#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
namespace {
using Fp = atcoder::modint998244353;
void solve() {
int n, m;
scan(n, m);
std::vector L(n, std::vector<Fp>(n + 1));
while (m--) {
int i, j, c;
scan(i, j, c);
--i, --j;
L[i][i] += Fp(c).inv();
L[j][j] += Fp(c).inv();
L[i][j] -= Fp(c).inv();
L[j][i] -= Fp(c).inv();
}
L[0][n] = 1;
L[n - 1][n] = -1;
row_reduce(L, n);
print(L[0][n]);
// for (const int i : rep(n)) {
// for (const int j : rep(n + 1)) {
// std::cout << to_rational_string(L[i][j]) << " \n"[j == n];
// }
// }
}
} // namespace
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t;
scan(t);
while (t--) {
solve();
}
}
#else // __INCLUDE_LEVEL__
#include <bits/stdc++.h>
#include <atcoder/modint>
template <class T>
bool is_zero(const T& a) {
return a == T(0);
}
template <class T>
int row_reduce(std::vector<std::vector<T>>& a, int limit = -1) {
int h = std::size(a);
if (h == 0) return 0;
int w = std::size(a[0]), rank = 0;
if (limit < 0 or w < limit) limit = w;
for (int p = 0; p < limit; ++p) {
for (int i = rank + 1; i < h; ++i)
if constexpr (std::is_floating_point_v<T>) {
if (std::abs(a[rank][p]) < std::abs(a[i][p])) std::swap(a[rank], a[i]);
} else if (not is_zero(a[i][p])) {
std::swap(a[rank], a[i]);
break;
}
if (is_zero(a[rank][p])) continue;
T inv = T(1) / a[rank][p];
for (auto&& e : a[rank]) e *= inv;
for (int i = 0; i < h; ++i)
if (i != rank and not is_zero(a[i][p])) {
for (int j = p + 1; j < w; ++j) a[i][j] -= a[rank][j] * a[i][p];
a[i][p] = 0;
}
if (++rank == h) break;
}
return rank;
}
template <class T, class U = T>
bool chmin(T& x, U&& y) {
return y < x && (x = std::forward<U>(y), true);
}
template <class T, class U = T>
bool chmax(T& x, U&& y) {
return x < y && (x = std::forward<U>(y), true);
}
template <std::signed_integral T = int>
T inf() {
T ret;
std::memset(&ret, 0x3f, sizeof(ret));
return ret;
}
template <std::floating_point T>
T inf() {
return std::numeric_limits<T>::infinity();
}
template <class T>
concept Range = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T>
concept TupleLike = std::__is_tuple_like<T>::value && !Range<T>;
namespace std {
istream& operator>>(istream& is, Range auto&& r) {
for (auto&& e : r) {
is >> e;
}
return is;
}
istream& operator>>(istream& is, TupleLike auto&& t) {
return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
ostream& operator<<(ostream& os, Range auto&& r) {
string_view sep = "";
for (auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
ostream& operator<<(ostream& os, TupleLike auto&& t) {
const auto f = [&](auto&... xs) -> ostream& {
[[maybe_unused]] string_view sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
#define DEF_INC_OR_DEC(op) \
auto& operator op(Range auto&& r) { \
for (auto&& e : r) { \
op e; \
} \
return r; \
} \
auto& operator op(TupleLike auto&& t) { \
apply([](auto&... xs) { (op xs, ...); }, t); \
return t; \
}
DEF_INC_OR_DEC(++)
DEF_INC_OR_DEC(--)
#undef DEF_INC_OR_DEC
} // namespace std
namespace atcoder {
template <class T, internal::is_modint_t<T>* = nullptr>
std::istream& operator>>(std::istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, internal::is_modint_t<T>* = nullptr>
std::ostream& operator<<(std::ostream& os, const T& x) {
return os << x.val();
}
} // namespace atcoder
void scan(auto&&... xs) { std::cin >> std::tie(xs...); }
void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; }
#define FWD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)
template <class F>
class fix {
public:
explicit fix(F f) : f_(std::move(f)) {}
decltype(auto) operator()(auto&&... xs) const { return f_(std::ref(*this), FWD(xs)...); }
private:
F f_;
};
template <class T>
concept LambdaExpr = std::is_placeholder_v<std::remove_cvref_t<T>> != 0 ||
std::is_bind_expression_v<std::remove_cvref_t<T>>;
auto operator++(LambdaExpr auto&& x, int) {
return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)++; }, FWD(x));
}
auto operator--(LambdaExpr auto&& x, int) {
return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)--; }, FWD(x));
}
#define DEF_UNARY_OP(op) \
auto operator op(LambdaExpr auto&& x) { \
return std::bind([](auto&& x) -> decltype(auto) { return op FWD(x); }, FWD(x)); \
}
DEF_UNARY_OP(++)
DEF_UNARY_OP(--)
DEF_UNARY_OP(+)
DEF_UNARY_OP(-)
DEF_UNARY_OP(~)
DEF_UNARY_OP(!)
DEF_UNARY_OP(*)
DEF_UNARY_OP(&)
#undef DEF_UNARY_OP
#define DEF_BINARY_OP(op) \
template <class T1, class T2> \
requires LambdaExpr<T1> || LambdaExpr<T2> \
auto operator op(T1&& x, T2&& y) { \
return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x) op FWD(y); }, \
FWD(x), FWD(y)); \
}
DEF_BINARY_OP(+=)
DEF_BINARY_OP(-=)
DEF_BINARY_OP(*=)
DEF_BINARY_OP(/=)
DEF_BINARY_OP(%=)
DEF_BINARY_OP(^=)
DEF_BINARY_OP(&=)
DEF_BINARY_OP(|=)
DEF_BINARY_OP(<<=)
DEF_BINARY_OP(>>=)
DEF_BINARY_OP(+)
DEF_BINARY_OP(-)
DEF_BINARY_OP(*)
DEF_BINARY_OP(/)
DEF_BINARY_OP(%)
DEF_BINARY_OP(^)
DEF_BINARY_OP(&)
DEF_BINARY_OP(|)
DEF_BINARY_OP(<<)
DEF_BINARY_OP(>>)
DEF_BINARY_OP(==)
DEF_BINARY_OP(!=)
DEF_BINARY_OP(<)
DEF_BINARY_OP(>)
DEF_BINARY_OP(<=)
DEF_BINARY_OP(>=)
DEF_BINARY_OP(&&)
DEF_BINARY_OP(||)
#undef DEF_BINARY_OP
template <class T1, class T2>
requires LambdaExpr<T1> || LambdaExpr<T2>
auto at(T1&& x, T2&& y) {
return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x)[FWD(y)]; }, FWD(x),
FWD(y));
}
template <int I>
auto get(LambdaExpr auto&& x) {
return std::bind([](auto&& x) -> decltype(auto) { return std::get<I>(FWD(x)); }, FWD(x));
}
inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
using namespace std::literals;
using namespace std::placeholders;
namespace ranges = std::ranges;
namespace views = std::views;
using i64 = std::int64_t;
#endif // __INCLUDE_LEVEL__