | 2024-01-25 18:24:57 | 2024-01-25 18:24:58 |
Judging History
answer
#include<bits/stdc++.h>
#define cp const point &
#define cl const line &
#define cc const circle
#define LD long double
const LD eps = 1e-8;
int sgn(LD x)
{
return x > eps ? 1 : (x < -eps ? -1 : 0);
}
LD sqr(LD x)
{ return x * x; }
struct point
{
LD x, y;
point operator+(cp a) const
{ return {x + a.x, y + a.y}; }
point operator-(cp a) const
{ return {x - a.x, y - a.y}; }
point operator*(LD t) const
{ return {x * t, y * t}; }
point operator/(LD t) const
{ return {x / t, y / t}; }
point rot(LD t) const
{ return {x * cos(t) - y * sin(t), x * sin(t) + y * cos(t)}; }
point rot90() const
{ return {-y, x}; }
double len2() const
{ return x * x + y * y; }
double len() const
{ return sqrt(x * x + y * y); }
point unit() const
{
double d = len();
return {x / d, y / d};
}
friend bool operator<(cp a,cp b)
{
if(a.x!=b.x)
return a.x<b.x;
else return a.y<b.y;
}
};
LD dot(cp a, cp b);
bool operator==(cp a, cp b)
{
return sgn(dot(a - b, a - b));
}
LD dis(cp a, cp b)
{
return sqrtl(sqr(a.x - b.x) +sqr(a.y - b.y));
}
LD dot(cp a, cp b)
{
return a.x * b.x + a.y * b.y;
}
LD det(cp a, cp b)
{
return a.x * b.y - b.x * a.y;
}
bool turn_left(cp a, cp b, cp c)
{
return sgn(det(b - a, c - a)) >=0;//大于等于是严格凸包,大于是非严格凸包可以有180°
}
struct line
{
point s, t;
line(point a,point b):s(a),t(b){}
};
bool same_dir(cl a, cl b)
{
return sgn(det(b.t - b.s, a.t - a.s)) == 0 && sgn(dot(b.t - b.s, a.t - a.s)) > 0;
}
bool point_on_segment(cp a, cl l)//前一句是点在直线上
{
return sgn(det(l.s - a, a - l.t)) == 0 && sgn(dot(l.s - a, a - l.t)) <= 0;
}
bool two_side(cp a,cp b,cl c)
{
return sgn(det(a-c.s,c.t-c.s))*sgn(det(b-c.s,c.t-c.s))<0;
}
bool intersect_judge(cl a,cl b){
if(point_on_segment(a.s,b)|| point_on_segment(a.t,b)|| point_on_segment(b.s,a)|| point_on_segment(b.t,a))return true;
return two_side(a.s,a.t,b)&& two_side(b.s,b.t,a);
}
point line_intersect(cl a,cl b){
double s1=det(a.t-a.s,b.s-a.s);
double s2=det(a.t-a.s,b.t-a.s);
return (b.s*s2-b.t*s1)/(s2-s1);
}
bool point_on_ray(cp a,cl b){
return sgn(det(a-b.s,b.t-b.s))==0&&sgn(dot(a-b.s,b.t-b.s))>=0;
}
bool ray_intersect_judge(line a,line b)
{
double s1,s2;
s1=det(a.t-a.s,b.s-a.s);
s2=det(a.t-a.s,b.t-a.s);
if(sgn(s1)==0&&sgn(s2)==0)
return sgn(dot(a.t-a.s,b.s-a.s))>=0||sgn(dot(b.t-b.s,a.s-b.s));
if(!sgn(s1-s2)||sgn(s1)==sgn(s2-s1))return 0;
std::swap(a,b);
s1=det(a.t-a.s,b.s-a.s);
s2=det(a.t-a.s,b.t-a.s);
return sgn(s1)!=sgn(s2-s1);
}
LD point_to_line(cp a,cl b){
return abs(det(b.t-b.s,a-b.s))/dis(b.s,b.t);
}
point project_to_line(cp a,cl b){
return b.s+(b.t-b.s)*(dot(a-b.s,b.t-b.s)/(b.t-b.s).len2());
}
LD point_to_segment(cp a,cl b){
if(sgn(dot(b.s-a,b.t-b.s))* sgn(dot(b.t-a,b.t-b.s))<=0)
return abs(det(b.t-b.s,a-b.s))/dis(b.s,b.t);
return std::min(dis(a,b.s),dis(a,b.t));
}
std::vector <point> convex_hull (std::vector <point> a) {
