QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#310831#4782. 完美的旅行hos_lyric#0 452ms25552kbC++1440.3kb2024-01-21 18:39:122024-07-04 03:20:24

Judging History

你现在查看的是最新测评结果

  • [2024-07-04 03:20:24]
  • 评测
  • 测评结果:0
  • 用时:452ms
  • 内存:25552kb
  • [2024-01-21 18:39:12]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};

// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = n;
  if (m >>= 1) {
    for (int i = 0; i < m; ++i) {
      const unsigned x = as[i + m].x;  // < MO
      as[i + m].x = as[i].x + MO - x;  // < 2 MO
      as[i].x += x;  // < 2 MO
    }
  }
  if (m >>= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned x = (prod * as[i + m]).x;  // < MO
        as[i + m].x = as[i].x + MO - x;  // < 3 MO
        as[i].x += x;  // < 3 MO
      }
      prod *= FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  for (; m; ) {
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i + m].x = as[i].x + MO - x;  // < 4 MO
          as[i].x += x;  // < 4 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
          as[i + m].x = as[i].x + MO - x;  // < 3 MO
          as[i].x += x;  // < 3 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
  }
  for (int i = 0; i < n; ++i) {
    as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
    as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x;  // < MO
  }
}

// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = 1;
  if (m < n >> 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
    m <<= 1;
  }
  for (; m < n >> 1; m <<= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + (m >> 1); ++i) {
        const unsigned long long y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
        as[i].x += as[i + m].x;  // < 4 MO
        as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  if (m < n) {
    for (int i = 0; i < m; ++i) {
      const unsigned y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
      as[i].x += as[i + m].x;  // < 4 MO
      as[i + m].x = y;  // < 4 MO
    }
  }
  const Mint invN = Mint(n).inv();
  for (int i = 0; i < n; ++i) {
    as[i] *= invN;
  }
}

void fft(vector<Mint> &as) {
  fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
  invFft(as.data(), as.size());
}

vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
  if (as.empty() || bs.empty()) return {};
  const int len = as.size() + bs.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  bs.resize(n); fft(bs);
  for (int i = 0; i < n; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(len);
  return as;
}
vector<Mint> square(vector<Mint> as) {
  if (as.empty()) return {};
  const int len = as.size() + as.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  for (int i = 0; i < n; ++i) as[i] *= as[i];
  invFft(as);
  as.resize(len);
  return as;
}
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
// inv: log, exp, pow
// fac: shift
// invFac: shift
constexpr int LIM_INV = 1 << 20;  // @
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
struct ModIntPreparator {
  ModIntPreparator() {
    inv[1] = 1;
    for (int i = 2; i < LIM_INV; ++i) inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
    fac[0] = 1;
    for (int i = 1; i < LIM_INV; ++i) fac[i] = fac[i - 1] * i;
    invFac[0] = 1;
    for (int i = 1; i < LIM_INV; ++i) invFac[i] = invFac[i - 1] * inv[i];
  }
} preparator;

// polyWork0: *, inv, div, divAt, log, exp, pow, sqrt, shift
// polyWork1: inv, div, divAt, log, exp, pow, sqrt, shift
// polyWork2: divAt, exp, pow, sqrt
// polyWork3: exp, pow, sqrt
static constexpr int LIM_POLY = 1 << 20;  // @
static_assert(LIM_POLY <= 1 << FFT_MAX, "Poly: LIM_POLY <= 1 << FFT_MAX must hold.");
static Mint polyWork0[LIM_POLY], polyWork1[LIM_POLY], polyWork2[LIM_POLY], polyWork3[LIM_POLY];

struct Poly : public vector<Mint> {
  Poly() {}
  explicit Poly(int n) : vector<Mint>(n) {}
  Poly(const vector<Mint> &vec) : vector<Mint>(vec) {}
  Poly(std::initializer_list<Mint> il) : vector<Mint>(il) {}
  int size() const { return vector<Mint>::size(); }
  Mint at(long long k) const { return (0 <= k && k < size()) ? (*this)[k] : 0U; }
  int ord() const { for (int i = 0; i < size(); ++i) if ((*this)[i]) return i; return -1; }
  int deg() const { for (int i = size(); --i >= 0; ) if ((*this)[i]) return i; return -1; }
  Poly mod(int n) const { return Poly(vector<Mint>(data(), data() + min(n, size()))); }
  friend std::ostream &operator<<(std::ostream &os, const Poly &fs) {
    os << "[";
    for (int i = 0; i < fs.size(); ++i) { if (i > 0) os << ", "; os << fs[i]; }
    return os << "]";
  }

