QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#312198 | #8010. Hierarchies of Judges | kkio | WA | 3637ms | 112060kb | C++17 | 35.5kb | 2024-01-23 16:23:16 | 2024-01-23 16:23:17 |
Judging History
answer
#include <bits/stdc++.h>
//#define Kachang 1
#ifdef Kachang
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2")
#pragma GCC optimize("Ofast","unroll-loops","inline","no-stack-protector")
#else
#pragma GCC optmize("2")
#endif
using namespace std;
namespace Def{
#define fir first
#define sec second
#define lson(i) (tr[i].ls)
#define rson(i) (tr[i].rs)
#define FIO(file) freopen(file".in","r",stdin), freopen(file".out","w",stdout)
#define Untie() ios::sync_with_stdio(0), cin.tie(0),cout.tie(0)
typedef long long ll;
typedef double db;
typedef long double ldb;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef __int128_t i128;
typedef __uint128_t u128;
}
using namespace Def;
namespace FastIO {
struct IO {
char ibuf[(1 << 20) + 1], *iS, *iT, obuf[(1 << 20) + 1], *oS;
IO() : iS(ibuf), iT(ibuf), oS(obuf) {} ~IO() { fwrite(obuf, 1, oS - obuf, stdout); }
#if ONLINE_JUDGE
#define gh() (iS == iT ? iT = (iS = ibuf) + fread(ibuf, 1, (1 << 20) + 1, stdin), (iS == iT ? EOF : *iS++) : *iS++)
#else
#define gh() getchar()
#endif
inline bool eof (const char &ch) { return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t' || ch == EOF; }
inline long long read() {
char ch = gh();
long long x = 0;
bool t = 0;
while (ch < '0' || ch > '9') t |= ch == '-', ch = gh();
while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = gh();
return t ? ~(x - 1) : x;
}
inline void read (char *s) {
char ch = gh(); int l = 0;
while (eof(ch)) ch = gh();
while (!eof(ch)) s[l++] = ch, ch = gh();
s[l] = 0;
}
inline void read (double &x) {
char ch = gh(); bool t = 0;
while (ch < '0' || ch > '9') t |= ch == '-', ch = gh();
while (ch >= '0' && ch <= '9') x = x * 10 + (ch ^ 48), ch = gh();
if (ch != '.') return t && (x = -x), void(); ch = gh();
for (double cf = 0.1; '0' <= ch && ch <= '9'; ch = gh(), cf *= 0.1) x += cf * (ch ^ 48);
t && (x = -x);
}
inline void pc (char ch) {
#ifdef ONLINE_JUDGE
if (oS == obuf + (1 << 20) + 1) fwrite(obuf, 1, oS - obuf, stdout), oS = obuf;
*oS++ = ch;
#else
putchar(ch);
#endif
}
inline void write (char *s)
{
int len = strlen(s);
for(int i = 0; i < len; i++)pc(s[i]);
}
template<typename _Tp>
inline void write (_Tp x) {
static char stk[64], *tp = stk;
if (x < 0) x = ~(x - 1), pc('-');
do *tp++ = x % 10, x /= 10;
while (x);
while (tp != stk) pc((*--tp) | 48);
}
inline void puts(const char *s){
int len = strlen(s);
for (int i = 0; i < len; i++)pc(s[i]);
}
} io;
inline long long read () { return io.read(); }
template<typename Tp>
inline void read (Tp &x) { io.read(x); }
template<typename _Tp>
inline void write (_Tp x) { io.write(x); }
}
using namespace FastIO;
namespace misc{
constexpr int infi=1e9;
constexpr int minfi=0x3f3f3f3f;
constexpr ll infl=1e18;
constexpr ll minfl=0x3f3f3f3f3f3f3f3f;
constexpr int MOD=998244353;
constexpr int inv2=(MOD+1)/2;
constexpr int inv3=(MOD+1)/3;
constexpr double eps=1e-6;
mt19937_64 rnd(0x3408532);
template<typename T,typename E>
inline T ksm(T b,E p){T ret=1;while(p){if(p&1)ret=1ll*ret*b%MOD;b=1ll*b*b%MOD;p>>=1;}return ret;}
template<typename T,typename E,typename R>
inline T ksm(T b,E p,R mod){T ret=1;while(p){if(p&1)ret=1ll*ret*b%mod;b=1ll*b*b%mod;p>>=1;}return ret;}
template<typename T>
inline T ginv(T v){return ksm(v,MOD-2);}
template<typename T,typename E>
inline void cmax(T &a,E b){a<b?(a=b,1):0;}
template<typename T,typename E>
inline void cmin(T &a,E b){a>b?(a=b,1):0;}
template<typename T,typename E>
inline void cadd(T &a,E b){(a+=b)>=MOD?(a-=MOD):0;}
template<typename T,typename E>
inline void csub(T &a,E b){(a-=b)<0?(a+=MOD):0;}
template<typename T,typename E>
