QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#313829#8082. Minimum Euclidean DistanceEndPBAC ✓431ms7112kbC++176.4kb2024-01-25 00:20:502024-01-25 00:20:51

Judging History

你现在查看的是最新测评结果

  • [2024-01-25 00:20:51]
  • 评测
  • 测评结果:AC
  • 用时:431ms
  • 内存:7112kb
  • [2024-01-25 00:20:50]
  • 提交

answer

#include<bits/stdc++.h>

using namespace std;
#define endl '\n'
#define ll long long
#define ld long double
#define Vector Point
#define S(x) (x)*(x)
#define N 100010

const int Kep = 10;
const ld eps = 1e-9, pi = acosl(-1.0), Mn = powl(10.0, -Kep);

inline int sign(ld a) { return a < -eps ? -1 : (a > eps ? 1 : 0); }

inline ld Abs(ld a) { return a * sign(a); }//取绝对值
inline void Out(long double a, int k = Kep) {
    if (-Mn < a && a < Mn) a = 0;
    cout << fixed << setprecision(Kep) << a;//<iomanip>
}

struct Point {
    ld x, y;

    Point(ld a = 0, ld b = 0) { x = a, y = b; }

    inline void in() { cin >> x >> y; }

    inline void out() {
        Out(x);
        cout << " ";
        Out(y);
        cout << endl;
    }
};

inline ld Dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; }//【点积】
inline ld Cro(Vector a, Vector b) { return a.x * b.y - a.y * b.x; }//【叉积】
inline ld Len(Vector a) { return sqrtl(Dot(a, a)); }//【模长】
inline ld Angle(Vector a, Vector b) { return acosl(Dot(a, b) / Len(a) / Len(b)); }//【两向量夹角】
inline Vector Normal(Vector a) { return Vector(-a.y, a.x); }//【法向量】
inline Vector operator+(Vector a, Vector b) { return Vector(a.x + b.x, a.y + b.y); }

inline Vector operator-(Vector a, Vector b) { return Vector(a.x - b.x, a.y - b.y); }

inline Vector operator*(Vector a, ld b) { return Vector(a.x * b, a.y * b); }

bool operator<(const Point &a, const Point &b) { return Abs(a.x - b.x) < eps ? a.y < b.y : a.x < b.x; }

inline bool operator==(Point a, Point b) { return !sign(a.x - b.x) && !sign(a.y - b.y); }//两点坐标重合则相等
inline bool same_dir(Vector a, Vector b) { return sign(Cro(b, a)) == 0 && sign(Dot(b, a)) > 0; }//判断两向量是否同向,退化为点后会返回0
inline int pan_PS(Point p, Point a, Point b) {//【判断点P是否在线段AB上】
    return !sign(Cro(p - a, b - a)) && sign(Dot(p - a, p - b)) <= 0;//做法一
    //  return !dcmp(Cro(p-a,b-a))&&dcmp(min(a.x,b.x)-p.x)<=0&&dcmp(p.x-max(a.x,b.x))<=0&&dcmp(min(a.y,b.y)-p.y)<=0&&dcmp(p.y-max(a.y,b.y))<=0;//做法二
    //PA,AB共线且P在AB之间(其实也可以用len(p-a)+len(p-b)==len(a-b)判断,但是精度损失较大)
}

inline int pan_PL(Point p, Point a, Point b) {//【判断点P是否在直线AB上】
    return !sign(Cro(p - a, b - a));//PA,AB共线
}

inline ld dis_PL(Point p, Point a, Point b) {
    if (a == b)return Len(p - a);//AB重合
    Vector x = p - a, y = p - b, z = b - a;
    return Abs(Cro(x, z) / Len(z));//面积除以底边长
}

inline ld dis_PS(Point p, Point a, Point b) {//【点P到线段AB距离】
    if (a == b)return Len(p - a);//AB重合
    Vector x = p - a, y = p - b, z = b - a;
    if (sign(Dot(x, z)) < 0)return Len(x);//P距离A更近
    if (sign(Dot(y, z)) > 0)return Len(y);//P距离B更近
    return Abs(Cro(x, z) / Len(z));//面积除以底边长
}