  Poly &operator+=(const Poly &fs) {
    if (size() < fs.size()) resize(fs.size());
    for (int i = 0; i < fs.size(); ++i) (*this)[i] += fs[i];
    return *this;
  }
  Poly &operator-=(const Poly &fs) {
    if (size() < fs.size()) resize(fs.size());
    for (int i = 0; i < fs.size(); ++i) (*this)[i] -= fs[i];
    return *this;
  }
  // 3 E(|t| + |f|)
  Poly &operator*=(const Poly &fs) {
    if (empty() || fs.empty()) return *this = {};
    const int nt = size(), nf = fs.size();
    int n = 1;
    for (; n < nt + nf - 1; n <<= 1) {}
    assert(n <= LIM_POLY);
    resize(n);
    fft(data(), n);  // 1 E(n)
    memcpy(polyWork0, fs.data(), nf * sizeof(Mint));
    memset(polyWork0 + nf, 0, (n - nf) * sizeof(Mint));
    fft(polyWork0, n);  // 1 E(n)
    for (int i = 0; i < n; ++i) (*this)[i] *= polyWork0[i];
    invFft(data(), n);  // 1 E(n)
    resize(nt + nf - 1);
    return *this;
  }
  // 13 E(deg(t) - deg(f) + 1)
  // rev(t) = rev(f) rev(q) + x^(deg(t)-deg(f)+1) rev(r)
  Poly &operator/=(const Poly &fs) {
    const int m = deg(), n = fs.deg();
    assert(n != -1);
    if (m < n) return *this = {};
    Poly tsRev(m - n + 1), fsRev(min(m - n, n) + 1);
    for (int i = 0; i <= m - n; ++i) tsRev[i] = (*this)[m - i];
    for (int i = 0, i0 = min(m - n, n); i <= i0; ++i) fsRev[i] = fs[n - i];
    const Poly qsRev = tsRev.div(fsRev, m - n + 1);  // 13 E(m - n + 1)
    resize(m - n + 1);
    for (int i = 0; i <= m - n; ++i) (*this)[i] = qsRev[m - n - i];
    return *this;
  }
  // 13 E(deg(t) - deg(f) + 1) + 3 E(|t|)
  Poly &operator%=(const Poly &fs) {
    const Poly qs = *this / fs;  // 13 E(deg(t) - deg(f) + 1)
    *this -= fs * qs;  // 3 E(|t|)
    resize(deg() + 1);
    return *this;
  }
  Poly &operator*=(const Mint &a) {
    for (int i = 0; i < size(); ++i) (*this)[i] *= a;
    return *this;
  }
  Poly &operator/=(const Mint &a) {
    const Mint b = a.inv();
    for (int i = 0; i < size(); ++i) (*this)[i] *= b;
    return *this;
  }
  Poly operator+() const { return *this; }
  Poly operator-() const {
    Poly fs(size());
    for (int i = 0; i < size(); ++i) fs[i] = -(*this)[i];
    return fs;
  }
  Poly operator+(const Poly &fs) const { return (Poly(*this) += fs); }
  Poly operator-(const Poly &fs) const { return (Poly(*this) -= fs); }
  Poly operator*(const Poly &fs) const { return (Poly(*this) *= fs); }
  Poly operator/(const Poly &fs) const { return (Poly(*this) /= fs); }
  Poly operator%(const Poly &fs) const { return (Poly(*this) %= fs); }
  Poly operator*(const Mint &a) const { return (Poly(*this) *= a); }
  Poly operator/(const Mint &a) const { return (Poly(*this) /= a); }
  friend Poly operator*(const Mint &a, const Poly &fs) { return fs * a; }

