QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#309301#8135. Minimum Cost Flow²ucup-team088#WA 531ms11936kbC++178.2kb2024-01-20 16:31:472024-01-20 16:31:47

Judging History

你现在查看的是最新测评结果

  • [2024-01-20 16:31:47]
  • 评测
  • 测评结果:WA
  • 用时:531ms
  • 内存:11936kb
  • [2024-01-20 16:31:47]
  • 提交

answer

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
//ll mod = 1;
constexpr ll mod = 998244353;
//constexpr ll mod = 1000000007;
const int mod17 = 1000000007;
const ll INF = (ll)mod17 * mod17;
typedef pair<int, int>P;

#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;

using ld = double;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);

template<typename T>
void chmin(T& a, T b) {
	a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
	a = max(a, b);
}
template<typename T>
vector<T> vmerge(vector<T>& a, vector<T>& b) {
	vector<T> res;
	int ida = 0, idb = 0;
	while (ida < a.size() || idb < b.size()) {
		if (idb == b.size()) {
			res.push_back(a[ida]); ida++;
		}
		else if (ida == a.size()) {
			res.push_back(b[idb]); idb++;
		}
		else {
			if (a[ida] < b[idb]) {
				res.push_back(a[ida]); ida++;
			}
			else {
				res.push_back(b[idb]); idb++;
			}
		}
	}
	return res;
}
template<typename T>
void cinarray(vector<T>& v) {
	rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
	rep(i, v.size()) {
		if (i > 0)cout << " "; cout << v[i];
	}
	cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
	if (n < 0) {
		ll res = mod_pow(x, -n, m);
		return mod_pow(res, m - 2, m);
	}
	if (abs(x) >= m)x %= m;
	if (x < 0)x += m;
	//if (x == 0)return 0;
	ll res = 1;
	while (n) {
		if (n & 1)res = res * x % m;
		x = x * x % m; n >>= 1;
	}
	return res;
}
//mod should be <2^31
struct modint {
	int n;
	modint() :n(0) { ; }
	modint(ll m) {
		if (m < 0 || mod <= m) {
			m %= mod; if (m < 0)m += mod;
		}
		n = m;
	}
	operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
	if (n == 0)return modint(1);
	modint res = (a * a) ^ (n / 2);
	if (n % 2)res = res * a;
	return res;
}

ll inv(ll a, ll p) {
	return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
	fact[0] = modint(1);
	for (int i = 0; i < max_n - 1; i++) {
		fact[i + 1] = fact[i] * modint(i + 1);
	}
	factinv[max_n - 1] = modint(1) / fact[max_n - 1];
	for (int i = max_n - 2; i >= 0; i--) {
		factinv[i] = factinv[i + 1] * modint(i + 1);
	}
}
modint comb(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
	if (a < 0 || b < 0 || a < b)return 0;
	return fact[a] * factinv[a - b];
}

ll gcd(ll a, ll b) {
	a = abs(a); b = abs(b);
	if (a < b)swap(a, b);
	while (b) {
		ll r = a % b; a = b; b = r;
	}
	return a;
}
template<typename T>
void addv(vector<T>& v, int loc, T val) {
	if (loc >= v.size())v.resize(loc + 1, 0);
	v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
	fill(isp + 2, isp + mn, true);
	for (int i = 2; i < mn; i++) {
		if (!isp[i])continue;
		ps.push_back(i);
		for (int j = 2 * i; j < mn; j += i) {
			isp[j] = false;
		}
	}
}*/

//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
	auto res = st.lower_bound(val);
	if (res == st.begin())return st.end();
	res--; return res;
}

//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
	auto res = st.lower_bound(val);
	return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
	return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
	a = a + b; return a;
}
mP operator-(mP a, mP b) {
	return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
	a = a - b; return a;
}
LP operator+(LP a, LP b) {
	return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
	a = a + b; return a;
}
LP operator-(LP a, LP b) {
	return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
	a = a - b; return a;
}

mt19937 mt(time(0));

const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
//int dx[4] = { 1,0,-1,0 };
//int dy[4] = { 0,1,0,-1 };