inline Point FootPoint(Point p, Point a, Point b) {//点P到直线AB的垂足
    Vector x = p - a, y = p - b, z = b - a;
    ld len1 = Dot(x, z) / Len(z), len2 = -1.0 * Dot(y, z) / Len(z);//分别计算AP,BP在AB,BA上的投影
    return a + z * (len1 / (len1 + len2));//点A加上向量AF
}

inline Point poi_PS(Point p, Point a, Point b) {//【点P到线段AB的最近位置】
    if (a == b)return Len(p - a);//AB重合
    Vector x = p - a, y = p - b, z = b - a;
    if (sign(Dot(x, z)) < 0)return a;//P距离A更近
    if (sign(Dot(y, z)) > 0)return b;//P距离B更近
    return FootPoint(p, a, b);//返回垂足
}

inline Point Symmetry_PL(Point p, Point a, Point b) {//【点P关于直线AB的对称点】
    return p + (FootPoint(p, a, b) - p) * 2;//将PF延长一倍即可
}

inline Point cross_LL(Point a, Point b, Point c, Point d) {//【两直线AB,CD的交点】
    Vector x = b - a, y = d - c, z = a - c;
    return a + x * (Cro(y, z) / Cro(x, y));//点A加上向量AF
}

inline int pan_cross_LS(Point a, Point b, Point c, Point d) {//【判断直线AB与线段CD是否相交】
    return pan_PL(cross_LL(a, b, c, d), c, d);//直线AB与直线CD的交点在线段CD上
}

inline int pan_cross_SS(Point a, Point b, Point c, Point d) {//【判断两线段AB,CD是否相交】
    ld c1 = Cro(b - a, c - a), c2 = Cro(b - a, d - a);
    ld d1 = Cro(d - c, a - c), d2 = Cro(d - c, b - c);
    return sign(c1) * sign(c2) < 0 && sign(d1) * sign(d2) < 0;//分别在两侧
}

inline int PIP(Point *P, int n, Point a) {//【射线法】判断点A是否在任意多边形Poly以内 O(n)
    int cnt = 0;
    ld tmp;
    for (int i = 1; i <= n; ++i) {
        int j = i < n ? i + 1 : 1;
        if (pan_PL(a, P[i], P[j]))return 2;//点在多边形上
        if (a.y >= min(P[i].y, P[j].y) && a.y < max(P[i].y, P[j].y))//纵坐标在该线段两端点之间
            tmp = P[i].x + (a.y - P[i].y) / (P[j].y - P[i].y) * (P[j].x - P[i].x), cnt += sign(tmp - a.x) > 0;//交点在A右方
    }
    return cnt & 1;//穿过奇数次则在多边形以内
}

inline int judge_PP(Point *A, int n, Point *B, int m) {//【判断多边形A与多边形B是否相离】
    for (int i1 = 1; i1 <= n; ++i1) {
        int j1 = i1 < n ? i1 + 1 : 1;
        for (int i2 = 1; i2 <= m; ++i2) {
            int j2 = i2 < m ? i2 + 1 : 1;
            if (pan_cross_SS(A[i1], A[j1], B[i2], B[j2]))return 0;//两线段相交
            if (PIP(B, m, A[i1]) || PIP(A, n, B[i2]))return 0;//点包含在内
        }
    }
    return 1;
}

inline bool pan_ALR(Point A, Point L, Point R) {//判断AL在AR严格左侧
    return sign(Cro(L - A, R - A)) < 0;
}

int n, m;
Point p[N], A, B, O;
ld r = 0;

void solve() {
    cin >> n >> m;
    for (int i = 1; i <= n; ++i) {
        p[i].in();
    }
    p[n + 1] = p[1];
    for (int i = 1; i <= m; ++i) {
        A.in(), B.in();
        O = A + B;
        O.x /= 2, O.y /= 2;
        r = Len(A - B) / 2;
        bool fl = true;
        for (int j = 1; j <= n; ++j) {
            if (sign(Cro(p[j + 1] - p[j], O - p[j])) < 0) {
                fl = false;
                break;
            }
        }
        if (fl) {
            printf("%.10Lf\n", r * r / 2);
            continue;
        }
        ld mn = 1e100;
        for (int j = 1; j <= n; ++j) {
            mn = min(mn, dis_PS(O, p[j], p[j + 1]));
        }
        mn = S(r) / 2 + S(mn);
        printf("%.10Lf\n", mn);
    }
}

signed main() {
    int T = 1;
//    cin >> T;
    while (T--) solve();
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 7112kb

input:

