QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#309116#8133. When Anton Saw This Task He Reacted With 😩ucup-team635#TL 0ms2064kbRust30.9kb2024-01-20 14:55:122024-01-20 14:55:13

Judging History

你现在查看的是最新测评结果

  • [2024-01-20 14:55:13]
  • 评测
  • 测评结果:TL
  • 用时:0ms
  • 内存:2064kb
  • [2024-01-20 14:55:12]
  • 提交

answer

use std::ops::*;

// ---------- begin trait ----------
pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait Ring: Zero + One + Sub<Output = Self> {}

pub trait Field: Ring + Div<Output = Self> {}
// ---------- end trait ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);

impl<const M: u32> ModInt<{ M }> {
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ORDER: usize = 1 << (M - 1).trailing_zeros();
    const fn reduce(x: u64) -> u32 {
        let _ = Self::IS_PRIME;
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
    const fn multiply(a: u32, b: u32) -> u32 {
        Self::reduce(a as u64 * b as u64)
    }
    pub const fn new(v: u32) -> Self {
        assert!(v < M);
        Self(Self::reduce(v as u64 * Self::INI))
    }
    pub const fn const_mul(&self, rhs: Self) -> Self {
        Self(Self::multiply(self.0, rhs.0))
    }
    pub const fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::new(1);
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t = t.const_mul(r);
            }
            r = r.const_mul(r);
            n >>= 1;
        }
        t
    }
    pub const fn inv(&self) -> Self {
        assert!(self.0 != 0);
        self.pow(M as u64 - 2)
    }
    pub const fn get(&self) -> u32 {
        Self::reduce(self.0 as u64)
    }
    pub const fn zero() -> Self {
        Self::new(0)
    }
    pub const fn one() -> Self {
        Self::new(1)
    }
}

impl<const M: u32> Add for ModInt<{ M }> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= M {
            v -= M;
        }
        Self(v)
    }
}

impl<const M: u32> Sub for ModInt<{ M }> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += M;
        }
        Self(v)
    }
}

impl<const M: u32> Mul for ModInt<{ M }> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        self.const_mul(rhs)
    }
}

impl<const M: u32> Div for ModInt<{ M }> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const M: u32> AddAssign for ModInt<{ M }> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<const M: u32> SubAssign for ModInt<{ M }> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<const M: u32> MulAssign for ModInt<{ M }> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<const M: u32> DivAssign for ModInt<{ M }> {
    fn div_assign(&mut self, rhs: Self) {
        *self = *self / rhs;
    }
}

impl<const M: u32> Neg for ModInt<{ M }> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.0 == 0 {
            self
        } else {
            Self(M - self.0)
        }
    }
}

impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<const M: u32> From<usize> for ModInt<{ M }> {
    fn from(val: usize) -> ModInt<{ M }> {
        ModInt::new((val % M as usize) as u32)
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
    fact: Vec<ModInt<MOD>>,
    ifact: Vec<ModInt<MOD>>,
    inv: Vec<ModInt<MOD>>,
}

impl<const MOD: u32> Precalc<MOD> {
    pub fn new(size: usize) -> Self {
        let mut fact = vec![ModInt::one(); size + 1];
        let mut ifact = vec![ModInt::one(); size + 1];
        let mut inv = vec![ModInt::one(); size + 1];
        for i in 2..=size {
            fact[i] = fact[i - 1] * ModInt::from(i);
        }
        ifact[size] = fact[size].inv();
        for i in (2..=size).rev() {
            inv[i] = ifact[i] * fact[i - 1];
            ifact[i - 1] = ifact[i] * ModInt::from(i);
        }
        Self { fact, ifact, inv }
    }
    pub fn fact(&self, n: usize) -> ModInt<MOD> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<MOD> {
        self.ifact[n]
    }
    pub fn inv(&self, n: usize) -> ModInt<MOD> {
        assert!(0 < n);
        self.inv[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
        if n < k {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

impl<const M: u32> Zero for ModInt<{ M }> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<const M: u32> One for ModInt<{ M }> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.get() == 1
    }
}

impl<const M: u32> Ring for ModInt<{ M }> {}
impl<const M: u32> Field for ModInt<{ M }> {}