int n = (int) a.size (), cnt = 0;
if (n < 2) return a;
std::sort(a.begin(), a.end()); // less<pair>
std::vector <point> ret;
for (int i = 0; i < n; ++i) {
while (cnt > 1
&& turn_left (ret[cnt - 2], a[i], ret[cnt - 1]))
--cnt, ret.pop_back ();
++cnt, ret.push_back (a[i]); }
int fixed = cnt;
for (int i = n - 2; i >= 0; --i) {
while (cnt > fixed
&& turn_left (ret[cnt - 2], a[i], ret[cnt - 1]))
--cnt, ret.pop_back ();
++cnt, ret.push_back (a[i]); }
ret.pop_back (); return ret;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0),std::cout.tie(0);
std::cout<<std::fixed<<std::setprecision(2);
int n;
std::cin>>n;
std::vector<point>tu;
for(int i=1;i<=n;i++)
{
double x ,y;
std::cin>>x>>y;
tu.push_back({x,y});
}
auto res= convex_hull(tu);
if(res.size()!=n)
{
std::cout<<"No\n";
return 0;
}
for(int i=0;i<n;i++)
{
if(res[i]==tu[0])
{
for(int j=0;j<n;j++)
{
if(res[(i+j)%n]==tu[j])
continue;
else
{
std::cout<<"No\n";
return 0;
}
}
std::cout<<"Yes\n";
return 0;
}
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3828kb
input:
3 0 0 1 0 0 1
output:
Yes
result:
ok answer is YES
Test #2:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
4 0 0 0 1 1 1 1 0
output:
Yes
result:
ok answer is YES
Test #3:
score: 0
Accepted
time: 0ms
memory: 3708kb
input:
4 0 0 0 3 1 2 1 1
output:
Yes
result:
ok answer is YES
Test #4:
score: 0
Accepted
time: 1ms
memory: 3716kb
input:
3 0 0 0 0 0 0
output:
No
result:
ok answer is NO
Test #5:
score: 0
Accepted
time: 1ms
memory: 3804kb
input:
5 1 0 4 1 0 1 2 0 3 2
output:
No
result:
ok answer is NO
Test #6:
score: 0
Accepted
time: 0ms
memory: 3652kb
input:
5 0 0 1000000000 0 1000000000 500000000 1000000000 1000000000 0 1000000000
output:
No
result:
ok answer is NO
Test #7:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
5 0 0 1000000000 0 1000000000 499999999 1000000000 1000000000 0 1000000000
output:
No
result:
ok answer is NO
Test #8:
score: 0
Accepted
time: 0ms
memory: 3788kb
input:
5 0 0 999999999 0 1000000000 50000000 999999999 1000000000 0 1000000000
output:
Yes
result:
ok answer is YES
Test #9:
score: 0
Accepted
time: 71ms
memory: 18508kb
input:
128312 5578014 410408218 5585076 410404717 5588011 410403262 5588473 410403033 5589740 410402405 5593295 410400643 5593751 410400417 5597248 410398684 5598935 410397848 5600618 410397014 5605185 410394751 5610514 410392111 5614281 410390245 5617263 410388768 5621142 410386847 5630840 410382045 56310...
output:
Yes
result:
ok answer is YES
Test #10:
score: -100
Wrong Answer
time: 53ms
memory: 18716kb
input:
128086 149550602 509469827 149551059 509465022 149551336 509462107 149551964 509455497 149552572 509449094 149553350 509440895 149553656 509437667 149554161 509432339 149554254 509431357 149554545 509428284 149555017 509423299 149555366 509419611 149555842 509414580 149556382 509408867 149556564 509...
output:
No
result:
wrong answer expected YES, found NO