//------------------------------------

template<typename T>
struct mcf {
private:
	struct edge {
		int to, cap; T cost; int rev; bool isrev; T oricost;
	};
	vector<vector<edge>> G;
	vector<P> par;
	vector<T> dist;
	T inf = INF;
public:
	mcf(int n) {
		G.resize(n);
		par.resize(n);
		dist.resize(n);
	}
	void add_edge(int from, int to, int cap, T cost) {
		G[from].push_back({ to,cap,cost,(int)G[to].size(),false,cost });
		G[to].push_back({ from,0,-cost,(int)G[from].size() - 1,true,cost });
	}
	pair<T, int> minimum_road(int s, int t) {
		fill(all(par), P{ -1,-1 });
		fill(all(dist), inf);
		dist[s] = 0;
		priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> q;
		q.push({ 0,s });
		while (!q.empty()) {
			pair<T, int> p = q.top(); q.pop();
			int id = p.second;
			if (id == t)continue;
			if (p.first > dist[id])continue;
			rep(j, G[id].size()) {
				if (G[id][j].cap > 0) {
					int to = G[id][j].to;
					T nd = p.first + G[id][j].cost;
					if (nd < dist[to]) {
						dist[to] = nd;
						par[to] = { id,j };
						q.push({ dist[to],to });
					}
				}
			}
		}
		int cur = t;
		int f = 1;
		cur = t;
		while (cur != s) {
			int p = par[cur].first, j = par[cur].second;
			if (p < 0)return { -1,-1 };
			G[p][j].cap -= f;
			int adc = 2;
			if (G[p][j].rev >= 0) {
				G[cur][G[p][j].rev].cap += f;
				G[cur][G[p][j].rev].cost = -G[p][j].cost;
			}
			G[p][j].cost += 2 * G[p][j].oricost;
			cur = p;
		}
		return { dist[t],f };
	}
	T minimum_cost_flow(int s, int t, int k) {
		T ret = 0;
		rep(i, k) {
			pair<T, int> z = minimum_road(s, t);
			if (z.first < 0)return -1;
			if (k - i <= z.second) {
				ret += z.first * (k - i); break;
			}
			i += z.second - 1;
			ret += z.first * z.second;
		}
		return ret;
	}
};

using T = __int128;
using TP = pair<T, T>;
bool isg(TP a, TP b) {
	return a.first * b.second < a.second* b.first;
}
void solve() {
	int n, m; cin >> n >> m;
	mcf<ll> mc(n);
	rep(i, m) {
		int a, b, c; cin >> a >> b >> c; a--; b--;
		//if (b == 0 || a == n - 1)continue;
		mc.add_edge(a, b, mod17, c);
		mc.add_edge(b, a, mod17, c);
	}
	ll sum = 0;
	TP res = { mod17,1 };
	for (int c = 1; c <= 200000; c++) {
		ll val = mc.minimum_cost_flow(0, n - 1, 1);
		sum += val;
		//cout << c << " " << sum << "\n";
		TP nex = { sum,(ll)c * c };
		if (isg(nex, res)) {
			res = nex;
		}
	}
	modint ans = res.first % mod;
	modint ans2 = res.second % mod;
	ans = ans / ans2;
	cout << ans << "\n";
}



signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	//cout << fixed<<setprecision(10);
	//init_f();
	//init();
	//while(true)
	//expr();
	int t; cin >> t; rep(i, t)
		solve();
	return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 75ms
memory: 11904kb

input:

4
4 4
1 2 1
2 4 1
1 3 1
3 4 1
3 3
1 2 1
1 3 1
2 3 1
5 6
1 2 1
2 3 3
2 4 1
3 4 1
3 5 1
1 5 8
4 5
1 2 1
1 3 2
2 3 1
3 4 1
4 2 8

output:

1
665496236
713031683
614304219

result:

ok 4 number(s): "1 665496236 713031683 614304219"

Test #2:

score: -100
Wrong Answer
time: 531ms
memory: 11936kb

input:

18
3 3
3 1 716147853
2 1 865756093
3 2 749398397
9 15
7 1 928709747
9 1 692128293
8 2 960581386
6 7 744136630
4 9 233596968
9 7 190944262
3 5 289260315
3 7 164971041
1 8 664146999
5 6 436111746
4 1 780866816
7 5 366276343
8 9 28381218
9 5 140872991
9 2 196864247
4 5
3 4 839263691
2 4 940408725
1 4 4...

output:

199702954
2035516
628753888
939140882
188235985
762306687
557513953
319279113
99421664
723231248
609132272
774189092
502293467
395935531
658183736
479961695
971539489
174461294

result:

wrong answer 1st numbers differ by non-multiple of MOD, - expected: '509847883', found: '199702954'