QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#310086 | #8148. Middle Point Graph | bachbeo2007 | AC ✓ | 3515ms | 37996kb | C++23 | 13.2kb | 2024-01-21 01:23:36 | 2024-01-21 01:23:37 |
Judging History
answer
// Judges with GCC >= 12 only needs Ofast
// #pragma GCC optimize("O3,no-stack-protector,fast-math,unroll-loops,tree-vectorize")
// MLE optimization
// #pragma GCC optimize("conserve-stack")
// Old judges
// #pragma GCC target("sse4.2,popcnt,lzcnt,abm,mmx,fma,bmi,bmi2")
// New judges. Test with assert(__builtin_cpu_supports("avx2"));
// #pragma GCC target("avx2,popcnt,lzcnt,abm,bmi,bmi2,fma,tune=native")
// Atcoder
// #pragma GCC target("avx2,popcnt,lzcnt,abm,bmi,bmi2,fma")
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> ordered_set;
- insert(x),erase(x)
- find_by_order(k): return iterator to the k-th smallest element
- order_of_key(x): the number of elements that are strictly smaller
*/
#include<bits/stdc++.h>
using namespace std;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
uniform_real_distribution<> pp(0.0,1.0);
#define ld long double
#define pii pair<int,int>
#define piii pair<pii,int>
#define mpp make_pair
#define fi first
#define se second
const int maxn=200005;
const int bl=650;
const int maxs=655;
const int maxm=200005;
const int maxq=1000005;
const int maxl=25;
const int maxa=1000000;
const int root=3;
const int base=101;
using uint = unsigned int;
template<uint _mod>
struct modular_fixed_base{
static constexpr uint mod(){
return _mod;
}
template<class T>
static vector<modular_fixed_base> precalc_power(T base, int SZ){
vector<modular_fixed_base> res(SZ + 1, 1);
for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;
return res;
}
static vector<modular_fixed_base> _INV;
static void precalc_inverse(int SZ){
if(_INV.empty()) _INV.assign(2, 1);
for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);
}
// _mod must be a prime
static modular_fixed_base _primitive_root;
static modular_fixed_base primitive_root(){
if(_primitive_root) return _primitive_root;
if(_mod == 2) return _primitive_root = 1;
if(_mod == 998244353) return _primitive_root = 3;
uint divs[20] = {};
divs[0] = 2;
int cnt = 1;
uint x = (_mod - 1) / 2;
while(x % 2 == 0) x /= 2;
for(auto i = 3; 1LL * i * i <= x; i += 2){
if(x % i == 0){
divs[cnt ++] = i;
while(x % i == 0) x /= i;
}
}
if(x > 1) divs[cnt ++] = x;
for(auto g = 2; ; ++ g){
bool ok = true;
for(auto i = 0; i < cnt; ++ i){
if((modular_fixed_base(g).power((_mod - 1) / divs[i])) == 1){
ok = false;
break;
}
}
if(ok) return _primitive_root = g;
}
}
constexpr modular_fixed_base(): data(){ }
modular_fixed_base(const double &x){ data = normalize(llround(x)); }
modular_fixed_base(const long double &x){ data = normalize(llround(x)); }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base(const T &x){ data = normalize(x); }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> static uint normalize(const T &x){
int sign = x >= 0 ? 1 : -1;
uint v = _mod <= sign * x ? sign * x % _mod : sign * x;
if(sign == -1 && v) v = _mod - v;
return v;
}
const uint &operator()() const{ return data; }
template<class T> operator T() const{ return data; }
modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }
modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); }
modular_fixed_base &operator++(){ return *this += 1; }
modular_fixed_base &operator--(){ return *this += _mod - 1; }
modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; }
modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; }
modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); }
modular_fixed_base &operator*=(const modular_fixed_base &rhs){
data = (unsigned long long)data * rhs.data % _mod;
return *this;
}
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr>
modular_fixed_base &inplace_power(T e){
if(e < 0) *this = 1 / *this, e = -e;
modular_fixed_base res = 1;
for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
return *this = res;
}