4 3
0 0
1 0
1 1
0 1
0 0 1 1
1 1 2 2
1 1 2 3

output:

0.2500000000
0.7500000000
1.8750000000

result:

ok Your answer is acceptable!^ ^

Test #2:

score: 0
Accepted
time: 2ms
memory: 7040kb

input:

48 10
-30 0
-29 -4
-28 -7
-27 -9
-25 -12
-22 -16
-21 -17
-17 -20
-14 -22
-12 -23
-9 -24
-5 -25
-4 -25
0 -24
3 -23
5 -22
8 -20
12 -17
13 -16
16 -12
18 -9
19 -7
20 -4
21 0
21 1
20 5
19 8
18 10
16 13
13 17
12 18
8 21
5 23
3 24
0 25
-4 26
-5 26
-9 25
-12 24
-14 23
-17 21
-21 18
-22 17
-25 13
-27 10
-28 ...

output:

589.5000000000
51.4705882353
1051.2500000000
66.6250000000
174.1250000000
562.6750000000
272.3942307692
287.3850000000
689.6250000000
436.2500000000

result:

ok Your answer is acceptable!^ ^

Test #3:

score: 0
Accepted
time: 379ms
memory: 7040kb

input:

5000 5000
-50000000 0
-49999885 -49450
-49999770 -85675
-49999604 -122394
-49999391 -157604
-49999130 -192731
-49998803 -229143
-49998399 -267196
-49997956 -303872
-49997469 -339362
-49996891 -377221
-49996257 -414903
-49995577 -451819
-49994843 -488600
-49994059 -524941
-49993173 -563137
-49992252 ...

output:

2214785369560632.8750000000
1632645104370924.3748779297
3954739966640761.3752441406
5405105667896787.7500000000
817274719687553.0313720703
902260846427661.0824584961
3194363161448624.1250000000
1619744446324385.1248779297
363457485421825.2499694824
4776425533214308.6240234375
8267595460255072.723144...

result:

ok Your answer is acceptable!^ ^

Test #4:

score: 0
Accepted
time: 204ms
memory: 7044kb

input:

2224 5000
-500000 0
-499999 -30
-499998 -59
-499997 -87
-499996 -114
-499995 -140
-499994 -165
-499993 -189
-499992 -212
-499991 -234
-499990 -255
-499989 -275
-499988 -294
-499987 -312
-499986 -329
-499985 -345
-499984 -360
-499982 -389
-499981 -403
-499979 -430
-499978 -443
-499976 -468
-499975 -4...

output:

931340796015.3750000596
410570465847.7500000000
225774975043.7500000000
686588110927.3750000000
803635163394.8750000000
440321806244.7499999702
781364862674.5000000596
303496624306.7500000000
146653887864.7500000000
1361017661096.7500000000
409649028457.5000000000
417747460932.7500000000
46509181005...

result:

ok Your answer is acceptable!^ ^

Test #5:

score: 0
Accepted
time: 203ms
memory: 6856kb

input:

4672 5000
-300 0
-299 -43
-298 -85
-297 -126
-296 -166
-295 -205
-294 -243
-293 -280
-292 -316
-291 -351
-290 -385
-289 -418
-288 -450
-287 -481
-286 -511
-285 -540
-284 -568
-283 -595
-282 -621
-281 -646
-280 -670
-279 -693
-278 -715
-276 -758
-275 -779
-273 -820
-272 -840
-270 -879
-269 -898
-267 ...

output:

356616.5000000000
121018.5000000000
0.2500000000
189.6250000000
103099.6250000000
83253.1250000000
131701.2500000000
58352.5000000000
355863.1250000000
197638.8597240473
605772.4121621622
2062.4458977408
113763.2500000000
134694.5000000000
74679.6520547945
114481.2500000000
60577.2500000000
7456.250...

result:

ok Your answer is acceptable!^ ^

Test #6:

score: 0
Accepted
time: 38ms
memory: 6940kb

input:

576 5000
-300 0
-299 -15
-298 -29
-297 -42
-296 -54
-295 -65
-294 -75
-293 -84
-292 -92
-290 -107
-289 -114
-287 -127
-286 -133
-284 -144
-283 -149
-280 -163
-278 -172
-275 -185
-274 -189
-270 -204
-267 -215
-265 -222
-262 -232
-258 -245
-257 -248
-252 -262
-248 -273
-245 -281
-240 -294
-238 -299
-2...