  // 10 E(n)
  // f <- f - (t f - 1) f
  Poly inv(int n) const {
    assert(!empty()); assert((*this)[0]); assert(1 <= n);
    assert(n == 1 || 1 << (32 - __builtin_clz(n - 1)) <= LIM_POLY);
    Poly fs(n);
    fs[0] = (*this)[0].inv();
    for (int m = 1; m < n; m <<= 1) {
      memcpy(polyWork0, data(), min(m << 1, size()) * sizeof(Mint));
      memset(polyWork0 + min(m << 1, size()), 0, ((m << 1) - min(m << 1, size())) * sizeof(Mint));
      fft(polyWork0, m << 1);  // 2 E(n)
      memcpy(polyWork1, fs.data(), min(m << 1, n) * sizeof(Mint));
      memset(polyWork1 + min(m << 1, n), 0, ((m << 1) - min(m << 1, n)) * sizeof(Mint));
      fft(polyWork1, m << 1);  // 2 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
      invFft(polyWork0, m << 1); // 2 E(n)
      memset(polyWork0, 0, m * sizeof(Mint));
      fft(polyWork0, m << 1); // 2 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
      invFft(polyWork0, m << 1); // 2 E(n)
      for (int i = m, i0 = min(m << 1, n); i < i0; ++i) fs[i] = -polyWork0[i];
    }
    return fs;
  }
  // 9 E(n)
  // Need (4 m)-th roots of unity to lift from (mod x^m) to (mod x^(2m)).
  // f <- f - (t f - 1) f
  // (t f^2) mod ((x^(2m) - 1) (x^m - 1^(1/4)))
  /*
  Poly inv(int n) const {
    assert(!empty()); assert((*this)[0]); assert(1 <= n);
    assert(n == 1 || 3 << (31 - __builtin_clz(n - 1)) <= LIM_POLY);
    assert(n <= 1 << (FFT_MAX - 1));
    Poly fs(n);
    fs[0] = (*this)[0].inv();
    for (int h = 2, m = 1; m < n; ++h, m <<= 1) {
      const Mint a = FFT_ROOTS[h], b = INV_FFT_ROOTS[h];
      memcpy(polyWork0, data(), min(m << 1, size()) * sizeof(Mint));
      memset(polyWork0 + min(m << 1, size()), 0, ((m << 1) - min(m << 1, size())) * sizeof(Mint));
      {
        Mint aa = 1;
        for (int i = 0; i < m; ++i) { polyWork0[(m << 1) + i] = aa * polyWork0[i]; aa *= a; }
        for (int i = 0; i < m; ++i) { polyWork0[(m << 1) + i] += aa * polyWork0[m + i]; aa *= a; }
      }
      fft(polyWork0, m << 1);  // 2 E(n)
      fft(polyWork0 + (m << 1), m);  // 1 E(n)
      memcpy(polyWork1, fs.data(), min(m << 1, n) * sizeof(Mint));
      memset(polyWork1 + min(m << 1, n), 0, ((m << 1) - min(m << 1, n)) * sizeof(Mint));
      {
        Mint aa = 1;
        for (int i = 0; i < m; ++i) { polyWork1[(m << 1) + i] = aa * polyWork1[i]; aa *= a; }
        for (int i = 0; i < m; ++i) { polyWork1[(m << 1) + i] += aa * polyWork1[m + i]; aa *= a; }
      }
      fft(polyWork1, m << 1);  // 2 E(n)
      fft(polyWork1 + (m << 1), m);  // 1 E(n)
      for (int i = 0; i < (m << 1) + m; ++i) polyWork0[i] *= polyWork1[i] * polyWork1[i];
      invFft(polyWork0, m << 1);  // 2 E(n)
      invFft(polyWork0 + (m << 1), m);  // 1 E(n)
      // 2 f0 + (-f2), (-f1) + (-f3), 1^(1/4) (-f1) - (-f2) - 1^(1/4) (-f3)
      {
        Mint bb = 1;
        for (int i = 0, i0 = min(m, n - m); i < i0; ++i) {
          unsigned x = polyWork0[i].x + (bb * polyWork0[(m << 1) + i]).x + MO2 - (fs[i].x << 1);  // < 4 MO
          fs[m + i] = Mint(static_cast<unsigned long long>(FFT_ROOTS[2].x) * x) - polyWork0[m + i];
          fs[m + i].x = ((fs[m + i].x & 1) ? (fs[m + i].x + MO) : fs[m + i].x) >> 1;
          bb *= b;
        }
      }
    }
    return fs;
  }
  */
  // 13 E(n)
  // g = (1 / f) mod x^m
  // h <- h - (f h - t) g
  Poly div(const Poly &fs, int n) const {
    assert(!fs.empty()); assert(fs[0]); assert(1 <= n);
    if (n == 1) return {at(0) / fs[0]};
    // m < n <= 2 m
    const int m = 1 << (31 - __builtin_clz(n - 1));
    assert(m << 1 <= LIM_POLY);
    Poly gs = fs.inv(m);  // 5 E(n)
    gs.resize(m << 1);
    fft(gs.data(), m << 1);  // 1 E(n)
    memcpy(polyWork0, data(), min(m, size()) * sizeof(Mint));
    memset(polyWork0 + min(m, size()), 0, ((m << 1) - min(m, size())) * sizeof(Mint));
    fft(polyWork0, m << 1);  // 1 E(n)
    for (int i = 0; i < m << 1; ++i) polyWork0[i] *= gs[i];
    invFft(polyWork0, m << 1);  // 1 E(n)
    Poly hs(n);
    memcpy(hs.data(), polyWork0, m * sizeof(Mint));
    memset(polyWork0 + m, 0, m * sizeof(Mint));
    fft(polyWork0, m << 1);  // 1 E(n)
    memcpy(polyWork1, fs.data(), min(m << 1, fs.size()) * sizeof(Mint));
    memset(polyWork1 + min(m << 1, fs.size()), 0, ((m << 1) - min(m << 1, fs.size())) * sizeof(Mint));
    fft(polyWork1, m << 1);  // 1 E(n)
    for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
    invFft(polyWork0, m << 1);  // 1 E(n)
    memset(polyWork0, 0, m * sizeof(Mint));
    for (int i = m, i0 = min(m << 1, size()); i < i0; ++i) polyWork0[i] -= (*this)[i];
    fft(polyWork0, m << 1);  // 1 E(n)
    for (int i = 0; i < m << 1; ++i) polyWork0[i] *= gs[i];
    invFft(polyWork0, m << 1);  // 1 E(n)
    for (int i = m; i < n; ++i) hs[i] = -polyWork0[i];
    return hs;
  }
  // (4 (floor(log_2 k) - ceil(log_2 |f|)) + 16) E(|f|)  for  |t| < |f|
  // [x^k] (t(x) / f(x)) = [x^k] ((t(x) f(-x)) / (f(x) f(-x))
  // polyWork0: half of (2 m)-th roots of unity, inversed, bit-reversed
  Mint divAt(const Poly &fs, long long k) const {
    assert(k >= 0);
    if (size() >= fs.size()) {
      const Poly qs = *this / fs;  // 13 E(deg(t) - deg(f) + 1)
      Poly rs = *this - fs * qs;  // 3 E(|t|)
      rs.resize(rs.deg() + 1);
      return qs.at(k) + rs.divAt(fs, k);
    }
    int h = 0, m = 1;
    for (; m < fs.size(); ++h, m <<= 1) {}
    if (k < m) {
      const Poly gs = fs.inv(k + 1);  // 10 E(|f|)
      Mint sum;
      for (int i = 0, i0 = min<int>(k + 1, size()); i < i0; ++i) sum += (*this)[i] * gs[k - i];
      return sum;
    }
    assert(m << 1 <= LIM_POLY);
    polyWork0[0] = Mint(2U).inv();
    for (int hh = 0; hh < h; ++hh) for (int i = 0; i < 1 << hh; ++i) polyWork0[1 << hh | i] = polyWork0[i] * INV_FFT_ROOTS[hh + 2];
    const Mint a = FFT_ROOTS[h + 1];
    memcpy(polyWork2, data(), size() * sizeof(Mint));
    memset(polyWork2 + size(), 0, ((m << 1) - size()) * sizeof(Mint));
    fft(polyWork2, m << 1);  // 2 E(|f|)
    memcpy(polyWork1, fs.data(), fs.size() * sizeof(Mint));
    memset(polyWork1 + fs.size(), 0, ((m << 1) - fs.size()) * sizeof(Mint));
    fft(polyWork1, m << 1);  // 2 E(|f|)
    for (; ; ) {
      if (k & 1) {
        for (int i = 0; i < m; ++i) polyWork2[i] = polyWork0[i] * (polyWork2[i << 1 | 0] * polyWork1[i << 1 | 1] - polyWork2[i << 1 | 1] * polyWork1[i << 1 | 0]);
      } else {
        for (int i = 0; i < m; ++i) {
          polyWork2[i] = polyWork2[i << 1 | 0] * polyWork1[i << 1 | 1] + polyWork2[i << 1 | 1] * polyWork1[i << 1 | 0];
          polyWork2[i].x = ((polyWork2[i].x & 1) ? (polyWork2[i].x + MO) : polyWork2[i].x) >> 1;
        }
      }
      for (int i = 0; i < m; ++i) polyWork1[i] = polyWork1[i << 1 | 0] * polyWork1[i << 1 | 1];
      if ((k >>= 1) < m) {
        invFft(polyWork2, m);  // 1 E(|f|)
        invFft(polyWork1, m);  // 1 E(|f|)
        // Poly::inv does not use polyWork2
        const Poly gs = Poly(vector<Mint>(polyWork1, polyWork1 + k + 1)).inv(k + 1);  // 10 E(|f|)
        Mint sum;
        for (int i = 0; i <= k; ++i) sum += polyWork2[i] * gs[k - i];
        return sum;
      }
      memcpy(polyWork2 + m, polyWork2, m * sizeof(Mint));
      invFft(polyWork2 + m, m);  // (floor(log_2 k) - ceil(log_2 |f|)) E(|f|)
      memcpy(polyWork1 + m, polyWork1, m * sizeof(Mint));
      invFft(polyWork1 + m, m);  // (floor(log_2 k) - ceil(log_2 |f|)) E(|f|)
      Mint aa = 1;
      for (int i = m; i < m << 1; ++i) { polyWork2[i] *= aa; polyWork1[i] *= aa; aa *= a; }
      fft(polyWork2 + m, m);  // (floor(log_2 k) - ceil(log_2 |f|)) E(|f|)
      fft(polyWork1 + m, m);  // (floor(log_2 k) - ceil(log_2 |f|)) E(|f|)
    }
  }
  // 13 E(n)
  // D log(t) = (D t) / t
  Poly log(int n) const {
    assert(!empty()); assert((*this)[0].x == 1U); assert(n <= LIM_INV);
    Poly fs = mod(n);
    for (int i = 0; i < fs.size(); ++i) fs[i] *= i;
    fs = fs.div(*this, n);
    for (int i = 1; i < n; ++i) fs[i] *= ::inv[i];
    return fs;
  }
  // (16 + 1/2) E(n)
  // f = exp(t) mod x^m  ==>  (D f) / f == D t  (mod x^m)
  // g = (1 / exp(t)) mod x^m
  // f <- f - (log f - t) / (1 / f)
  //   =  f - (I ((D f) / f) - t) f
  //   == f - (I ((D f) / f + (f g - 1) ((D f) / f - D (t mod x^m))) - t) f  (mod x^(2m))
  //   =  f - (I (g (D f - f D (t mod x^m)) + D (t mod x^m)) - t) f
  // g <- g - (f g - 1) g
  // polyWork1: DFT(f, 2 m), polyWork2: g, polyWork3: DFT(g, 2 m)
  Poly exp(int n) const {
    assert(!empty()); assert(!(*this)[0]); assert(1 <= n);
    assert(n == 1 || 1 << (32 - __builtin_clz(n - 1)) <= min(LIM_INV, LIM_POLY));
    if (n == 1) return {1U};
    if (n == 2) return {1U, at(1)};
    Poly fs(n);
    fs[0].x = polyWork1[0].x = polyWork1[1].x = polyWork2[0].x = 1U;
    int m;
    for (m = 1; m << 1 < n; m <<= 1) {
      for (int i = 0, i0 = min(m, size()); i < i0; ++i) polyWork0[i] = i * (*this)[i];