// ---------- begin array op ----------

struct NTTPrecalc<const M: u32> {
    sum_e: [ModInt<{ M }>; 30],
    sum_ie: [ModInt<{ M }>; 30],
}

impl<const M: u32> NTTPrecalc<{ M }> {
    const fn new() -> Self {
        let cnt2 = (M - 1).trailing_zeros() as usize;
        let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
        let zeta = root.pow((M - 1) as u64 >> cnt2);
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let mut e = zeta;
        let mut ie = e.inv();
        let mut i = cnt2;
        while i >= 2 {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e.const_mul(e);
            ie = ie.const_mul(ie);
            i -= 1;
        }
        let mut now = ModInt::one();
        let mut inow = ModInt::one();
        let mut i = 0;
        while i < cnt2 - 1 {
            sum_e[i] = es[i].const_mul(now);
            sum_ie[i] = ies[i].const_mul(inow);
            now = ies[i].const_mul(now);
            inow = es[i].const_mul(inow);
            i += 1;
        }
        Self { sum_e, sum_ie }
    }
}

struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
    const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + One + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
                *res = *res + *a * *b;
            }
        }
        res
    }
}

// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
    type Item;
    fn transform(&mut self, len: usize);
    fn inverse_transform(&mut self, len: usize);
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
    type Item = ModInt<{ M }>;
    fn transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in 1..=k {
            let p = len << (k - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= pre.sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn inverse_transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in (1..=k).rev() {
            let p = len << (k - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new(2).inv().pow(k as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        const PARAM: usize = 10;
        let size = self.len() + rhs.len() - 1;
        let mut k = 0;
        while (size + (1 << k) - 1) >> k > PARAM {
            k += 1;
        }
        let len = (size + (1 << k) - 1) >> k;
        let mut f = vec![ModInt::zero(); len << k];
        let mut g = vec![ModInt::zero(); len << k];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.transform(len);
        g.transform(len);
        let mut buf = [ModInt::zero(); 2 * PARAM - 1];
        let buf = &mut buf[..(2 * len - 1)];
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        let mut now = ModInt::one();
        for (i, (f, g)) in f
            .chunks_exact_mut(2 * len)
            .zip(g.chunks_exact(2 * len))
            .enumerate()
        {
            let mut r = now;
            for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
                buf.fill(ModInt::zero());
                for (i, f) in f.iter().enumerate() {
                    for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
                        *buf = *buf + *f * *g;
                    }
                }
                f.copy_from_slice(&buf[..len]);
                for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
                    *f = *f + r * *buf;
                }
                r = -r;
            }
            now *= pre.sum_e[(!i).trailing_zeros() as usize];
        }
        f.inverse_transform(len);
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}
// ---------- end array op ----------
// ---------- begin Heavy-Light decomposition ----------
pub struct HLD {
    size: usize,
    edge: Vec<(usize, usize)>,
    child: Vec<Vec<usize>>,
    path_root: Vec<usize>,
    parent: Vec<usize>,
    left: Vec<usize>,
    right: Vec<usize>,
    inverse: Vec<usize>,
}