inline void cmul(T &a,E b){a=(ll)a*b%MOD;}
template<typename T,typename E>
inline T madd(T a,E b){return (a+=b)>=MOD?(a-MOD):a;}
template<typename T,typename E>
inline T msub(T a,E b){return (a-=b)<0?(a+MOD):a;}
template<typename T,typename E>
inline T mmul(T a,E b){return (ll)a*b%MOD;}
template<typename T>
struct dseg{T *first,*last;dseg(T* _l,T* _r):first(_l),last(_r){}};
inline void debug(void){cerr<<'\n';}
template<typename T,typename... arg>
inline void debug(dseg<T> A,arg... v){cerr<<"[ ";for(T* i=A.first;i!=A.last;++i)cerr<<*i<<' ';cerr<<"] ";debug(v...);}
template<typename T,typename... arg>
inline void debug(T x,arg... r){cerr<<x<<' ';debug(r...);}
template<typename T>
inline T randseg(T l,T r){assert(l<=r);return rnd()%(r-l+1)+l;}
template<typename T>
inline bool gbit(T v,int bit){return v>>bit&1;}
template<typename T>
inline void FWTXor(T *a,int n){for(int i=2;i<=n;i<<=1)for(int p=i>>1,j=0;j<n;j+=i)for(int k=j;k<j+p;k++){T x=a[k],y=a[k+p];a[k]=madd(x,y),a[k+p]=msub(x,y);}}
template<typename T>
inline void iFWTXor(T *a,int n){for(int i=2;i<=n;i<<=1)for(int p=i>>1,j=0;j<n;j+=i)for(int k=j;k<j+p;k++){T x=a[k],y=a[k+p];a[k]=mmul(madd(x,y),inv2),a[k+p]=mmul(msub(x,y),inv2);}}
int timest=0;
inline void record(){timest=clock()*1000/CLOCKS_PER_SEC;}
inline int timegap(){int nowtime=clock()*1000/CLOCKS_PER_SEC;return nowtime-timest;}
inline ll gcd(ll a,ll b){if(!b||!a) return a+b;ll az=__builtin_ctz(a),bz=__builtin_ctz(b),z=(az>bz)?bz:az,t;b>>=bz;while(a) a>>=az,t=a-b,az=__builtin_ctz(t),b=a<b?a:b,a=t<0?-t:t;return b<<z;}
inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1,y=0;return a;}ll g=exgcd(b,a%b,y,x);y-=x*(a/b);return g;}
inline ll Sum1(ll n){return n*(n+1)/2;}
inline ll Sum2(ll n){return n*(n+1)*(2*n+1)/6;}
inline ll Sqr(ll n){return n*n;}
#define binom(n,m) ((n)<0||(m)<0||(n)<(m)?0:1ll*fac[(n)]*ifac[(m)]%mod*ifac[(n)-(m)]%mod)
#define likely(x) (__builtin_expect(!!(x),1))
#define unlikely(x) (__builtin_expect(!!(x),0))
}
using namespace misc;
namespace Barret
{
class reduction
{
private:
__uint128_t brt;
int mod;
public:
reduction(){};
reduction(int __mod):brt(((__uint128_t)1<<64)/__mod),mod(__mod){}
inline void setmod(int __mod){brt=((__uint128_t)1<<64)/__mod,mod=__mod;}
template<typename T> inline void fix(T& val){val-=mod*(brt*val>>64);while(val>=mod)val-=mod;}
template<typename T> inline int fixv(T val){val-=mod*(brt*val>>64);return val>=mod?val-mod:val;}
};
}
using namespace Barret;
#include <immintrin.h>
namespace Modint{
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
static_assert(r * mod == 1, "this code has bugs.");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint operator+() const { return mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const {
int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
while (y > 0) {
t = x / y;
x -= t * y, u -= t * v;
tmp = x, x = y, y = tmp;
tmp = u, u = v, v = tmp;
}
return mint{u};
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
}
namespace nttsse42{
__attribute__((target("sse4.2"))) inline __m128i my128_mullo_epu32(
const __m128i &a, const __m128i &b) {
return _mm_mullo_epi32(a, b);
}
__attribute__((target("sse4.2"))) inline __m128i my128_mulhi_epu32(
const __m128i &a, const __m128i &b) {
__m128i a13 = _mm_shuffle_epi32(a, 0xF5);
__m128i b13 = _mm_shuffle_epi32(b, 0xF5);
__m128i prod02 = _mm_mul_epu32(a, b);
__m128i prod13 = _mm_mul_epu32(a13, b13);
__m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13),
_mm_unpackhi_epi32(prod02, prod13));
return prod;
}
__attribute__((target("sse4.2"))) inline __m128i montgomery_mul_128(
const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) {
return _mm_sub_epi32(
_mm_add_epi32(my128_mulhi_epu32(a, b), m1),
my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1));