      memset(polyWork0 + min(m, size()), 0, (m - min(m, size())) * sizeof(Mint));
      fft(polyWork0, m);  // (1/2) E(n)
      for (int i = 0; i < m; ++i) polyWork0[i] *= polyWork1[i];
      invFft(polyWork0, m);  // (1/2) E(n)
      for (int i = 0; i < m; ++i) polyWork0[i] -= i * fs[i];
      memset(polyWork0 + m, 0, m * sizeof(Mint));
      fft(polyWork0, m << 1);  // 1 E(n)
      memcpy(polyWork3, polyWork2, m * sizeof(Mint));
      memset(polyWork3 + m, 0, m * sizeof(Mint));
      fft(polyWork3, m << 1);  // 1 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork3[i];
      invFft(polyWork0, m << 1);  // 1 E(n)
      for (int i = 0; i < m; ++i) polyWork0[i] *= ::inv[m + i];
      for (int i = 0, i0 = min(m, size() - m); i < i0; ++i) polyWork0[i] += (*this)[m + i];
      memset(polyWork0 + m, 0, m * sizeof(Mint));
      fft(polyWork0, m << 1);  // 1 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
      invFft(polyWork0, m << 1);  // 1 E(n)
      memcpy(fs.data() + m, polyWork0, m * sizeof(Mint));
      memcpy(polyWork1, fs.data(), (m << 1) * sizeof(Mint));
      memset(polyWork1 + (m << 1), 0, (m << 1) * sizeof(Mint));
      fft(polyWork1, m << 2);  // 2 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] = polyWork1[i] * polyWork3[i];
      invFft(polyWork0, m << 1);  // 1 E(n)
      memset(polyWork0, 0, m * sizeof(Mint));
      fft(polyWork0, m << 1);  // 1 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork3[i];
      invFft(polyWork0, m << 1);  // 1 E(n)
      for (int i = m; i < m << 1; ++i) polyWork2[i] = -polyWork0[i];
    }
    for (int i = 0, i0 = min(m, size()); i < i0; ++i) polyWork0[i] = i * (*this)[i];
    memset(polyWork0 + min(m, size()), 0, (m - min(m, size())) * sizeof(Mint));
    fft(polyWork0, m);  // (1/2) E(n)
    for (int i = 0; i < m; ++i) polyWork0[i] *= polyWork1[i];
    invFft(polyWork0, m);  // (1/2) E(n)
    for (int i = 0; i < m; ++i) polyWork0[i] -= i * fs[i];
    memcpy(polyWork0 + m, polyWork0 + (m >> 1), (m >> 1) * sizeof(Mint));
    memset(polyWork0 + (m >> 1), 0, (m >> 1) * sizeof(Mint));
    memset(polyWork0 + m + (m >> 1), 0, (m >> 1) * sizeof(Mint));
    fft(polyWork0, m);  // (1/2) E(n)
    fft(polyWork0 + m, m);  // (1/2) E(n)
    memcpy(polyWork3 + m, polyWork2 + (m >> 1), (m >> 1) * sizeof(Mint));
    memset(polyWork3 + m + (m >> 1), 0, (m >> 1) * sizeof(Mint));
    fft(polyWork3 + m, m);  // (1/2) E(n)
    for (int i = 0; i < m; ++i) polyWork0[m + i] = polyWork0[i] * polyWork3[m + i] + polyWork0[m + i] * polyWork3[i];
    for (int i = 0; i < m; ++i) polyWork0[i] *= polyWork3[i];
    invFft(polyWork0, m);  // (1/2) E(n)
    invFft(polyWork0 + m, m);  // (1/2) E(n)
    for (int i = 0; i < m >> 1; ++i) polyWork0[(m >> 1) + i] += polyWork0[m + i];
    for (int i = 0; i < m; ++i) polyWork0[i] *= ::inv[m + i];
    for (int i = 0, i0 = min(m, size() - m); i < i0; ++i) polyWork0[i] += (*this)[m + i];
    memset(polyWork0 + m, 0, m * sizeof(Mint));
    fft(polyWork0, m << 1);  // 1 E(n)
    for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
    invFft(polyWork0, m << 1);  // 1 E(n)
    memcpy(fs.data() + m, polyWork0, (n - m) * sizeof(Mint));
    return fs;
  }
  // (29 + 1/2) E(n)
  // g <- g - (log g - a log t) g
  Poly pow1(Mint a, int n) const {
    assert(!empty()); assert((*this)[0].x == 1U); assert(1 <= n);
    return (a * log(n)).exp(n);  // 13 E(n) + (16 + 1/2) E(n)
  }
  // (29 + 1/2) E(n - a ord(t))
  Poly pow(long long a, int n) const {
    assert(a >= 0); assert(1 <= n);
    if (a == 0) { Poly gs(n); gs[0].x = 1U; return gs; }
    const int o = ord();
    if (o == -1 || o > (n - 1) / a) return Poly(n);
    const Mint b = (*this)[o].inv(), c = (*this)[o].pow(a);
    const int ntt = min<int>(n - a * o, size() - o);
    Poly tts(ntt);
    for (int i = 0; i < ntt; ++i) tts[i] = b * (*this)[o + i];
    tts = tts.pow1(a, n - a * o);  // (29 + 1/2) E(n - a ord(t))
    Poly gs(n);
    for (int i = 0; i < n - a * o; ++i) gs[a * o + i] = c * tts[i];
    return gs;
  }
  // (10 + 1/2) E(n)
  // f = t^(1/2) mod x^m,  g = 1 / t^(1/2) mod x^m
  // f <- f - (f^2 - h) g / 2
  // g <- g - (f g - 1) g
  // polyWork1: DFT(f, m), polyWork2: g, polyWork3: DFT(g, 2 m)
  Poly sqrt(int n) const {
    assert(!empty()); assert((*this)[0].x == 1U); assert(1 <= n);
    assert(n == 1 || 1 << (32 - __builtin_clz(n - 1)) <= LIM_POLY);
    if (n == 1) return {1U};
    if (n == 2) return {1U, at(1) / 2};
    Poly fs(n);
    fs[0].x = polyWork1[0].x = polyWork2[0].x = 1U;
    int m;
    for (m = 1; m << 1 < n; m <<= 1) {
      for (int i = 0; i < m; ++i) polyWork1[i] *= polyWork1[i];
      invFft(polyWork1, m);  // (1/2) E(n)
      for (int i = 0, i0 = min(m, size()); i < i0; ++i) polyWork1[i] -= (*this)[i];
      for (int i = 0, i0 = min(m, size() - m); i < i0; ++i) polyWork1[i] -= (*this)[m + i];
      memset(polyWork1 + m, 0, m * sizeof(Mint));
      fft(polyWork1, m << 1);  // 1 E(n)
      memcpy(polyWork3, polyWork2, m * sizeof(Mint));
      memset(polyWork3 + m, 0, m * sizeof(Mint));
      fft(polyWork3, m << 1);  // 1 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork1[i] *= polyWork3[i];
      invFft(polyWork1, m << 1);  // 1 E(n)
      for (int i = 0; i < m; ++i) { polyWork1[i] = -polyWork1[i]; fs[m + i].x = ((polyWork1[i].x & 1) ? (polyWork1[i].x + MO) : polyWork1[i].x) >> 1; }
      memcpy(polyWork1, fs.data(), (m << 1) * sizeof(Mint));
      fft(polyWork1, m << 1);  // 1 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] = polyWork1[i] * polyWork3[i];
      invFft(polyWork0, m << 1);  // 1 E(n)
      memset(polyWork0, 0, m * sizeof(Mint));
      fft(polyWork0, m << 1);  // 1 E(n)
      for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork3[i];
      invFft(polyWork0, m << 1);  // 1 E(n)
      for (int i = m; i < m << 1; ++i) polyWork2[i] = -polyWork0[i];
    }
    for (int i = 0; i < m; ++i) polyWork1[i] *= polyWork1[i];
    invFft(polyWork1, m);  // (1/2) E(n)
    for (int i = 0, i0 = min(m, size()); i < i0; ++i) polyWork1[i] -= (*this)[i];
    for (int i = 0, i0 = min(m, size() - m); i < i0; ++i) polyWork1[i] -= (*this)[m + i];
    memcpy(polyWork1 + m, polyWork1 + (m >> 1), (m >> 1) * sizeof(Mint));
    memset(polyWork1 + (m >> 1), 0, (m >> 1) * sizeof(Mint));
    memset(polyWork1 + m + (m >> 1), 0, (m >> 1) * sizeof(Mint));
    fft(polyWork1, m);  // (1/2) E(n)
    fft(polyWork1 + m, m);  // (1/2) E(n)
    memcpy(polyWork3 + m, polyWork2 + (m >> 1), (m >> 1) * sizeof(Mint));
    memset(polyWork3 + m + (m >> 1), 0, (m >> 1) * sizeof(Mint));
    fft(polyWork3 + m, m);  // (1/2) E(n)
    // for (int i = 0; i < m << 1; ++i) polyWork1[i] *= polyWork3[i];
    for (int i = 0; i < m; ++i) polyWork1[m + i] = polyWork1[i] * polyWork3[m + i] + polyWork1[m + i] * polyWork3[i];
    for (int i = 0; i < m; ++i) polyWork1[i] *= polyWork3[i];
    invFft(polyWork1, m);  // (1/2) E(n)
    invFft(polyWork1 + m, m);  // (1/2) E(n)
    for (int i = 0; i < m >> 1; ++i) polyWork1[(m >> 1) + i] += polyWork1[m + i];
    for (int i = 0; i < n - m; ++i) { polyWork1[i] = -polyWork1[i]; fs[m + i].x = ((polyWork1[i].x & 1) ? (polyWork1[i].x + MO) : polyWork1[i].x) >> 1; }
    return fs;
  }
  // (10 + 1/2) E(n)
  // modSqrt must return a quadratic residue if exists, or anything otherwise.
  // Return {} if *this does not have a square root.
  template <class F> Poly sqrt(int n, F modSqrt) const {
    assert(1 <= n);
    const int o = ord();
    if (o == -1) return Poly(n);
    if (o & 1) return {};
    const Mint c = modSqrt((*this)[o]);
    if (c * c != (*this)[o]) return {};
    if (o >> 1 >= n) return Poly(n);
    const Mint b = (*this)[o].inv();
    const int ntt = min(n - (o >> 1), size() - o);
    Poly tts(ntt);
    for (int i = 0; i < ntt; ++i) tts[i] = b * (*this)[o + i];
    tts = tts.sqrt(n - (o >> 1));  // (10 + 1/2) E(n)
    Poly gs(n);
    for (int i = 0; i < n - (o >> 1); ++i) gs[(o >> 1) + i] = c * tts[i];
    return gs;
  }
  // 6 E(|t|)
  // x -> x + a
  Poly shift(const Mint &a) const {
    if (empty()) return {};
    const int n = size();
    int m = 1;
    for (; m < n; m <<= 1) {}
    for (int i = 0; i < n; ++i) polyWork0[i] = fac[i] * (*this)[i];
    memset(polyWork0 + n, 0, ((m << 1) - n) * sizeof(Mint));
    fft(polyWork0, m << 1);  // 2 E(|t|)
    {
      Mint aa = 1;
      for (int i = 0; i < n; ++i) { polyWork1[n - 1 - i] = invFac[i] * aa; aa *= a; }
    }
    memset(polyWork1 + n, 0, ((m << 1) - n) * sizeof(Mint));
    fft(polyWork1, m << 1);  // 2 E(|t|)
    for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
    invFft(polyWork0, m << 1);  // 2 E(|t|)
    Poly fs(n);
    for (int i = 0; i < n; ++i) fs[i] = invFac[i] * polyWork0[n - 1 + i];
    return fs;
  }
};