impl HLD {
    pub fn new(size: usize) -> Self {
        assert!(size <= 10usize.pow(8));
        HLD {
            size: size,
            edge: Vec::with_capacity(size - 1),
            child: Vec::new(),
            path_root: Vec::new(),
            parent: Vec::new(),
            left: Vec::new(),
            right: Vec::new(),
            inverse: Vec::new(),
        }
    }
    pub fn add_edge(&mut self, a: usize, b: usize) {
        assert!(a != b && a < self.size && b < self.size);
        self.edge.push((a, b));
    }
    pub fn build(&mut self, root: usize) {
        assert!(self.edge.len() + 1 == self.size);
        let size = self.size;
        let mut cnt = vec![0; size];
        for &(a, b) in self.edge.iter() {
            cnt[a] += 1;
            cnt[b] += 1;
        }
        let mut child = cnt
            .into_iter()
            .map(|c| Vec::with_capacity(c))
            .collect::<Vec<_>>();
        for &(a, b) in self.edge.iter() {
            child[a].push(b);
            child[b].push(a);
        }
        let mut parent = vec![size; size];
        let mut q = Vec::with_capacity(size);
        q.push(root);
        parent[root] = root;
        for i in 0..size {
            let v = q[i];
            for u in child[v].clone() {
                assert!(parent[u] == size);
                parent[u] = v;
                child[u].retain(|e| *e != v);
                q.push(u);
            }
        }
        let mut sum = vec![1; size];
        for &v in q.iter().rev() {
            let child = &mut child[v];
            if !child.is_empty() {
                let (pos, _) = child.iter().enumerate().max_by_key(|p| sum[*p.1]).unwrap();
                child.swap(0, pos);
                sum[v] = 1 + child.iter().fold(0, |s, a| s + sum[*a]);
            }
        }
        let mut path_root = (0..size).collect::<Vec<_>>();
        let mut left = vec![0; size];
        let mut right = vec![0; size];
        let mut dfs = vec![(root, false)];
        let mut id = 0;
        while let Some((v, end)) = dfs.pop() {
            if end {
                right[v] = id;
                continue;
            }
            left[v] = id;
            id += 1;
            dfs.push((v, true));
            let child = &child[v];
            if !child.is_empty() {
                for &u in child[1..].iter() {
                    path_root[u] = u;
                    dfs.push((u, false));
                }
                let u = child[0];
                path_root[u] = path_root[v];
                dfs.push((u, false));
            }
        }
        let mut inverse = vec![size; size];
        for (i, l) in left.iter().enumerate() {
            inverse[*l] = i;
        }
        self.child = child;
        self.parent = parent;
        self.left = left;
        self.right = right;
        self.path_root = path_root;
        self.inverse = inverse;
    }
    pub fn lca(&self, mut a: usize, mut b: usize) -> usize {
        assert!(a < self.size && b < self.size);
        let path = &self.path_root;
        let parent = &self.parent;
        let index = &self.left;
        while path[a] != path[b] {
            if index[a] > index[b] {
                std::mem::swap(&mut a, &mut b);
            }
            b = parent[path[b]];
        }
        std::cmp::min((index[a], a), (index[b], b)).1
    }
    pub fn path(
        &self,
        src: usize,
        dst: usize,
        up: &mut Vec<(usize, usize)>,
        down: &mut Vec<(usize, usize)>,
    ) {
        assert!(src < self.size && dst < self.size);
        up.clear();
        down.clear();
        let path = &self.path_root;
        let parent = &self.parent;
        let index = &self.left;
        let mut x = src;
        let mut y = dst;
        while path[x] != path[y] {
            if index[x] > index[y] {
                let p = path[x];
                assert!(p == path[p]);
                up.push((index[p], index[x] + 1));
                x = parent[p];
            } else {
                let p = path[y];
                assert!(p == path[p]);
                down.push((index[p], index[y] + 1));
                y = parent[p];
            }
        }
        if index[x] <= index[y] {
            down.push((index[x], index[y] + 1));
        } else {
            up.push((index[y], index[x] + 1));
        }
        down.reverse();
    }
    pub fn sub_tree(&self, v: usize) -> (usize, usize) {
        assert!(v < self.size);
        (self.left[v], self.right[v])
    }
    pub fn parent(&self, v: usize) -> Option<usize> {
        assert!(v < self.size);
        let p = self.parent[v];
        if p == v {
            None
        } else {
            Some(p)
        }
    }
    // s -> t へのパスの2番目の頂点を返す
    pub fn next(&self, s: usize, t: usize) -> usize {
        assert!(s < self.size && t < self.size && s != t);
        let (a, b) = self.sub_tree(s);
        let (c, d) = self.sub_tree(t);
        if !(a <= c && d <= b) {
            return self.parent[s];
        }
        let mut pos = t;
        let mut pre = t;
        while self.path_root[s] != self.path_root[pos] {
            pre = self.path_root[pos];
            pos = self.parent[pre];
        }
        if s == pos {
            pre
        } else {
            self.child[s][0]
        }
    }
    pub fn vertex(&self, x: usize) -> usize {
        assert!(x < self.size);
        self.inverse[x]
    }
    pub fn jump(
        &self,
        s: usize,
        t: usize,
        mut k: usize,
        up: &mut Vec<(usize, usize)>,
        down: &mut Vec<(usize, usize)>,
    ) -> Option<usize> {
        assert!(s.max(t) < self.size);
        self.path(s, t, up, down);
        for (l, r) in up.drain(..) {
            if k < r - l {
                return Some(self.vertex(r - 1 - k));
            }
            k -= r - l;
        }
        for (l, r) in down.drain(..) {
            if k < r - l {
                return Some(self.vertex(l + k));
            }
            k -= r - l;
        }
        None
    }
}
// ---------- end Heavy-Light decomposition ----------
// ---------- begin segment tree Point Update Range Query ----------
pub struct SegmentTreePURQ<T, F> {
    n: usize,
    size: usize,
    data: Vec<T>,
    e: T,
    op: F,
}