}
__attribute__((target("sse4.2"))) inline __m128i montgomery_add_128(
const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
__m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2);
return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}
__attribute__((target("sse4.2"))) inline __m128i montgomery_sub_128(
const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) {
__m128i ret = _mm_sub_epi32(a, b);
return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret);
}
__attribute__((target("avx2"))) inline __m256i my256_mullo_epu32(
const __m256i &a, const __m256i &b) {
return _mm256_mullo_epi32(a, b);
}
__attribute__((target("avx2"))) inline __m256i my256_mulhi_epu32(
const __m256i &a, const __m256i &b) {
__m256i a13 = _mm256_shuffle_epi32(a, 0xF5);
__m256i b13 = _mm256_shuffle_epi32(b, 0xF5);
__m256i prod02 = _mm256_mul_epu32(a, b);
__m256i prod13 = _mm256_mul_epu32(a13, b13);
__m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13),
_mm256_unpackhi_epi32(prod02, prod13));
return prod;
}
__attribute__((target("avx2"))) inline __m256i montgomery_mul_256(
const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) {
return _mm256_sub_epi32(
_mm256_add_epi32(my256_mulhi_epu32(a, b), m1),
my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1));
}
__attribute__((target("avx2"))) inline __m256i montgomery_add_256(
const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
__m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2);
return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
ret);
}
__attribute__((target("avx2"))) inline __m256i montgomery_sub_256(
const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) {
__m256i ret = _mm256_sub_epi32(a, b);
return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2),
ret);
}
constexpr int SZ_FFT_BUF = 1 << 23;
uint32_t buf1_[SZ_FFT_BUF] __attribute__((aligned(64)));
uint32_t buf2_[SZ_FFT_BUF] __attribute__((aligned(64)));
template <typename mint>
struct NTT {
static constexpr uint32_t get_pr() {
uint32_t mod = mint::get_mod();
using u64 = uint64_t;
u64 ds[32] = {};
int idx = 0;
u64 m = mod - 1;
for (u64 i = 2; i * i <= m; ++i) {
if (m % i == 0) {
ds[idx++] = i;
while (m % i == 0) m /= i;
}
}
if (m != 1) ds[idx++] = m;
uint32_t pr = 2;
while (1) {
int flg = 1;
for (int i = 0; i < idx; ++i) {
u64 a = pr, b = (mod - 1) / ds[i], r = 1;
while (b) {
if (b & 1) r = r * a % mod;
a = a * a % mod;
b >>= 1;
}
if (r == 1) {
flg = 0;
break;
}
}
if (flg == 1) break;
++pr;
}
return pr;
};
static constexpr uint32_t mod = mint::get_mod();
static constexpr uint32_t pr = get_pr();
static constexpr int level = __builtin_ctzll(mod - 1);
mint dw[level], dy[level];
mint *buf1, *buf2;
NTT() {
setwy(level);
buf1 = reinterpret_cast<mint *>(buf1_);
buf2 = reinterpret_cast<mint *>(buf2_);
}
constexpr void setwy(int k) {
mint w[level], y[level];
w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
y[k - 1] = w[k - 1].inverse();
for (int i = k - 2; i > 0; --i)
w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
for (int i = 3; i < k; ++i) {
dw[i] = dw[i - 1] * y[i - 2] * w[i];
dy[i] = dy[i - 1] * w[i - 2] * y[i];
}
}
__attribute__((target("sse4.2"))) void ntt(mint *a, int n) {
int k = n ? __builtin_ctz(n) : 0;
if (k == 0) return;
if (k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
if (k & 1) {
int v = 1 << (k - 1);
for (int j = 0; j < v; ++j) {
mint ajv = a[j + v];
a[j + v] = a[j] - ajv;
a[j] += ajv;
}
}
int u = 1 << (2 + (k & 1));
int v = 1 << (k - 2 - (k & 1));
mint one = mint(1);
mint imag = dw[1];
const __m128i m0 = _mm_set1_epi32(0);
const __m128i m1 = _mm_set1_epi32(mod);
const __m128i m2 = _mm_set1_epi32(mod + mod);
const __m128i r = _mm_set1_epi32(mint::r);
const __m128i Imag = _mm_set1_epi32(imag.a);
while (v) {
if (v == 1) {