output:

189295.2500000000
377943.2944162437
299473.0000000000
243821.9171974522
559270.9922279793
100367.5923396675
472743.1250000000
374450.6250000000
77260.6250000000
106891.2307692308
193578.1250000000
98895.0654145078
124020.0000000000
296138.8750000000
1209.1250000000
480040.6250000000
133543.970689655...

result:

ok Your answer is acceptable!^ ^

Test #7:

score: 0
Accepted
time: 7ms
memory: 7044kb

input:

336 5000
-300 0
-299 -11
-298 -21
-297 -30
-296 -38
-295 -45
-294 -51
-292 -62
-291 -67
-289 -76
-288 -80
-285 -91
-283 -98
-280 -108
-279 -111
-275 -122
-272 -130
-270 -135
-267 -142
-263 -151
-258 -162
-257 -164
-251 -175
-246 -184
-242 -191
-239 -196
-234 -204
-227 -215
-225 -218
-218 -228
-213 -...

output:

478.1250000000
408.1250000000
1341.2500000000
861.2500000000
4210.0000000000
1709.1250000000
846.2500000000
1389.1250000000
722.5000000000
753.1250000000
574.2500000000
1167.1250000000
439.6250000000
5650.2500000000
619.6250000000
2664.5000000000
2138.6250000000
2138.6250000000
1226.2500000000
1226....

result:

ok Your answer is acceptable!^ ^

Test #8:

score: 0
Accepted
time: 23ms
memory: 7056kb

input:

336 5000
-300 0
-299 -11
-298 -21
-297 -30
-296 -38
-295 -45
-294 -51
-292 -62
-291 -67
-289 -76
-288 -80
-285 -91
-283 -98
-280 -108
-279 -111
-275 -122
-272 -130
-270 -135
-267 -142
-263 -151
-258 -162
-257 -164
-251 -175
-246 -184
-242 -191
-239 -196
-234 -204
-227 -215
-225 -218
-218 -228
-213 -...

output:

95.1250000000
8382.6250000000
77361.1250000000
142408.1250000000
98056.2500000000
110581.2500000000
20413.0000000000
1253.1250000000
64468.6250000000
8915.6250000000
93179.1250000000
26286.2500000000
35118.2500000000
129681.2500000000
59545.6250000000
49997.9103773585
1685.1250000000
58020.625000000...

result:

ok Your answer is acceptable!^ ^

Test #9:

score: 0
Accepted
time: 431ms
memory: 7056kb

input:

5000 5000
-50000000 0
-49999912 -33572
-49999824 -59400
-49999710 -83347
-49999578 -105149
-49999382 -130924
-49999166 -154591
-49998916 -178069
-49998599 -203894
-49998262 -228398
-49997905 -251647
-49997466 -277451
-49997003 -302413
-49996511 -326907
-49995964 -352128
-49995393 -376671
-49994795 -...

output:

481990667522174063.0000000000
900047257776892012.9375000000
84250235108292086.0468750000
357963472278544291.7500000000
758024710210129399.3750000000
651805790712522724.3750000000
422072215223185896.7500000000
571948904059660677.3437500000
685946954834850006.6875000000
781017527404628198.5000000000
3...

result:

ok Your answer is acceptable!^ ^

Test #10:

score: 0
Accepted
time: 426ms
memory: 7052kb

input:

5000 5000
-50000000 0
-49999762 -138397
-49999461 -244153
-49999007 -349713
-49998392 -456086
-49997577 -566637
-49996632 -673023
-49995462 -784273
-49994137 -894156
-49992625 -1005080
-49990945 -1115094
-49989066 -1226720
-49987021 -1337531
-49984788 -1449227
-49982415 -1559155
-49979887 -1668061
-...

output:

259053256470500481.8437500000
472297859897907116.8750000000
271976522374482758.8750000000
930648882061706004.8750000000
110596174224097027.8750000000
385963660067947077.5000000000
441658538323309453.6562500000
259108189662189395.8750000000
379723545376251013.7187500000
43293951022380795.8710937500
2...

result:

ok Your answer is acceptable!^ ^

Extra Test:

score: 0
Extra Test Passed