impl<T, F> SegmentTreePURQ<T, F>
where
    T: Clone,
    F: Fn(&T, &T) -> T,
{
    pub fn new(n: usize, e: T, op: F) -> Self {
        assert!(n > 0);
        let size = n.next_power_of_two();
        let data = vec![e.clone(); 2 * size];
        SegmentTreePURQ {
            n,
            size,
            data,
            e,
            op,
        }
    }
    pub fn update_tmp(&mut self, x: usize, v: T) {
        assert!(x < self.n);
        self.data[x + self.size] = v;
    }
    pub fn update_all(&mut self) {
        for i in (1..self.size).rev() {
            self.data[i] = (self.op)(&self.data[2 * i], &self.data[2 * i + 1]);
        }
    }
    pub fn update(&mut self, x: usize, v: T) {
        assert!(x < self.n);
        let mut x = x + self.size;
        self.data[x] = v;
        x >>= 1;
        while x > 0 {
            self.data[x] = (self.op)(&self.data[2 * x], &self.data[2 * x + 1]);
            x >>= 1;
        }
    }
    pub fn find(&self, l: usize, r: usize) -> T {
        assert!(l <= r && r <= self.n);
        if l == r {
            return self.e.clone();
        }
        let mut l = self.size + l;
        let mut r = self.size + r;
        let mut x = self.e.clone();
        let mut y = self.e.clone();
        while l < r {
            if l & 1 == 1 {
                x = (self.op)(&x, &self.data[l]);
                l += 1;
            }
            if r & 1 == 1 {
                r -= 1;
                y = (self.op)(&self.data[r], &y);
            }
            l >>= 1;
            r >>= 1;
        }
        (self.op)(&x, &y)
    }
    pub fn max_right<P>(&self, l: usize, f: P) -> usize
    where
        P: Fn(&T) -> bool,
    {
        assert!(l <= self.n);
        assert!(f(&self.e));
        if l == self.n {
            return self.n;
        }
        let mut l = l + self.size;
        let mut sum = self.e.clone();
        while {
            l >>= l.trailing_zeros();
            let v = (self.op)(&sum, &self.data[l]);
            if !f(&v) {
                while l < self.size {
                    l <<= 1;
                    let v = (self.op)(&sum, &self.data[l]);
                    if f(&v) {
                        sum = v;
                        l += 1;
                    }
                }
                return l - self.size;
            }
            sum = v;
            l += 1;
            l.count_ones() > 1
        } {}
        self.n
    }
    pub fn min_left<P>(&self, r: usize, f: P) -> usize
    where
        P: Fn(&T) -> bool,
    {
        assert!(r <= self.n);
        assert!(f(&self.e));
        if r == 0 {
            return 0;
        }
        let mut r = r + self.size;
        let mut sum = self.e.clone();
        while {
            r -= 1;
            while r > 1 && r & 1 == 1 {
                r >>= 1;
            }
            let v = (self.op)(&self.data[r], &sum);
            if !f(&v) {
                while r < self.size {
                    r = 2 * r + 1;
                    let v = (self.op)(&self.data[r], &sum);
                    if f(&v) {
                        sum = v;
                        r -= 1;
                    }
                }
                return r + 1 - self.size;
            }
            sum = v;
            (r & (!r + 1)) != r
        } {}
        0
    }
}
// ---------- end segment tree Point Update Range Query ----------
// ---------- begin scannner ----------
#[allow(dead_code)]
mod scanner {
    use std::str::FromStr;
    pub struct Scanner<'a> {
        it: std::str::SplitWhitespace<'a>,
    }
    impl<'a> Scanner<'a> {
        pub fn new(s: &'a String) -> Scanner<'a> {
            Scanner {
                it: s.split_whitespace(),
            }
        }
        pub fn next<T: FromStr>(&mut self) -> T {
            self.it.next().unwrap().parse::<T>().ok().unwrap()
        }
        pub fn next_bytes(&mut self) -> Vec<u8> {
            self.it.next().unwrap().bytes().collect()
        }
        pub fn next_chars(&mut self) -> Vec<char> {
            self.it.next().unwrap().chars().collect()
        }
        pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> {
            (0..len).map(|_| self.next()).collect()
        }
    }
}
// ---------- end scannner ----------

use std::collections::*;
use std::io::Write;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn main() {
    use std::io::Read;
    let mut s = String::new();
    std::io::stdin().read_to_string(&mut s).unwrap();
    let mut sc = scanner::Scanner::new(&s);
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    run(&mut sc, &mut out);
}

type M = ModInt<998244353>;