mint ww = one, xx = one, wx = one;
for (int jh = 0; jh < u;) {
ww = xx * xx, wx = ww * xx;
mint t0 = a[jh + 0], t1 = a[jh + 1] * xx;
mint t2 = a[jh + 2] * ww, t3 = a[jh + 3] * wx;
mint t0p2 = t0 + t2, t1p3 = t1 + t3;
mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
a[jh + 0] = t0p2 + t1p3, a[jh + 1] = t0p2 - t1p3;
a[jh + 2] = t0m2 + t1m3, a[jh + 3] = t0m2 - t1m3;
xx *= dw[__builtin_ctz((jh += 4))];
}
} else {
mint ww = one, xx = one, wx = one;
for (int jh = 0; jh < u;) {
if (jh == 0) {
int j0 = 0;
int j1 = v;
int j2 = j1 + v;
int j3 = j2 + v;
int je = v;
for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
__m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
__m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
__m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
__m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
__m128i T0P2 = montgomery_add_128(T0, T2, m2, m0);
__m128i T1P3 = montgomery_add_128(T1, T3, m2, m0);
__m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0);
__m128i T1M3 =
montgomery_mul_128(montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1);
_mm_storeu_si128((__m128i *)(a + j0),
montgomery_add_128(T0P2, T1P3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j1),
montgomery_sub_128(T0P2, T1P3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j2),
montgomery_add_128(T0M2, T1M3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j3),
montgomery_sub_128(T0M2, T1M3, m2, m0));
}
} else {
ww = xx * xx, wx = ww * xx;
__m128i WW = _mm_set1_epi32(ww.a);
__m128i WX = _mm_set1_epi32(wx.a);
__m128i XX = _mm_set1_epi32(xx.a);
int j0 = jh * v;
int j1 = j0 + v;
int j2 = j1 + v;
int j3 = j2 + v;
int je = j1;
for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
__m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
__m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
__m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
__m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
T1 = montgomery_mul_128(T1, XX, r, m1);
T2 = montgomery_mul_128(T2, WW, r, m1);
T3 = montgomery_mul_128(T3, WX, r, m1);
__m128i T0P2 = montgomery_add_128(T0, T2, m2, m0);
__m128i T1P3 = montgomery_add_128(T1, T3, m2, m0);
__m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0);
__m128i T1M3 =
montgomery_mul_128(montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1);
_mm_storeu_si128((__m128i *)(a + j0),
montgomery_add_128(T0P2, T1P3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j1),
montgomery_sub_128(T0P2, T1P3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j2),
montgomery_add_128(T0M2, T1M3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j3),
montgomery_sub_128(T0M2, T1M3, m2, m0));
}
}
xx *= dw[__builtin_ctz((jh += 4))];
}
}
u <<= 2;
v >>= 2;
}
}
__attribute__((target("sse4.2"))) void intt(mint *a, int n,
int normalize = true) {
int k = n ? __builtin_ctz(n) : 0;
if (k == 0) return;
if (k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
int u = 1 << (k - 2);
int v = 1;
mint one = mint(1);
mint imag = dy[1];
const __m128i m0 = _mm_set1_epi32(0);
const __m128i m1 = _mm_set1_epi32(mod);
const __m128i m2 = _mm_set1_epi32(mod + mod);
const __m128i r = _mm_set1_epi32(mint::r);
const __m128i Imag = _mm_set1_epi32(imag.a);
while (u) {
if (v == 1) {
mint ww = one, xx = one, yy = one;
u <<= 2;
for (int jh = 0; jh < u;) {
ww = xx * xx, yy = xx * imag;
mint t0 = a[jh + 0], t1 = a[jh + 1];
mint t2 = a[jh + 2], t3 = a[jh + 3];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
a[jh + 0] = t0p1 + t2p3, a[jh + 2] = (t0p1 - t2p3) * ww;
a[jh + 1] = t0m1 + t2m3, a[jh + 3] = (t0m1 - t2m3) * ww;
xx *= dy[__builtin_ctz(jh += 4)];
}
} else {
mint ww = one, xx = one, yy = one;
u <<= 2;
for (int jh = 0; jh < u;) {
if (jh == 0) {
int j0 = 0;
int j1 = v;
int j2 = v + v;
int j3 = j2 + v;
for (; j0 < v; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
__m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
__m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
__m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
__m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
__m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
__m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
__m128i T0M1 = montgomery_sub_128(T0, T1, m2, m0);
__m128i T2M3 =
montgomery_mul_128(montgomery_sub_128(T2, T3, m2, m0), Imag, r, m1);
_mm_storeu_si128((__m128i *)(a + j0),
montgomery_add_128(T0P1, T2P3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j2),
montgomery_sub_128(T0P1, T2P3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j1),
montgomery_add_128(T0M1, T2M3, m2, m0));
_mm_storeu_si128((__m128i *)(a + j3),
montgomery_sub_128(T0M1, T2M3, m2, m0));
}
} else {
ww = xx * xx, yy = xx * imag;
__m128i WW = _mm_set1_epi32(ww.a);
__m128i XX = _mm_set1_epi32(xx.a);
__m128i YY = _mm_set1_epi32(yy.a);
int j0 = jh * v;
int j1 = j0 + v;
int j2 = j1 + v;
int j3 = j2 + v;
int je = j1;
for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) {
__m128i T0 = _mm_loadu_si128((__m128i *)(a + j0));
__m128i T1 = _mm_loadu_si128((__m128i *)(a + j1));
__m128i T2 = _mm_loadu_si128((__m128i *)(a + j2));
__m128i T3 = _mm_loadu_si128((__m128i *)(a + j3));
__m128i T0P1 = montgomery_add_128(T0, T1, m2, m0);
__m128i T2P3 = montgomery_add_128(T2, T3, m2, m0);
__m128i T0M1 =
montgomery_mul_128(montgomery_sub_128(T0, T1, m2, m0), XX, r, m1);
__m128i T2M3 =
montgomery_mul_128(montgomery_sub_128(T2, T3, m2, m0), YY, r, m1);
_mm_storeu_si128((__m128i *)(a + j0),
montgomery_add_128(T0P1, T2P3, m2, m0));
_mm_storeu_si128(
(__m128i *)(a + j2),
montgomery_mul_128(montgomery_sub_128(T0P1, T2P3, m2, m0), WW, r,
m1));
_mm_storeu_si128((__m128i *)(a + j1),
montgomery_add_128(T0M1, T2M3, m2, m0));
_mm_storeu_si128(
(__m128i *)(a + j3),
montgomery_mul_128(montgomery_sub_128(T0M1, T2M3, m2, m0), WW, r,
m1));
}
}
xx *= dy[__builtin_ctz(jh += 4)];
}
}
u >>= 4;
v <<= 2;
}
if (k & 1) {
u = 1 << (k - 1);
for (int j = 0; j < u; ++j) {
mint ajv = a[j] - a[j + u];
a[j] += a[j + u];
a[j + u] = ajv;
}
}
if (normalize) {
mint invn = one / mint(n);
for (int i = 0; i < n; i++) a[i] *= invn;
}
}
constexpr vector<mint> multiply(const vector<mint> &a,
const vector<mint> &b) {
int l = a.size() + b.size() - 1;
if (min<int>(a.size(), b.size()) <= 40) {
vector<mint> s(l);
for (int i = 0; i < (int)a.size(); ++i)
for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
return s;
}
int M = 4;
while (M < l) M <<= 1;
for (int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a;
for (int i = (int)a.size(); i < M; ++i) buf1[i].a = 0;
for (int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a;
for (int i = (int)b.size(); i < M; ++i) buf2[i].a = 0;
ntt(buf1, M);
ntt(buf2, M);
for (int i = 0; i < M; ++i)
buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a);
intt(buf1, M, false);
vector<mint> s(l);
mint invm = mint(M).inverse();
for (int i = 0; i < l; ++i) s[i] = buf1[i] * invm;
return s;
}
};
}
namespace ZPoly
{
using mint=Modint::LazyMontgomeryModInt<998244353>;
nttsse42::NTT<mint> Calculator;
using LL=long long;
constexpr int MOD=998244353,G=114514,MAXN=1<<21;
inline mint qpow(mint a,LL b) { mint r=1;for(;b;(b&1)?r=r*a:0,a=a*a,b>>=1);return r; }
inline mint madd(mint x) { return x; }
inline mint mmul(mint x) { return x; }
inline mint msub(mint x,mint y) { return x-y; }
inline mint mdiv(mint x,mint y) { return x*qpow(y,MOD-2); }
template<typename ...Args>inline mint madd(mint x,Args ...y) { return x+=madd(y...); }
template<typename ...Args>inline mint mmul(mint x,Args ...y) { return x*mmul(y...); }
class Polynomial
{
private:
static constexpr int NTT_LIM=180;
static mint g[MAXN+5],c1[MAXN+5],c2[MAXN+5];
int deg;
vector<mint> c;
public:
static void init()
{
mint gn;
for(int i=2;i<=MAXN;i<<=1)
{
g[i>>1]=1,gn=qpow(G,(MOD-1)/i);
for(int j=(i>>1)+1;j<i;j++) g[j]=mmul(g[j-1],gn);
}
}
static void DIT(mint *a,int len)
{Calculator.ntt(a,len);}
static void DIF(mint *a,int len)
{Calculator.intt(a,len);}
private:
static void __polyinv(const mint *a,mint *b,int len)
{
if(len==1) return b[0]=qpow(a[0],MOD-2),void();
__polyinv(a,b,(len+1)>>1);
int nn=1<<(__lg((len<<1)-1)+1);
memcpy(c1,a,len<<2);
memset(b+len,0,(nn-len)<<2);
memset(c1+len,0,(nn-len)<<2);
DIT(b,nn),DIT(c1,nn);
for(int i=0;i<nn;i++) b[i]=mmul(b[i],msub(2,mmul(b[i],c1[i])));
DIF(b,nn),memset(b+len,0,(nn-len)<<2);
}
static void __polyln(const mint *a,mint *b,int len)
{
__polyinv(a,b,len);
for(int i=1;i<len;i++) c1[i-1]=mmul(i,a[i]);
int nn=1<<(__lg((len<<1)-1)+1);
memset(b+len,0,(nn-len)<<2);
memset(c1+len,0,(nn-len)<<2);
DIT(b,nn),DIT(c1,nn);
for(int i=0;i<nn;i++) b[i]=mmul(b[i],c1[i]);
DIF(b,nn),memset(b+len,0,(nn-len)<<2);
for(int i=len-1;i>0;i--) b[i]=mdiv(b[i-1],i);
b[0]=0;
}
static void __polyexp(const mint *a,mint *b,int l,int r)
{
if(l==r-1) return b[l]=(l?mdiv(b[l],l):1),void();
int len=r-l,mid=(l+r)>>1;
__polyexp(a,b,l,mid);
for(int i=0;i<len;i++) c1[i]=a[i];
memcpy(c2,b+l,(mid-l)<<2);
memset(c2+mid-l,0,(r-mid)<<2);
if(len<=NTT_LIM) for(int i=len-1;i>=0;i--)
{
c1[i]=mmul(c1[i],c2[0]);
for(int j=0;j<i;j++) c1[i]=madd(c1[i],mmul(c1[j],c2[i-j]));
}
else
{
DIT(c1,len),DIT(c2,len);
for(int i=0;i<len;i++) c1[i]=mmul(c1[i],c2[i]);
DIF(c1,len);
}
for(int i=mid;i<r;i++) b[i]=madd(b[i],c1[i-l]);
__polyexp(a,b,mid,r);
}
public:
Polynomial(): deg(1),c(1){}
Polynomial(const Polynomial &p): deg(p.deg),c(p.c){}
Polynomial(Polynomial &&p): deg(p.deg),c(move(p.c)){}
explicit Polynomial(int d): deg(d),c(d){}
explicit Polynomial(const vector<mint> &v): deg(v.size()),c(v){}
explicit Polynomial(const initializer_list<mint> &l): deg(l.size()),c(l){}
inline mint &operator [](int i) { return c[i]; }
inline mint operator [](int i)const { return c[i]; }
inline int degree()const { return deg; }
inline void resize(int d) { c.resize(deg=d); }
inline Polynomial &operator +=(const Polynomial &p)
{
if(deg<p.deg) resize(p.deg);
for(int i=0;i<p.deg;i++) c[i]=madd(c[i],p[i]);
return *this;
}
inline Polynomial &operator -=(const Polynomial &p)
{
if(deg<p.deg) resize(p.deg);
for(int i=0;i<p.deg;i++) c[i]=msub(c[i],p[i]);
return *this;
}
inline Polynomial &operator *=(const Polynomial &p)
{
int n=deg,m=p.deg;resize(n+m-1);
if(n+m<NTT_LIM)
{
memcpy(c1,c.data(),n<<2);
memset(c2,0,(n+m-1)<<2);
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
c2[i+j]=madd(c2[i+j],mmul(c1[i],p[j]));
memcpy(c.data(),c2,(n+m-1)<<2);
}
else
{
int nn=1<<(__lg(n+m-1)+1);
memcpy(c1,c.data(),n<<2),memcpy(c2,p.c.data(),m<<2);
memset(c1+n,0,(nn-n)<<2),memset(c2+m,0,(nn-m)<<2);
DIT(c1,nn),DIT(c2,nn);
for(int i=0;i<nn;i++) c1[i]=mmul(c1[i],c2[i]);
DIF(c1,nn),memcpy(c.data(),c1,deg<<2);
}
return *this;
}
friend inline Polynomial derivative(const Polynomial &p)
{
Polynomial q(p.deg-1);
for(int i=1;i<p.deg;i++) q[i-1]=mmul(p[i],i);
return q;
}
friend inline Polynomial integral(const Polynomial &p)
{
Polynomial q(p.deg+1);
for(int i=1;i<p.deg;i++) q[i+1]=mdiv(p[i],i+1);
return q;
}
inline Polynomial inv()const
{
if(c[0]==0) cerr<<"[x^0]f(x)=0, f(x)^-1 doesn't exist.\n",abort();
int nn=1<<(__lg((deg<<1)-1)+1);
Polynomial q(nn);
__polyinv(c.data(),q.c.data(),deg);
return q.resize(deg),q;
}
friend inline Polynomial ln(const Polynomial &p)
{
if(p[0]!=1) cerr<<"[x^0]f(x)!=1, ln(f(x)) doesn't exist.\n",abort();
int nn=1<<(__lg((p.deg<<1)-1)+1);
Polynomial q(nn);
__polyln(p.c.data(),q.c.data(),p.deg);
return q.resize(p.deg),q;
}
friend inline Polynomial exp(const Polynomial &p)
{
if(p[0]!=0) cerr<<"[x^0]f(x)!=0, exp(f(x)) doesn't exist.\n",abort();
static mint c[MAXN];
int nn=1<<(__lg(p.deg-1)+1);
for(int i=0;i<p.deg;i++) c[i]=mmul(i,p[i]).get();
Polynomial q(nn);
__polyexp(c,q.c.data(),0,nn);
return q.resize(p.deg),q;
}
friend inline pair<Polynomial,Polynomial> div(const Polynomial &f,const Polynomial &g)
{
if(f.deg<g.deg) return make_pair(Polynomial{0},f);
int n=f.deg-1,m=g.deg-1;
Polynomial fr(n+1),gr(m+1);
for(int i=0;i<=n;i++) fr[i]=f[n-i];
for(int i=0;i<=m;i++) gr[i]=g[m-i];
fr.resize(n-m+1),gr.resize(n-m+1),fr*=gr.inv();
fr.resize(n-m+1),reverse(fr.c.begin(),fr.c.end());
gr=f-fr*g,gr.resize(m);
return make_pair(fr,gr);
}
inline Polynomial &operator =(const Polynomial &p)
{ return deg=p.deg,c=p.c,*this; }
inline Polynomial &operator =(Polynomial &&p)
{ return deg=p.deg,c=move(p.c),*this; }
inline Polynomial &operator *=(int k)
{ for(auto &i: c) i=mmul(i,k);return *this; }
inline Polynomial &operator /=(const Polynomial &rhs)
{ return (*this)*=rhs.inv(); }
inline Polynomial &operator %=(const Polynomial &rhs)
{ return (*this)=div(*this,rhs).second; }
inline Polynomial operator +(const Polynomial &rhs)const
{ return Polynomial(*this)+=rhs; }
inline Polynomial operator -(const Polynomial &rhs)const
{ return Polynomial(*this)-=rhs; }
inline Polynomial operator *(const Polynomial &rhs)const
{ return Polynomial(*this)*=rhs; }
inline Polynomial operator /(const Polynomial &rhs)const
{ return Polynomial(*this)/=rhs; }
inline Polynomial operator %(const Polynomial &rhs)const
{ return div(*this,rhs).second; }
friend inline Polynomial operator *(const Polynomial &p,int k)
{ return Polynomial(p)*=k; }
friend inline Polynomial operator *(int k,const Polynomial &p)
{ return Polynomial(p)*=k; }
};
mint Polynomial::g[]={},Polynomial::c1[]={},Polynomial::c2[]={};
}
const int mod=998244353;
using Poly=ZPoly::Polynomial;
Poly x1({0,1}),x0({1});
Poly G0(Poly F0,Poly F1,Poly e01,Poly e1)
{return x1*(e01-e1)-F0*F0+F0;}
Poly G1(Poly F0,Poly F1,Poly e01,Poly e1)
{return x1*(F0*F0*e01-e1)-F0*F1+F1;}
Poly dr00(Poly F0,Poly F1,Poly e01,Poly e1)
{return x1*F1*e01-F0*2+x0;}
Poly dr01(Poly F0,Poly F1,Poly e01,Poly e1)
{return x1*(F0*e01-e1);}
Poly dr10(Poly F0,Poly F1,Poly e01,Poly e1)
{return x1*(2*F0*e01+F0*F0*F1*e01)-F1;}
Poly dr11(Poly F0,Poly F1,Poly e01,Poly e1)
{return x1*(F0*F0*F0*e01-e1)-F0+x0;}
pair<Poly,Poly> newton(int n)
{
if(n==1)return {Poly({0}),Poly({0})};
int m=(n+1)/2;
Poly F0,F1;
tie(F0,F1)=newton(m);F0.resize(n);F1.resize(n);
x0.resize(n);x1.resize(n);
Poly e01=exp(F0*F1);e01.resize(n);
Poly e1=exp(F1);e1.resize(n);
Poly d00=dr00(F0,F1,e01,e1),d01=dr01(F0,F1,e01,e1),d10=dr10(F0,F1,e01,e1),d11=dr11(F0,F1,e01,e1);
Poly g0=G0(F0,F1,e01,e1),g1=G1(F0,F1,e01,e1);
Poly invd=(d00*d11-d01*d10).inv();
Poly nxtF0=F0-(g0*d11-g1*d01)*invd;
Poly nxtF1=F1-(g1*d00-g0*d10)*invd;
nxtF0.resize(n),nxtF1.resize(n);
return {nxtF0,nxtF1};
}
int main()
{
Poly::init();
Poly F0,F1;
int n;
cin>>n;
tie(F0,F1)=newton(n+1);
int sum=(F0[n]+F1[n]).get();
for(int i=1;i<=n;i++)cmul(sum,i);
cout<<sum<<'\n';
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 10ms
memory: 20068kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 7ms
memory: 20364kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #3:
score: 0
Accepted
time: 7ms
memory: 20364kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #4:
score: 0
Accepted
time: 11ms
memory: 20172kb
input:
100
output:
413875584
result:
ok 1 number(s): "413875584"
Test #5:
score: 0
Accepted
time: 7ms
memory: 20068kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 10ms
memory: 20076kb
input:
2
output:
4
result:
ok 1 number(s): "4"
Test #7:
score: 0
Accepted
time: 7ms
memory: 20152kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #8:
score: 0
Accepted
time: 10ms
memory: 20064kb
input:
4
output:
236
result:
ok 1 number(s): "236"
Test #9:
score: 0
Accepted
time: 7ms
memory: 20132kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #10:
score: 0
Accepted
time: 10ms
memory: 20080kb
input:
6
output:
55182
result:
ok 1 number(s): "55182"
Test #11:
score: 0
Accepted
time: 3ms
memory: 20156kb
input:
7
output:
1165220
result:
ok 1 number(s): "1165220"
Test #12:
score: 0
Accepted
time: 10ms
memory: 20168kb
input:
8
output:
29013896
result:
ok 1 number(s): "29013896"
Test #13:
score: 0
Accepted
time: 7ms
memory: 20364kb
input:
9
output:
832517514
result:
ok 1 number(s): "832517514"
Test #14:
score: 0
Accepted
time: 0ms
memory: 20168kb
input:
10
output:
96547079
result:
ok 1 number(s): "96547079"
Test #15:
score: 0
Accepted
time: 10ms
memory: 20080kb
input:
11
output:
296100513
result:
ok 1 number(s): "296100513"
Test #16:
score: 0
Accepted
time: 7ms
memory: 20144kb
input:
12
output:
672446962
result:
ok 1 number(s): "672446962"
Test #17:
score: 0
Accepted
time: 10ms
memory: 20084kb
input:
13
output:
986909297
result:
ok 1 number(s): "986909297"
Test #18:
score: 0
Accepted
time: 3ms
memory: 20340kb
input:
14
output:
306542229
result:
ok 1 number(s): "306542229"
Test #19:
score: 0
Accepted
time: 10ms
memory: 20092kb
input:
15
output:
8548107
result:
ok 1 number(s): "8548107"
Test #20:
score: 0
Accepted
time: 7ms
memory: 20092kb
input:
16
output:
773960239
result:
ok 1 number(s): "773960239"
Test #21:
score: 0
Accepted
time: 7ms
memory: 20184kb
input:
17
output:
611627547
result:
ok 1 number(s): "611627547"
Test #22:
score: 0
Accepted
time: 10ms
memory: 20388kb
input:
18
output:
91793980
result:
ok 1 number(s): "91793980"
Test #23:
score: 0
Accepted
time: 3ms
memory: 20352kb
input:
19
output:
689202618
result:
ok 1 number(s): "689202618"
Test #24:
score: 0
Accepted
time: 10ms
memory: 20112kb
input:
20
output:
605957782
result:
ok 1 number(s): "605957782"
Test #25:
score: 0
Accepted
time: 208ms
memory: 29948kb
input:
10000
output:
713782215
result:
ok 1 number(s): "713782215"
Test #26:
score: 0
Accepted
time: 421ms
memory: 35596kb
input:
20000
output:
337916836
result:
ok 1 number(s): "337916836"
Test #27:
score: 0
Accepted
time: 484ms
memory: 42888kb
input:
30000
output:
580803285
result:
ok 1 number(s): "580803285"
Test #28:
score: 0
Accepted
time: 907ms
memory: 51864kb
input:
40000
output:
732660392
result:
ok 1 number(s): "732660392"
Test #29:
score: 0
Accepted
time: 937ms
memory: 57276kb
input:
50000
output:
660835595
result:
ok 1 number(s): "660835595"
Test #30:
score: 0
Accepted
time: 990ms
memory: 62816kb
input:
60000
output:
323452070
result:
ok 1 number(s): "323452070"
Test #31:
score: 0
Accepted
time: 1755ms
memory: 72192kb
input:
70000
output:
307315915
result:
ok 1 number(s): "307315915"
Test #32:
score: 0
Accepted
time: 1862ms
memory: 78680kb
input:
80000
output:
951757567
result:
ok 1 number(s): "951757567"
Test #33:
score: 0
Accepted
time: 1963ms
memory: 84028kb
input:
90000
output:
426123208
result:
ok 1 number(s): "426123208"
Test #34:
score: 0
Accepted
time: 1960ms
memory: 90000kb
input:
100000
output:
827418228
result:
ok 1 number(s): "827418228"
Test #35:
score: 0
Accepted
time: 2077ms
memory: 96012kb
input:
110000
output:
541614559
result:
ok 1 number(s): "541614559"
Test #36:
score: 0
Accepted
time: 2054ms
memory: 100752kb
input:
120000
output:
184688986
result:
ok 1 number(s): "184688986"
Test #37:
score: 0
Accepted
time: 2062ms
memory: 107828kb
input:
130000
output:
898089371
result:
ok 1 number(s): "898089371"
Test #38:
score: -100
Wrong Answer
time: 3637ms
memory: 112060kb
input:
140000
output:
914010165
result:
wrong answer 1st numbers differ - expected: '949540221', found: '914010165'