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr>
modular_fixed_base power(T e) const{
return modular_fixed_base(*this).inplace_power(e);
}
modular_fixed_base &operator/=(const modular_fixed_base &otr){
int a = otr.data, m = _mod, u = 0, v = 1;
if(a < _INV.size()) return *this *= _INV[a];
while(a){
int t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return *this *= u;
}
uint data;
};
template<uint _mod> vector<modular_fixed_base<_mod>> modular_fixed_base<_mod>::_INV;
template<uint _mod> modular_fixed_base<_mod> modular_fixed_base<_mod>::_primitive_root;
template<uint _mod> bool operator==(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data == rhs.data; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator==(const modular_fixed_base<_mod> &lhs, T rhs){ return lhs == modular_fixed_base<_mod>(rhs); }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator==(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) == rhs; }
template<uint _mod> bool operator!=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return !(lhs == rhs); }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator!=(const modular_fixed_base<_mod> &lhs, T rhs){ return !(lhs == rhs); }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator!=(T lhs, const modular_fixed_base<_mod> &rhs){ return !(lhs == rhs); }
template<uint _mod> bool operator<(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data < rhs.data; }
template<uint _mod> bool operator>(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data > rhs.data; }
template<uint _mod> bool operator<=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data <= rhs.data; }
template<uint _mod> bool operator>=(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return lhs.data >= rhs.data; }
template<uint _mod> modular_fixed_base<_mod> operator+(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) += rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator+(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) += rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator+(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) += rhs; }
template<uint _mod> modular_fixed_base<_mod> operator-(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator-(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator-(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) -= rhs; }
template<uint _mod> modular_fixed_base<_mod> operator*(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator*(const modular_fixed_base<_mod> &lhs, T rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator*(T lhs, const modular_fixed_base<_mod> &rhs){ return modular_fixed_base<_mod>(lhs) *= rhs; }
template<uint _mod> modular_fixed_base<_mod> operator/(const modular_fixed_base<_mod> &lhs, const modular_fixed_base<_mod> &rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator/(const modular_fixed_base<_mod> &lhs, T rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; }
template<uint _mod, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_fixed_base<_mod> operator/(T lhs, const modular_fixed_base<_mod> &rhs) { return modular_fixed_base<_mod>(lhs) /= rhs; }
template<uint _mod> istream &operator>>(istream &in, modular_fixed_base<_mod> &number){
long long x;
in >> x;
number.data = modular_fixed_base<_mod>::normalize(x);
return in;
}
// #define _PRINT_AS_FRACTION
template<uint _mod> ostream &operator<<(ostream &out, const modular_fixed_base<_mod> &number){
#ifdef LOCAL
#ifdef _PRINT_AS_FRACTION
out << number();
cerr << "(";
for(auto d = 1; ; ++ d){
if((number * d).data <= 1000000){
cerr << (number * d).data << "/" << d;
break;
}
else if((-number * d).data <= 1000000){
cerr << "-" << (-number * d).data << "/" << d;
break;
}
}
cerr << ")";
return out;
#else
return out << number();
#endif
#else
return out << number();
#endif
}
#undef _PRINT_AS_FRACTION
const uint mod = 1e9 + 7; // 1000000007
// const uint mod = (119 << 23) + 1; // 998244353
// const uint mod = 1e9 + 9; // 1000000009
using modular = modular_fixed_base<mod>;
// O(n + m * sqrt(m)) for graphs without loops or multiedges
template<class T>
T count_4_cycles(int n, const vector<array<int, 2>> &edge){
int m = (int)edge.size();
vector<int> deg(n), order, pos(n);
vector<vector<int>> appear(m + 1), adj(n);
for(auto [u, v]: edge) ++ deg[u], ++ deg[v];
for(auto u = 0; u < n; ++ u) appear[deg[u]].push_back(u);
for(auto d = m; d >= 0; -- d) order.insert(order.end(), appear[d].begin(), appear[d].end());
for(auto i = 0; i < n; ++ i) pos[order[i]] = i;
for(auto i = 0; i < m; ++ i){
int u = pos[edge[i][0]], v = pos[edge[i][1]];
adj[u].push_back(v), adj[v].push_back(u);
}
T res = 0;
vector<int> cnt(n);
for(auto u = 0; u < n; ++ u){
for(auto v: adj[u]) if(u < v) for(auto w: adj[v]) if(u < w) cnt[w] = 0;
for(auto v: adj[u]) if(u < v) for(auto w: adj[v]) if(u < w) res += cnt[w] ++;
}
return res;
}
const int Max=1000;
template<class T>
T count_3_cycles(int n, const vector<array<int, 2>> &edge){
vector<vector<int>> adj(n);
vector<int> deg(n),num(n);
for(auto [u,v]:edge){
deg[u]++;deg[v]++;
adj[u].push_back(v);
adj[v].push_back(u);
}
T res = 0;
for(auto [u,v]:edge){
if(deg[u]<=Max && deg[v]<=Max){
for(int x:adj[u]) num[x]++;
for(int x:adj[v]) if(num[x] && deg[x]<=Max) res+=1;
for(int x:adj[u]) num[x]--;
}
}
res/=3;
for(int i=0;i<n;i++){
if(deg[i]<=Max) continue;
for(int x:adj[i]) num[x]++;
for(auto [u,v]:edge){
if((u<=i && deg[u]>Max) || (v<=i && deg[v]>Max)) continue;
if(num[u] && num[v]) res+=1;
}
for(int x:adj[i]) num[x]--;
}
return res;
}
int deg[maxn];
void solve(){
int n,m;cin >> n >> m;
for(int i=1;i<=n;i++) deg[i]=0;
vector<array<int,2>> edge;
for(int i=1;i<=m;i++){
int u,v;cin >> u >> v;
deg[u]++;deg[v]++;
edge.push_back({u-1,v-1});
}
modular res=modular(m)*modular(n+m-3);
for(int i=1;i<=n;i++) res+=modular(deg[i])*modular((deg[i]-1))/2;
res+=count_4_cycles<modular>(n,edge);
res+=count_3_cycles<modular>(n,edge)*3;
cout << res << '\n';
}
signed main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);cout.tie(NULL);
int test=1;cin >> test;
while(test--) solve();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3544kb
input:
3 7 18 2 1 2 3 3 4 2 5 6 4 7 5 6 5 3 1 1 5 1 7 7 3 2 6 2 7 4 5 5 3 4 2 6 7 6 3 5 7 1 2 2 3 4 2 5 1 1 4 3 5 3 1 1 0
output:
593 88 0
result:
ok 3 number(s): "593 88 0"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3540kb
input:
10 2 1 2 1 1 0 3 3 2 1 1 3 3 2 2 1 2 1 2 1 2 1 1 0 2 1 2 1 2 1 1 2 1 0 4 6 1 2 2 3 1 4 1 3 2 4 3 4
output:
0 0 15 0 0 0 0 0 0 69
result:
ok 10 numbers
Test #3:
score: 0
Accepted
time: 0ms
memory: 3512kb
input:
10 1 0 1 0 2 1 2 1 5 6 1 2 2 3 4 1 1 5 3 1 5 4 3 3 1 2 3 1 3 2 9 8 1 2 2 3 2 4 2 5 5 6 4 7 8 3 6 9 1 0 3 3 1 2 2 3 3 1 4 6 2 1 1 3 4 3 2 4 2 3 1 4 1 0
output:
0 0 0 64 15 122 0 15 69 0
result:
ok 10 numbers
Test #4:
score: 0
Accepted
time: 0ms
memory: 3800kb
input:
1 50 50 2 1 2 3 4 1 1 5 1 6 1 7 2 8 9 2 10 5 2 11 7 12 12 13 2 14 10 15 16 2 12 17 18 3 18 19 20 16 1 21 12 22 23 18 24 16 25 5 8 26 27 10 28 12 21 29 30 27 27 31 32 13 33 32 14 34 35 18 33 36 37 30 38 16 17 39 23 40 8 41 35 42 5 43 32 44 32 45 46 39 47 3 48 11 49 18 39 50 5 45
output:
4954
result:
ok 1 number(s): "4954"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3592kb
input:
1 30 50 2 1 2 3 3 4 5 4 2 6 7 5 4 8 3 9 9 10 8 11 4 12 13 6 14 8 15 12 16 10 5 17 2 18 19 16 6 20 8 21 22 21 7 23 15 24 16 25 13 26 20 27 16 28 29 19 15 30 18 10 17 7 16 13 18 19 15 20 18 28 28 15 21 28 21 3 12 23 4 16 27 26 19 9 2 28 10 7 25 9 5 22 15 22 4 27 10 24 16 12
output:
4025
result:
ok 1 number(s): "4025"
Test #6:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
1 1000 1000 2 1 3 2 2 4 5 2 4 6 6 7 5 8 9 5 1 10 7 11 12 1 4 13 10 14 15 4 16 5 11 17 3 18 9 19 4 20 21 14 22 11 23 9 2 24 25 7 22 26 21 27 28 14 29 23 30 26 31 11 8 32 33 6 10 34 35 33 21 36 37 7 38 1 39 32 40 16 41 28 40 42 43 20 43 44 45 12 14 46 47 3 48 45 49 13 38 50 51 3 52 46 53 49 54 29 55 ...
output:
1999026
result:
ok 1 number(s): "1999026"
Test #7:
score: 0
Accepted
time: 1ms
memory: 3660kb
input:
2 465 465 2 1 2 3 4 2 4 5 6 4 7 2 8 4 9 7 1 10 5 11 12 10 13 7 7 14 15 3 4 16 6 17 18 6 17 19 20 2 5 21 15 22 17 23 24 12 2 25 3 26 11 27 7 28 6 29 29 30 19 31 32 15 11 33 34 33 4 35 8 36 37 16 16 38 15 39 40 8 29 41 42 8 20 43 44 42 45 23 35 46 31 47 45 48 49 11 39 50 51 18 52 39 52 53 26 54 55 49...
output:
431981 571965
result:
ok 2 number(s): "431981 571965"
Test #8:
score: 0
Accepted
time: 1ms
memory: 3592kb
input:
10 38 38 1 2 3 1 4 1 4 5 2 6 7 2 2 8 6 9 4 10 11 1 4 12 11 13 5 14 13 15 7 16 13 17 18 6 19 4 20 11 11 21 18 22 3 23 21 24 12 25 6 26 27 12 28 14 29 14 30 16 31 6 13 32 10 33 34 28 28 35 26 36 15 37 38 4 18 26 34 33 1 2 3 1 3 4 2 5 6 4 6 7 3 8 9 7 4 10 3 11 12 8 5 13 14 10 4 15 12 16 5 17 18 7 19 ...
output:
2848 2167 207687 3185 2551 61432 0 13768 127716 619
result:
ok 10 numbers
Test #9:
score: 0
Accepted
time: 225ms
memory: 37996kb
input:
1 200000 500000 1 2 1 3 1 4 1 9 10 1 1 15 1 45 1 121 580 1 859 1 47503 1 1 50314 1 60144 62615 1 112616 1 1 141630 1 172171 2 6 2 366 2 534 2 2313 2 3517 2 3690 4649 2 7189 2 2 37784 2 45766 2 53945 5 3 3 8 16 3 3 33 3 148 155 3 3 189 697 3 3746 3 3 5645 3 29590 46100 3 3 132857 3 175635 26 4 29 4 ...
output:
1029064
result:
ok 1 number(s): "1029064"
Test #10:
score: 0
Accepted
time: 189ms
memory: 29244kb
input:
2 142566 381939 1 2 8 1 1 10 1 11 1 15 1 42 1 144 1 388 554 1 909 1 15546 1 38439 1 1 79354 1 117244 119416 1 3 2 2 4 2 6 7 2 2 12 18 2 2 366 2 372 1946 2 8509 2 8813 2 2 11657 19598 2 2 34365 3 5 34 3 3 94 103 3 596 3 1778 3 3 1958 3 8965 13289 3 31676 3 36965 3 37538 3 90811 3 3 125297 9 4 21 4 4...
output:
329860510 719239121
result:
ok 2 number(s): "329860510 719239121"
Test #11:
score: 0
Accepted
time: 169ms
memory: 10328kb
input:
10 9129 42610 1 2 1 3 4 1 5 1 18 1 30 1 1 69 1 789 904 1 1 1862 1 4758 7 2 2 10 2 17 2 661 1128 2 2242 2 2 2661 8259 2 8509 2 3 29 79 3 3 86 3 150 3 400 473 3 477 3 3 2225 3 3417 3 5843 4 12 4 14 37 4 4 122 4 153 245 4 255 4 354 4 4 527 1159 4 4 2614 4 3089 4 3854 4399 4 4 5379 4 6117 6413 4 4 7925...
output:
204908516 71692365 172496393 280630811 661096409 1029943 834960655 776344491 64274552 346772110
result:
ok 10 numbers
Test #12:
score: 0
Accepted
time: 143ms
memory: 8168kb
input:
20 2604 11844 1 2 3 1 4 1 108 1 124 1 1 349 1 1277 1 1415 1 1517 1706 1 2365 1 1 2480 5 2 2 6 2 14 2 18 126 2 170 2 2 189 2 280 2 418 578 2 902 2 2 1626 2426 2 60 3 3 76 351 3 3 640 3 1248 7 4 9 4 4 10 4 42 4 110 2251 4 8 5 12 5 17 5 5 183 490 5 637 5 692 5 776 5 5 1284 2087 5 2340 5 2370 5 2455 5 ...
output:
171207587 591910409 655247056 10725 230460448 50006952 942410958 801609893 472450535 100115090 590130419 133326603 280253593 11942031 61041524 315965858 19957752 307791784 395041475 10367647
result:
ok 20 numbers
Test #13:
score: 0
Accepted
time: 158ms
memory: 4832kb
input:
100 342 5076 2 1 3 2 3 4 5 3 6 5 2 7 8 5 9 3 2 10 10 11 12 7 1 13 10 14 2 15 13 16 8 17 18 15 8 19 9 20 21 2 9 22 23 3 1 24 25 3 1 26 27 17 15 28 29 19 30 28 31 9 32 4 9 33 34 32 35 9 36 35 32 37 38 31 12 39 24 40 41 19 28 42 43 5 44 24 12 45 24 46 42 47 48 6 39 49 6 50 51 12 52 51 53 44 42 54 55 4...
output:
27746759 50658517 10683786 24139720 25932859 47565852 350610 11486775 1319626 12904287 14148993 47015672 135120800 161318098 467490 12777493 6450863 62320822 20009150 334697950 195220423 56701910 29206042 7394506 1413245 19254945 20145190 14605944 4172671 494307456 4613126 4221870 1420419 29162821 7...
result:
ok 100 numbers
Test #14:
score: 0
Accepted
time: 161ms
memory: 4396kb
input:
200 3492 4712 1 2 3 1 6 1 1 8 23 1 28 1 35 1 89 1 1 153 343 1 487 1 1 611 1852 1 2 5 7 2 2 27 33 2 2 39 132 2 2 217 2 364 2 866 2 1154 2914 2 3 4 9 3 3 16 3 471 546 3 1777 3 3 1987 2540 3 12 4 17 4 4 22 45 4 4 50 70 4 495 4 4 524 13 5 5 21 641 5 5 2283 3156 5 11 6 15 6 6 20 6 138 6 543 7 162 7 399 ...
output:
38655363 1017898 3567787 1321355 19004105 42329957 28643577 21376173 18547078 10433752 39780 33142803 621975 4919571 9899302 1993502 4281270 9585129 5774276 722395 29367261 6297777 7238668 1097217 10514340 6239585 814133 21693865 60622602 20043975 3728795 3690 328471 9289139 2691351 13402 21489221 4...
result:
ok 200 numbers
Test #15:
score: 0
Accepted
time: 153ms
memory: 3888kb
input:
1000 242 624 2 1 1 3 1 4 4 5 4 6 1 7 2 8 9 7 10 4 11 9 12 6 10 13 9 14 11 15 16 1 8 17 3 18 19 5 20 12 3 21 22 15 23 22 1 24 25 22 26 14 27 17 22 28 29 10 3 30 31 30 22 32 33 22 34 3 23 35 8 36 34 37 38 6 39 6 36 40 41 24 42 13 38 43 38 44 45 31 3 46 7 47 48 26 44 49 50 6 51 8 12 52 4 53 23 54 13 5...
output:
541912 509357 55819 187902 98340 156244 366366 10725 693 2130479 69305 1662331 306918 49195 243743 519758 54684 267804 0 154013 9860 625485 55900 7755 350818 764595 1250337 13067 440600 2394 271649 326377 32180 568235 43508 123292 225968 12422 340577 497708 1955209 10439 116167 88379 31620 89884 178...
result:
ok 1000 numbers
Test #16:
score: 0
Accepted
time: 145ms
memory: 3816kb
input:
2000 12 66 1 2 1 3 4 1 5 1 6 1 5 7 7 8 9 8 3 10 11 9 12 6 7 12 4 9 2 10 11 8 1 9 2 11 8 2 4 3 11 10 2 7 2 9 3 7 5 10 8 5 12 8 9 6 1 11 10 8 11 7 6 4 6 5 10 7 4 2 4 7 11 12 9 10 7 6 9 12 6 10 11 3 12 10 4 5 11 5 12 4 2 12 5 9 12 3 8 3 2 6 7 1 6 8 1 12 7 9 8 4 6 11 8 1 3 5 3 6 3 9 11 4 3 2 1 10 10 4 ...
output:
7755 448 12168 767060 24305 106260 378278 102105 18092 231493 49525 19072 251 7153 39571 13041 261908 4913 712783 7065 58838 404651 32739 2394 0 169212 18999 87040 32950 61917 288935 3274 86607 12016 1255 22553 131906 37114 127868 5604 70109 117728 24780 334135 55381 512084 47103 58577 42172 5634 14...
result:
ok 2000 numbers
Test #17:
score: 0
Accepted
time: 130ms
memory: 3908kb
input:
10000 16 45 1 2 1 3 2 4 2 5 3 6 7 5 8 6 6 9 10 8 3 11 7 12 4 13 14 2 15 1 16 8 14 16 12 3 5 6 4 16 11 15 13 14 13 7 4 5 6 7 9 10 6 10 10 4 16 10 3 13 11 16 5 15 3 8 16 12 1 14 2 15 13 12 15 6 9 1 1 10 2 12 7 4 9 2 16 2 10 5 11 14 11 55 1 2 2 3 4 3 5 1 5 6 7 3 8 4 1 9 5 10 9 11 11 1 2 7 2 6 7 11 5 ...
output:
2972 5445 4206 69 19052 1899 23656 1040 11373 6179 15 41337 840 840 69 2394 2806 724 0 2126 15 876 1269 1281 10790 297 1300 1026 10098 0 6438 840 195 69 2146 0 2325 3782 6490 840 840 19124 270 1760 22373 995 1466 435 1470 113 5039 777 3461 9593 8651 457 4143 5265 10725 396 4716 45 1836 3598 435 1470...
result:
ok 10000 numbers
Test #18:
score: 0
Accepted
time: 3515ms
memory: 23188kb
input:
1 1000 499500 52 697 781 742 301 407 36 931 460 749 986 912 376 404 463 618 80 297 974 429 829 470 826 952 3 455 207 396 917 627 280 272 769 209 938 37 753 174 411 134 904 115 207 567 297 807 273 627 658 859 556 696 729 813 886 813 692 998 43 614 468 441 326 702 287 162 930 1000 905 629 526 206 86 ...
output:
246625125
result:
ok 1 number(s): "246625125"
Test #19:
score: 0
Accepted
time: 896ms
memory: 32908kb
input:
1 100000 500000 2209 34206 1944 19358 23598 51829 63541 70843 21139 96565 13029 43066 22246 49561 92241 98233 92260 23681 27750 49786 88490 87218 89973 52483 82685 90036 38099 65470 8067 31922 31802 30874 42728 77117 91975 1928 92346 73802 72378 20638 69198 39151 14265 74104 4697 2506 5196 99602 23...
output:
742969024
result:
ok 1 number(s): "742969024"
Test #20:
score: 0
Accepted
time: 1501ms
memory: 31152kb
input:
1 100000 500000 43432 62093 91287 71798 90007 35557 47284 48843 97621 23840 29292 16347 34888 85828 5613 86342 43335 13417 86876 33408 36224 71870 54350 43055 38323 45413 2381 23696 65973 84499 57177 29683 10414 21937 4612 50234 87387 26141 66133 84702 57804 57706 93606 61130 57255 61915 7686 87550...
output:
935092768
result:
ok 1 number(s): "935092768"
Test #21:
score: 0
Accepted
time: 2791ms
memory: 32568kb
input:
1 100000 500000 44547 48301 9608 16597 22027 78003 27167 62437 12347 59691 89469 56645 81810 11546 21396 74363 48211 95880 46264 8881 25830 42304 18402 62262 18805 54355 84208 66811 74672 78293 54114 81750 86249 86111 25215 85890 53113 75947 49294 56350 88057 19643 59805 58826 92298 61875 56382 822...
output:
220868041
result:
ok 1 number(s): "220868041"
Test #22:
score: 0
Accepted
time: 2822ms
memory: 31180kb
input:
1 100000 500000 96791 13976 44118 17547 78496 30994 97506 88040 8906 51005 77021 74888 97902 48162 17229 18353 51325 97122 3306 59388 7577 10449 47744 11670 84887 34741 19536 31938 81636 81995 17614 5844 24509 37955 86244 12119 96693 82879 50606 40809 70451 60920 39773 58394 84881 44377 80084 69361...
output:
925493025
result:
ok 1 number(s): "925493025"
Test #23:
score: 0
Accepted
time: 2701ms
memory: 30928kb
input:
1 100000 500000 35359 1034 11810 16108 83818 78042 41121 13251 34512 90055 54673 50443 51144 31693 40115 85912 47296 53145 22814 75633 64983 66572 53790 38513 31620 63451 32431 46633 53421 77554 7078 73115 75089 42732 33769 87616 17695 41885 48626 51844 22908 65001 94607 3429 24354 30538 39205 4331...
output:
839187312
result:
ok 1 number(s): "839187312"
Test #24:
score: 0
Accepted
time: 2559ms
memory: 30952kb
input:
1 100000 500000 5955 90429 40833 94860 48709 86793 19112 98398 30713 70527 58292 7578 76051 3635 5893 14991 96157 53776 493 78081 94963 66483 52562 85192 48453 4334 69584 76783 62968 25510 46645 19189 65189 88310 42884 4751 63801 66282 32178 93828 96244 48805 22796 63248 42314 88251 9775 73058 7264...
output:
143933648
result:
ok 1 number(s): "143933648"
Test #25:
score: 0
Accepted
time: 2221ms
memory: 30432kb
input:
1 100000 500000 57678 58079 18086 82083 74301 18654 49578 57999 63623 12201 15376 82690 54698 50641 40422 48978 83654 25805 34688 24278 95489 20118 52725 7435 37 81356 90624 51727 93309 69647 82272 41961 81755 8038 95800 26175 94965 21244 99311 97117 73955 53726 55634 26645 11715 10526 99693 31226 ...
output:
725291929
result:
ok 1 number(s): "725291929"
Test #26:
score: 0
Accepted
time: 2028ms
memory: 30500kb
input:
1 100000 500000 21374 19010 41479 86322 75621 70857 27899 51043 47155 49678 62463 72682 20160 87284 11979 832 98088 63461 3485 31006 18604 57934 56153 97956 52048 70496 1028 39158 16731 38929 79976 79098 18137 60537 60724 60571 91996 50261 65913 34089 47735 75976 72462 18871 94946 98869 60620 69340...
output:
505321930
result:
ok 1 number(s): "505321930"
Test #27:
score: 0
Accepted
time: 1896ms
memory: 30384kb
input:
1 100000 500000 29154 2904 15325 10735 50873 49136 72195 38289 22498 13916 95488 4953 22121 84204 54737 32603 57308 86164 89913 31597 54638 73196 85595 88712 69432 81296 58049 46603 89940 7488 80856 83640 91809 16514 46257 9845 20226 98011 8130 70925 9726 32954 6595 69837 70401 77134 45938 82311 72...
output:
809243221
result:
ok 1 number(s): "809243221"
Extra Test:
score: 0
Extra Test Passed