fn run<W: Write>(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) {
    let n: usize = sc.next();
    let q: usize = sc.next();
    let mut leaf = vec![true; n];
    let mut left = vec![true; n];
    let mut val = vec![[M::zero(); 3]; n];
    let mut hld = HLD::new(n);
    for i in 0..n {
        let c = sc.next::<String>();
        if c == "x" {
            let l = sc.next::<usize>() - 1;
            let r = sc.next::<usize>() - 1;
            hld.add_edge(i, l);
            hld.add_edge(i, r);
            left[r] = false;
            leaf[i] = false;
        } else {
            let x = M::new(sc.next::<u32>());
            let y = M::new(sc.next::<u32>());
            let z = M::new(sc.next::<u32>());
            val[i] = [x, y, z];
        }
    }
    hld.build(0);
    let hld = hld;
    let mut under = vec![n; n];
    for i in 0..n {
        if leaf[i] {
            under[hld.path_root[i]] = i;
        }
    }
    let under = under;
    type Mat = [[M; 3]; 3];
    let mul = |a: &Mat, b: &Mat| -> Mat {
        let mut c = [[M::zero(); 3]; 3];
        for (c, a) in c.iter_mut().zip(a.iter()) {
            for (a, b) in a.iter().zip(b.iter()) {
                for (c, b) in c.iter_mut().zip(b.iter()) {
                    *c += *a * *b;
                }
            }
        }
        c
    };
    let gen_leaf = |p: [M; 3]| -> Mat {
        let mut mat = [[M::zero(); 3]; 3];
        for (mat, v) in mat.iter_mut().zip(p.iter()) {
            mat[0] = *v;
        }
        mat
    };
    let gen = |p: Mat, left: bool| -> Mat {
        let v = [p[0][0], p[1][0], p[2][0]];
        let mut res = [[M::zero(); 3]; 3];
        res[0][1] = -v[2];
        res[1][0] = v[2];
        res[2][0] = -v[1];
        res[0][2] = v[1];
        res[2][1] = v[0];
        res[1][2] = -v[0];
        if !left {
            for res in res.iter_mut().flatten() {
                *res = -*res;
            }
        }
        res
    };
    let mut e = [[M::zero(); 3]; 3];
    for i in 0..3 {
        e[i][i] = M::one();
    }
    let mut seg = SegmentTreePURQ::new(n, e, mul);
    for i in (0..n).rev() {
        let v = hld.vertex(i);
        if leaf[v] {
            let val = val[v];
            seg.update(i, gen_leaf(val));
        }
        if i > 0 && v == hld.path_root[v] {
            let r = hld.sub_tree(under[v]).1;
            let m = seg.find(i, r);
            let mat = gen(m, left[v]);
            let p = hld.parent[v];
            let pos = hld.sub_tree(p).0;
            seg.update(pos, mat);
        }
    }
    for _ in 0..q {
        let v = sc.next::<usize>() - 1;
        let x = M::new(sc.next::<u32>());
        let y = M::new(sc.next::<u32>());
        let z = M::new(sc.next::<u32>());
        val[v] = [x, y, z];
        seg.update(hld.sub_tree(v).0, gen_leaf(val[v]));
        let mut pos = hld.path_root[v];
        while pos > 0 {
            let l = hld.sub_tree(pos).0;
            let r = hld.sub_tree(under[v]).1;
            let m = seg.find(l, r);
            let mat = gen(m, left[v]);
            let p = hld.parent[v];
            let x = hld.sub_tree(p).0;
            seg.update(x, mat);
            pos = hld.path_root[p];
        }
        let r = hld.sub_tree(under[0]).1;
        let ans = seg.find(0, r);
        writeln!(out, "{} {} {}", ans[0][0], ans[1][0], ans[2][0]).ok();
    }
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 2064kb

input:

5 3
x 2 3
v 1 0 1
x 4 5
v 0 2 1
v 1 1 1
4 1 2 3
5 0 1 1
4 0 2 2

output:

998244351 0 2
1 998244351 998244352
0 0 0

result:

ok 9 numbers

Test #2:

score: -100
Time Limit Exceeded

input:

199999 100000
x 137025 65661
v 572518668 158967010 74946561
x 129836 192657
x 141948 187810
v 574918069 328924434 141474729
x 143312 111002
x 52772 148497
v 922857701 690080961 651915759
v 656198340 28002884 129579416
v 639893144 265359784 646791226
v 796871409 411409966 598676495
v 882562617 224394...

output:


result: