QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#309453#8133. When Anton Saw This Task He Reacted With 😩ucup-team133#WA 540ms55724kbC++2329.4kb2024-01-20 17:25:252024-01-20 17:25:25

Judging History

你现在查看的是最新测评结果

  • [2024-01-20 17:25:25]
  • 评测
  • 测评结果:WA
  • 用时:540ms
  • 内存:55724kb
  • [2024-01-20 17:25:25]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

template <typename T, size_t N> struct SquareMatrix {
    std::array<std::array<T, N>, N> A;

    SquareMatrix() : A{{}} {}

    size_t size() const { return N; }

    inline const std::array<T, N>& operator[](int k) const { return A[k]; }

    inline std::array<T, N>& operator[](int k) { return A[k]; }

    static SquareMatrix I() {
        SquareMatrix res;
        for (size_t i = 0; i < N; i++) res[i][i] = 1;
        return res;
    }

    SquareMatrix& operator+=(const SquareMatrix& B) {
        for (size_t i = 0; i < N; i++) {
            for (size_t j = 0; j < N; j++) {
                (*this)[i][j] += B[i][j];
            }
        }
        return *this;
    }

    SquareMatrix& operator-=(const SquareMatrix& B) {
        for (size_t i = 0; i < N; i++) {
            for (size_t j = 0; j < N; j++) {
                (*this)[i][j] -= B[i][j];
            }
        }
        return *this;
    }

    SquareMatrix& operator*=(const SquareMatrix& B) {
        std::array<std::array<T, N>, N> C = {};
        for (size_t i = 0; i < N; i++) {
            for (size_t k = 0; k < N; k++) {
                for (size_t j = 0; j < N; j++) {
                    C[i][j] += (*this)[i][k] * B[k][j];
                }
            }
        }
        A.swap(C);
        return *this;
    }

    SquareMatrix& operator*=(const T& v) {
        for (size_t i = 0; i < N; i++) {
            for (size_t j = 0; j < N; j++) {
                (*this)[i][j] *= v;
            }
        }
        return *this;
    }

    SquareMatrix& operator/=(const T& v) {
        T inv = T(1) / v;
        for (size_t i = 0; i < N; i++) {
            for (size_t j = 0; j < N; j++) {
                (*this)[i][j] *= inv;
            }
        }
        return *this;
    }

    SquareMatrix& operator^=(long long k) {
        assert(0 <= k);
        SquareMatrix B = SquareMatrix::I();
        while (k > 0) {
            if (k & 1) B *= *this;
            *this *= *this;
            k >>= 1;
        }
        A.swap(B.A);
        return *this;
    }

    SquareMatrix operator-() const {
        SquareMatrix res;
        for (size_t i = 0; i < N; i++) {
            for (size_t j = 0; j < N; j++) {
                res[i][j] = -(*this)[i][j];
            }
        }
        return res;
    }

    SquareMatrix operator+(const SquareMatrix& B) const { return SquareMatrix(*this) += B; }

    SquareMatrix operator-(const SquareMatrix& B) const { return SquareMatrix(*this) -= B; }

    SquareMatrix operator*(const SquareMatrix& B) const { return SquareMatrix(*this) *= B; }

    SquareMatrix operator*(const T& v) const { return SquareMatrix(*this) *= v; }

    SquareMatrix operator/(const T& v) const { return SquareMatrix(*this) /= v; }

    SquareMatrix operator^(const long long k) const { return SquareMatrix(*this) ^= k; }

    bool operator==(const SquareMatrix& B) const { return A == B.A; }

    bool operator!=(const SquareMatrix& B) const { return A != B.A; }

    SquareMatrix transpose() const {
        SquareMatrix res;
        for (size_t i = 0; i < N; i++) {
            for (size_t j = 0; j < N; j++) {
                res[j][i] = (*this)[i][j];
            }
        }
        return res;
    }