Mint linearRecurrenceAt(const vector<Mint> &as, const vector<Mint> &cs, long long k) {
  assert(!cs.empty()); assert(cs[0]);
  const int d = cs.size() - 1;
  assert(as.size() >= static_cast<size_t>(d));
  return (Poly(vector<Mint>(as.begin(), as.begin() + d)) * cs).mod(d).divAt(cs, k);
}

struct SubproductTree {
  int logN, n, nn;
  vector<Mint> xs;
  // [DFT_4((X-xs[0])(X-xs[1])(X-xs[2])(X-xs[3]))] [(X-xs[0])(X-xs[1])(X-xs[2])(X-xs[3])mod X^4]
  // [         DFT_4((X-xs[0])(X-xs[1]))         ] [         DFT_4((X-xs[2])(X-xs[3]))         ]
  // [   DFT_2(X-xs[0])   ] [   DFT_2(X-xs[1])   ] [   DFT_2(X-xs[2])   ] [   DFT_2(X-xs[3])   ]
  vector<Mint> buf;
  vector<Mint *> gss;
  // (1 - xs[0] X) ... (1 - xs[nn-1] X)
  Poly all;
  // (ceil(log_2 n) + O(1)) E(n)
  SubproductTree(const vector<Mint> &xs_) {
    n = xs_.size();
    for (logN = 0, nn = 1; nn < n; ++logN, nn <<= 1) {}
    xs.assign(nn, 0U);
    memcpy(xs.data(), xs_.data(), n * sizeof(Mint));
    buf.assign((logN + 1) * (nn << 1), 0U);
    gss.assign(nn << 1, nullptr);
    for (int h = 0; h <= logN; ++h) for (int u = 1 << h; u < 1 << (h + 1); ++u) {
      gss[u] = buf.data() + (h * (nn << 1) + ((u - (1 << h)) << (logN - h + 1)));
    }
    for (int i = 0; i < nn; ++i) {
      gss[nn + i][0] = -xs[i] + 1;
      gss[nn + i][1] = -xs[i] - 1;
    }
    if (nn == 1) gss[1][1] += 2;
    for (int h = logN; --h >= 0; ) {
      const int m = 1 << (logN - h);
      for (int u = 1 << (h + 1); --u >= 1 << h; ) {
        for (int i = 0; i < m; ++i) gss[u][i] = gss[u << 1][i] * gss[u << 1 | 1][i];
        memcpy(gss[u] + m, gss[u], m * sizeof(Mint));
        invFft(gss[u] + m, m);  // ((1/2) ceil(log_2 n) + O(1)) E(n)
        if (h > 0) {
          gss[u][m] -= 2;
          const Mint a = FFT_ROOTS[logN - h + 1];
          Mint aa = 1;
          for (int i = m; i < m << 1; ++i) { gss[u][i] *= aa; aa *= a; };
          fft(gss[u] + m, m);  // ((1/2) ceil(log_2 n) + O(1)) E(n)
        }
      }
    }
    all.resize(nn + 1);
    all[0] = 1;
    for (int i = 1; i < nn; ++i) all[i] = gss[1][nn + nn - i];
    all[nn] = gss[1][nn] - 1;
  }
  // ((3/2) ceil(log_2 n) + O(1)) E(n) + 10 E(|f|) + 3 E(|f| + 2^(ceil(log_2 n)))
  vector<Mint> multiEval(const Poly &fs) const {
    vector<Mint> work0(nn), work1(nn), work2(nn);
    {
      const int m = max(fs.size(), 1);
      auto invAll = all.inv(m);  // 10 E(|f|)
      std::reverse(invAll.begin(), invAll.end());
      int mm;
      for (mm = 1; mm < m - 1 + nn; mm <<= 1) {}
      invAll.resize(mm, 0U);
      fft(invAll);  // E(|f| + 2^(ceil(log_2 n)))
      vector<Mint> ffs(mm, 0U);
      memcpy(ffs.data(), fs.data(), fs.size() * sizeof(Mint));
      fft(ffs);  // E(|f| + 2^(ceil(log_2 n)))
      for (int i = 0; i < mm; ++i) ffs[i] *= invAll[i];
      invFft(ffs);  // E(|f| + 2^(ceil(log_2 n)))
      memcpy(((logN & 1) ? work1 : work0).data(), ffs.data() + m - 1, nn * sizeof(Mint));
    }
    for (int h = 0; h < logN; ++h) {
      const int m = 1 << (logN - h);
      for (int u = 1 << h; u < 1 << (h + 1); ++u) {
        Mint *hs = (((logN - h) & 1) ? work1 : work0).data() + ((u - (1 << h)) << (logN - h));
        Mint *hs0 = (((logN - h) & 1) ? work0 : work1).data() + ((u - (1 << h)) << (logN - h));
        Mint *hs1 = hs0 + (m >> 1);
        fft(hs, m);  // ((1/2) ceil(log_2 n) + O(1)) E(n)
        for (int i = 0; i < m; ++i) work2[i] = gss[u << 1 | 1][i] * hs[i];
        invFft(work2.data(), m);  // ((1/2) ceil(log_2 n) + O(1)) E(n)
        memcpy(hs0, work2.data() + (m >> 1), (m >> 1) * sizeof(Mint));
        for (int i = 0; i < m; ++i) work2[i] = gss[u << 1][i] * hs[i];
        invFft(work2.data(), m);  // ((1/2) ceil(log_2 n) + O(1)) E(n)
        memcpy(hs1, work2.data() + (m >> 1), (m >> 1) * sizeof(Mint));
      }
    }
    work0.resize(n);
    return work0;
  }
  // ((5/2) ceil(log_2 n) + O(1)) E(n)
  Poly interpolate(const vector<Mint> &ys) const {
    assert(static_cast<int>(ys.size()) == n);
    Poly gs(n);
    for (int i = 0; i < n; ++i) gs[i] = (i + 1) * all[n - (i + 1)];
    const vector<Mint> denoms = multiEval(gs);  // ((3/2) ceil(log_2 n) + O(1)) E(n)
    vector<Mint> work(nn << 1, 0U);
    for (int i = 0; i < n; ++i) {
      // xs[0], ..., xs[n - 1] are not distinct
      assert(denoms[i]);
      work[i << 1] = work[i << 1 | 1] = ys[i] / denoms[i];
    }
    for (int h = logN; --h >= 0; ) {
      const int m = 1 << (logN - h);
      for (int u = 1 << (h + 1); --u >= 1 << h; ) {
        Mint *hs = work.data() + ((u - (1 << h)) << (logN - h + 1));
        for (int i = 0; i < m; ++i) hs[i] = gss[u << 1 | 1][i] * hs[i] + gss[u << 1][i] * hs[m + i];
        if (h > 0) {
          memcpy(hs + m, hs, m * sizeof(Mint));
          invFft(hs + m, m);  // ((1/2) ceil(log_2 n) + O(1)) E(n)
          const Mint a = FFT_ROOTS[logN - h + 1];
          Mint aa = 1;
          for (int i = m; i < m << 1; ++i) { hs[i] *= aa; aa *= a; };
          fft(hs + m, m);  // ((1/2) ceil(log_2 n) + O(1)) E(n)
        }
      }
    }
    invFft(work.data(), nn);  // E(n)
    return Poly(vector<Mint>(work.data() + nn - n, work.data() + nn));
  }
};
////////////////////////////////////////////////////////////////////////////////


namespace square_matrix {
template <class T> vector<vector<T>> transpose(const vector<vector<T>> &a) {
  const int n = a.size();
  for (int i = 0; i < n; ++i) assert(static_cast<int>(a[i].size()) == n);
  vector<vector<T>> b(n, vector<T>(n));
  for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) b[j][i] = a[i][j];
  return b;
}
template <class T> vector<T> mul(const vector<vector<T>> &a, const vector<T> &us) {
  const int n = a.size();
  assert(static_cast<int>(us.size()) == n);
  vector<T> vs(n, 0);
  for (int i = 0; i < n; ++i) {
    assert(static_cast<int>(a[i].size()) == n);
    for (int j = 0; j < n; ++j) vs[i] += a[i][j] * us[j];
  }
  return vs;
}
template <class T> vector<vector<T>> mul(const vector<vector<T>> &a, const vector<vector<T>> &b) {
  const int n = a.size();
  for (int i = 0; i < n; ++i) assert(static_cast<int>(a[i].size()) == n);
  assert(static_cast<int>(b.size()) == n);
  for (int j = 0; j < n; ++j) assert(static_cast<int>(b[j].size()) == n);
  const auto bT = transpose(b);
  vector<vector<T>> c(n, vector<T>(n, 0));
  for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) for (int k = 0; k < n; ++k) {
    c[i][j] += a[i][k] * bT[j][k];
  }
  return c;
}
}  // namespace square_matrix


// det(a + x I)
// O(n^3)
//   Call by value: Modifies a (Watch out when using C-style array!)
template <class T> vector<T> charPoly(vector<vector<T>> a) {
  const int n = a.size();
  // upper Hessenberg
  for (int j = 0; j < n - 2; ++j) {
    for (int i = j + 1; i < n; ++i) {
      if (a[i][j]) {
        swap(a[j + 1], a[i]);
        for (int ii = 0; ii < n; ++ii) swap(a[ii][j + 1], a[ii][i]);
        break;
      }
    }
    if (a[j + 1][j]) {
      const T s = 1 / a[j + 1][j];
      for (int i = j + 2; i < n; ++i) {
        const T t = s * a[i][j];
        for (int jj = j; jj < n; ++jj) a[i][jj] -= t * a[j + 1][jj];
        for (int ii = 0; ii < n; ++ii) a[ii][j + 1] += t * a[ii][i];
      }
    }
  }
  // fss[i] := det(a[0..i][0..i] + x I_i)
  vector<vector<T>> fss(n + 1);
  fss[0] = {1};
  for (int i = 0; i < n; ++i) {
    fss[i + 1].assign(i + 2, 0);
    for (int k = 0; k <= i; ++k) fss[i + 1][k + 1] = fss[i][k];
    for (int k = 0; k <= i; ++k) fss[i + 1][k] += a[i][i] * fss[i][k];
    T prod = 1;
    for (int j = i - 1; j >= 0; --j) {
      prod *= -a[j + 1][j];
      const T t = prod * a[j][i];
      for (int k = 0; k <= j; ++k) fss[i + 1][k] += t * fss[j][k];
    }
  }
  return fss[n];
}