    T determinant() const {
        SquareMatrix B(*this);
        T res = 1;
        for (size_t i = 0; i < N; i++) {
            int pivot = -1;
            for (size_t j = i; j < N; j++) {
                if (B[j][i] != 0) {
                    pivot = j;
                    break;
                }
            }
            if (pivot == -1) return 0;
            if (pivot != (int)i) {
                res *= -1;
                std::swap(B[i], B[pivot]);
            }
            res *= B[i][i];
            T inv = T(1) / B[i][i];
            for (size_t j = 0; j < N; j++) B[i][j] *= inv;
            for (size_t j = i + 1; j < N; j++) {
                T a = B[j][i];
                for (size_t k = 0; k < N; k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
    }

    SquareMatrix inv() const {
        SquareMatrix B(*this), C = SquareMatrix::I();
        for (size_t i = 0; i < N; i++) {
            int pivot = -1;
            for (size_t j = i; j < N; j++) {
                if (B[j][i] != 0) {
                    pivot = j;
                    break;
                }
            }
            if (pivot == -1) return {};
            if (pivot != (int)i) {
                std::swap(B[i], B[pivot]);
                std::swap(C[i], C[pivot]);
            }
            T inv = T(1) / B[i][i];
            for (size_t j = 0; j < N; j++) {
                B[i][j] *= inv;
                C[i][j] *= inv;
            }
            for (size_t j = 0; j < N; j++) {
                if (j == i) continue;
                T a = B[j][i];
                for (size_t k = 0; k < N; k++) {
                    B[j][k] -= B[i][k] * a;
                    C[j][k] -= C[i][k] * a;
                }
            }
        }
        return C;
    }

    friend std::ostream& operator<<(std::ostream& os, const SquareMatrix& p) {
        os << "[(" << N << " * " << N << " Matrix)";
        os << "\n[columun sums: ";
        for (size_t j = 0; j < N; j++) {
            T sum = 0;
            for (size_t i = 0; i < N; i++) sum += p[i][j];
            ;
            os << sum << (j + 1 < N ? "," : "");
        }
        os << "]";
        for (size_t i = 0; i < N; i++) {
            os << "\n[";
            for (size_t j = 0; j < N; j++) os << p[i][j] << (j + 1 < N ? "," : "");
            os << "]";
        }
        os << "]\n";
        return os;
    }
};

namespace atcoder {

template <class T, internal::is_modint_t<T>* = nullptr> std::istream& operator>>(std::istream& is, T& x) {
    int v;
    is >> v;
    x = T::raw(v);
    return is;
}

template <class T, internal::is_modint_t<T>* = nullptr> std::ostream& operator<<(std::ostream& os, const T& x) {
    return os << x.val();
}

}  // namespace atcoder

using namespace std;

typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};

template <class T> istream& operator>>(istream& is, vector<T>& v) {
    for (auto& x : v) is >> x;
    return is;
}

template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
    auto sep = "";
    for (const auto& x : v) os << exchange(sep, " ") << x;
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }

template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }

template <class T> void mkuni(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }

using mint = atcoder::modint998244353;
using SM = SquareMatrix<mint, 3>;
using AR = array<mint, 3>;

SM op(SM l, SM r) { return l * r; }

SM e() { return SM::I(); }

SM vec_to_mat(const AR& v) {
    SM res;
    res[0] = {0, -v[2], v[1]};
    res[1] = {v[2], 0, -v[0]};
    res[2] = {-v[1], v[0], 0};
    return res;
}

AR mul(const SM& m, const AR& v) {
    AR res = {0, 0, 0};
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++) {
            res[i] += m[i][j] * v[j];
        }
    }
    return res;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n, q;
    cin >> n >> q;
    vector<int> leaf(n), xx(n), yy(n), zz(n);
    vector<vector<int>> G(n);
    for (int i = 0; i < n; i++) {
        char c;
        cin >> c;
        if (c == 'x') {
            leaf[i] = 0;
            int l, r;
            cin >> l >> r;
            G[i].emplace_back(--l);
            G[i].emplace_back(--r);
        } else {
            leaf[i] = 1;
            cin >> xx[i] >> yy[i] >> zz[i];
        }
    }

    vector<int> par(n), dep(n), sub(n), vid(n), vid_inv(n), head(n);
    int sgn = 1;
    {
        auto dfs_sz = [&](auto self, int v) -> void {
            sub[v] = 1;
            if (leaf[v]) return;
            for (int& u : G[v]) {
                par[u] = v;
                dep[u] = dep[v] + 1;
                self(self, u);
                sub[v] += sub[u];
            }
            if (sub[G[v][1]] > sub[G[v][0]]) {
                swap(G[v][0], G[v][1]);
                sgn *= -1;
            }
        };
        int time = 0;
        auto dfs_hld = [&](auto self, int v) -> void {
            vid[v] = time++;
            if (leaf[v]) return;
            head[G[v][0]] = head[v];
            head[G[v][1]] = G[v][1];
            for (int i = 0; i < 2; i++) {
                int u = G[v][i];
                head[u] = (i == 0 ? head[v] : u);
                self(self, u);
            }
        };
        head[0] = 0;
        par[0] = -1;
        dep[0] = 0;
        dfs_sz(dfs_sz, 0);
        dfs_hld(dfs_hld, 0);
        for (int i = 0; i < n; i++) vid_inv[vid[i]] = i;
    }
    vector<AR> root(n, {0, 0, 0}),  // v が heavy path の root ならそこでの vector の値
        tail(n, {0, 0, 0});         // heavy path の先での vector の値
    vector<atcoder::segtree<SM, op, e>> seg(n);  // v を root とする heavy path から生える作用素を載せたセグ木(これに
                                                 // tail[v] をかけることで root[v] が計算できる)
    vector<int> cnt(n, 0);
    for (int i = 0; i < n; i++) cnt[head[i]]++;
    for (int i = 0; i < n; i++) {
        if (cnt[i] > 1) {
            seg[i] = atcoder::segtree<SM, op, e>(cnt[i] - 1);
        }
    }
    auto update = [&](int v, int x, int y, int z) {
        {
            int p = head[v];
            tail[p] = {x, y, z};
            root[p] = mul(seg[p].all_prod(), tail[p]);
            v = p;
        }
        while (v != 0) {
            int p = par[v], pp = head[p];
            int idx = dep[p] - dep[pp];
            seg[pp].set(idx, vec_to_mat(root[v]));
            root[pp] = mul(seg[pp].all_prod(), tail[pp]);
            v = pp;
        }
    };
    for (int i = 0; i < n; i++) {
        if (leaf[i]) {
            update(i, xx[i], yy[i], zz[i]);
        }
    }
    auto query = [&]() -> AR {
        auto res = root[0];
        for (int i = 0; i < 3; i++) res[i] *= sgn;
        return res;
    };

    for (; q--;) {
        int v, x, y, z;
        cin >> v >> x >> y >> z;
        update(--v, x, y, z);
        auto ans = query();
        cout << ans[0].val() << ' ' << ans[1].val() << ' ' << ans[2].val() << '\n';
    }
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3872kb

input:

5 3
x 2 3
v 1 0 1
x 4 5
v 0 2 1
v 1 1 1
4 1 2 3
5 0 1 1
4 0 2 2

output:

998244351 0 2
1 998244351 998244352
0 0 0

result:

ok 9 numbers

Test #2:

score: -100
Wrong Answer
time: 540ms
memory: 55724kb

input:

199999 100000
x 137025 65661
v 572518668 158967010 74946561
x 129836 192657
x 141948 187810
v 574918069 328924434 141474729
x 143312 111002
x 52772 148497
v 922857701 690080961 651915759
v 656198340 28002884 129579416
v 639893144 265359784 646791226
v 796871409 411409966 598676495
v 882562617 224394...

output:

605123795 224477738 610947005
238284787 16469853 870231856
703632542 18232745 464602324
593864779 252947501 944750793
593678852 169374593 920223197
405749495 350493049 116816620
808225886 483001218 480063798
370063853 488259799 740814218
984507108 646156562 80833866
66193044 631653126 518312876
7983...

result:

wrong answer 1st numbers differ by non-multiple of MOD, - expected: '393120558', found: '605123795'