int N, M;
vector<vector<Mint>> A;

int main() {
  for (; ~scanf("%d%d", &N, &M); ) {
    A.assign(N, vector<Mint>(N));
    for (int u = 0; u < N; ++u) for (int v = 0; v < N; ++v) {
      scanf("%u", &A[u][v].x);
    }
    
    auto ps = charPoly(A);
    for (int i = N - 1; i >= 0; i -= 2) ps[i] = -ps[i];
cerr<<"ps = "<<ps<<endl;
    
    vector<Poly> fss(N, Poly(M + 1));
    vector<vector<Mint>> ak(N, vector<Mint>(N, 0));
    for (int u = 0; u < N; ++u) ak[u][u] = 1;
    for (int k = 0; k < N; ++k) {
      for (int u = 0; u < N; ++u) for (int v = 0; v < N; ++v) {
        fss[u & v][k] += ak[u][v];
      }
      ak = square_matrix::mul(ak, A);
    }
    for (int t = 0; t < N; ++t) {
      Poly &fs = fss[t];
      for (int k = N; k <= M; ++k) {
        for (int j = 0; j < N; ++j) fs[k] -= ps[j] * fs[k - N + j];
      }
// cerr<<t<<": "<<fs<<endl;
    }
    
    for (int i = 0; 1 << i < N; ++i) for (int t = 0; t < N; ++t) if (!(t & 1 << i)) {
      fss[t] += fss[t | 1 << i];
    }
    for (int t = 0; t < N; ++t) {
      Poly &fs = fss[t];
      fs = -fs;
      fs[0] = 1;
      fs = fs.inv(M + 1);
    }
    for (int i = 0; 1 << i < N; ++i) for (int t = 0; t < N; ++t) if (!(t & 1 << i)) {
      fss[t] -= fss[t | 1 << i];
    }
// cerr<<fss<<endl;
    
    unsigned key = 0;
    for (int t = 0; t < N; ++t) for (int k = 1; k <= M; ++k) key ^= fss[t][k].x;
    printf("%u\n", key);
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 0
Runtime Error

Test #1:

score: 15
Accepted
time: 8ms
memory: 21544kb

input:

4 20
53674686 128460215 363694167 120271218
578912024 941426068 993595265 587468617
731649477 694107878 355552389 226535630
99325151 243772822 66420647 578481511

output:

588479706

result:

ok 1 number(s): "588479706"

Test #2:

score: 0
Accepted
time: 10ms
memory: 20700kb

input:

16 2000
315391385 70546806 184749201 528239002 741286788 146241680 165603053 41114445 572984599 227056916 305263327 980588113 367160763 155832001 212041467 995977944
491801679 569182307 859668874 327536237 778338213 762819679 11238663 728941676 307395331 62905643 662320291 849065607 550529700 282249...

output:

808196376

result:

ok 1 number(s): "808196376"

Test #3:

score: 0
Accepted
time: 8ms
memory: 21484kb

input:

8 100
681016308 947980964 71683807 222166989 633911431 994577572 50784856 298319502
40710797 455891003 503120116 503880841 988981490 34455718 806388934 589433205
327802386 18831411 193642391 916990555 375690304 69587142 72759137 6300182
494361154 892873815 205578968 352463324 154675154 301940078 523...

output:

625872426

result:

ok 1 number(s): "625872426"

Test #4:

score: 0
Accepted
time: 12ms
memory: 22156kb

input:

8 123
42141734 119453053 338794033 469472517 896943474 997318263 463090940 539752993
498132275 425586204 10331275 799002923 314685843 769975525 214134323 412654359
293167153 22579811 116636410 566990382 581484192 102682042 582694943 865977998
241553124 317584926 931548048 157765288 390446073 1855087...

output:

365380190

result:

ok 1 number(s): "365380190"

Test #5:

score: -15
Runtime Error

input:

16 5
157021390 252497011 468873864 892465002 392136945 867902344 634574021 416807938 771790989 545264217 666014055 30318904 997001481 92030626 658131204 234369349
43307846 497204529 460391395 44581806 107577365 871932521 470029953 149175762 27325626 819200707 411063821 891562850 191893364 790514504 ...

output:


result:


Subtask #2:

score: 0
Skipped

Dependency #1:

0%

Subtask #3:

score: 0
Runtime Error

Test #21:

score: 35
Accepted
time: 88ms
memory: 23288kb

input:

16 20000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 0 15 14 13 ...

output:

97601915

result:

ok 1 number(s): "97601915"

Test #22:

score: 0
Accepted
time: 452ms
memory: 25552kb

input:

64 20000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 33 32 35 34 37 36 39 38...

output:

709377491

result:

ok 1 number(s): "709377491"

Test #23:

score: 0
Accepted
time: 188ms
memory: 23008kb

input:

32 19850
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29
3 2 1 0 7 6 5 4 11 10 9 8 15 14 1...

output:

815101292

result:

ok 1 number(s): "815101292"

Test #24:

score: 0
Accepted
time: 14ms
memory: 21992kb

input:

32 123
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 ...

output:

929945084

result:

ok 1 number(s): "929945084"

Test #25:

score: -35
Runtime Error

input:

32 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12...

output:


result:


Subtask #4:

score: 0
Skipped

Dependency #1:

0%