QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#308717#8133. When Anton Saw This Task He Reacted With 😩ucup-team180#AC ✓1202ms58500kbC++2063.1kb2024-01-20 12:05:232024-01-20 12:05:23

Judging History

你现在查看的是最新测评结果

  • [2024-01-20 12:05:23]
  • 评测
  • 测评结果:AC
  • 用时:1202ms
  • 内存:58500kb
  • [2024-01-20 12:05:23]
  • 提交

answer

#pragma region Macros
#ifdef noimi
#include "my_template.hpp"
#else
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <immintrin.h>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>

#ifdef noimi
#define oj_local(a, b) b
#else
#define oj_local(a, b) a
#endif

#define LOCAL if(oj_local(0, 1))
#define OJ if(oj_local(1, 0))

using namespace std;
using ll = long long;
using ull = unsigned long long int;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using ld = long double;
template <typename T> using vc = vector<T>;
template <typename T> using vvc = vector<vc<T>>;
template <typename T> using vvvc = vector<vvc<T>>;
using vi = vc<int>;
using vl = vc<ll>;
using vpi = vc<pii>;
using vpl = vc<pll>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <typename T> int si(const T &x) { return x.size(); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }
vi iota(int n) {
    vi a(n);
    return iota(a.begin(), a.end(), 0), a;
}
template <typename T> vi iota(const vector<T> &a, bool greater = false) {
    vi res(a.size());
    iota(res.begin(), res.end(), 0);
    sort(res.begin(), res.end(), [&](int i, int j) {
        if(greater) return a[i] > a[j];
        return a[i] < a[j];
    });
    return res;
}

// macros
#define overload5(a, b, c, d, e, name, ...) name
#define overload4(a, b, c, d, name, ...) name
#define endl '\n'
#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)
#define REP1(i, n) for(ll i = 0; i < (n); ++i)
#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)
#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)
#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)
#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)
#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))
#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)
#define fore0(a) rep(a.size())
#define fore1(i, a) for(auto &&i : a)
#define fore2(a, b, v) for(auto &&[a, b] : v)
#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)
#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)
#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)
#define setbits(j, n) for(ll iiiii = (n), j = lowbit(iiiii); iiiii; iiiii ^= 1 << j, j = lowbit(iiiii))
#define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(all(v)));)
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define drop(s) cout << #s << endl, exit(0)
#define si(c) (int)(c).size()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
#define rng(v, l, r) v.begin() + (l), v.begin() + (r)
#define all(c) begin(c), end(c)
#define rall(c) rbegin(c), rend(c)
#define SORT(v) sort(all(v))
#define REV(v) reverse(all(v))
#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())
template <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)                                                                                                                         \
    vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};

namespace yesno_impl {
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
const string firstsecond[2] = {"second", "first"};
const string FirstSecond[2] = {"Second", "First"};
const string possiblestr[2] = {"impossible", "possible"};
const string Possiblestr[2] = {"Impossible", "Possible"};
void YES(bool t = 1) { cout << YESNO[t] << endl; }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { cout << YesNo[t] << endl; }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { cout << yesno[t] << endl; }
void no(bool t = 1) { yes(!t); }
void first(bool t = 1) { cout << firstsecond[t] << endl; }
void First(bool t = 1) { cout << FirstSecond[t] << endl; }
void possible(bool t = 1) { cout << possiblestr[t] << endl; }
void Possible(bool t = 1) { cout << Possiblestr[t] << endl; }
}; // namespace yesno_impl
using namespace yesno_impl;

#define INT(...)                                                                                                                                               \
    int __VA_ARGS__;                                                                                                                                           \
    IN(__VA_ARGS__)
#define INTd(...)                                                                                                                                              \
    int __VA_ARGS__;                                                                                                                                           \
    IN2(__VA_ARGS__)
#define LL(...)                                                                                                                                                \
    ll __VA_ARGS__;                                                                                                                                            \
    IN(__VA_ARGS__)
#define LLd(...)                                                                                                                                               \
    ll __VA_ARGS__;                                                                                                                                            \
    IN2(__VA_ARGS__)
#define STR(...)                                                                                                                                               \
    string __VA_ARGS__;                                                                                                                                        \
    IN(__VA_ARGS__)
#define CHR(...)                                                                                                                                               \
    char __VA_ARGS__;                                                                                                                                          \
    IN(__VA_ARGS__)
#define DBL(...)                                                                                                                                               \
    double __VA_ARGS__;                                                                                                                                        \
    IN(__VA_ARGS__)
#define VEC(type, name, size)                                                                                                                                  \
    vector<type> name(size);                                                                                                                                   \
    IN(name)
#define VECd(type, name, size)                                                                                                                                 \
    vector<type> name(size);                                                                                                                                   \
    IN2(name)
#define VEC2(type, name1, name2, size)                                                                                                                         \
    vector<type> name1(size), name2(size);                                                                                                                     \
    for(int i = 0; i < size; i++) IN(name1[i], name2[i])
#define VEC2d(type, name1, name2, size)                                                                                                                        \
    vector<type> name1(size), name2(size);                                                                                                                     \
    for(int i = 0; i < size; i++) IN2(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size)                                                                                                                  \
    vector<type> name1(size), name2(size), name3(size);                                                                                                        \
    for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])
#define VEC3d(type, name1, name2, name3, size)                                                                                                                 \
    vector<type> name1(size), name2(size), name3(size);                                                                                                        \
    for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size)                                                                                                           \
    vector<type> name1(size), name2(size), name3(size), name4(size);                                                                                           \
    for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);
#define VEC4d(type, name1, name2, name3, name4, size)                                                                                                          \
    vector<type> name1(size), name2(size), name3(size), name4(size);                                                                                           \
    for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i], name4[i]);
#define VV(type, name, h, w)                                                                                                                                   \
    vector<vector<type>> name(h, vector<type>(w));                                                                                                             \
    IN(name)
#define VVd(type, name, h, w)                                                                                                                                  \
    vector<vector<type>> name(h, vector<type>(w));                                                                                                             \
    IN2(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
    for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
void IN2() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
    scan(head);
    IN(tail...);
}
template <class Head, class... Tail> void IN2(Head &head, Tail &...tail) {
    scan(head);
    --head;
    IN2(tail...);
}

template <int p = -1> void pat() {}
template <int p = -1, class Head, class... Tail> void pat(Head &h, Tail &...tail) {
    h += p;
    pat<p>(tail...);
}

template <typename T, typename S> T ceil(T x, S y) {
    assert(y);
    return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}

template <typename T, typename S> T floor(T x, S y) {
    assert(y);
    return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <typename T, typename S, typename U> U bigmul(const T &x, const S &y, const U &lim) { // clamp(x * y, -lim, lim)
    if(x < 0 and y < 0) return bigmul(-x, -y, lim);
    if(x < 0) return -bigmul(-x, y, lim);
    if(y < 0) return -bigmul(x, -y, lim);
    return y == 0 or x <= lim / y ? x * y : lim;
}
template <class T> T POW(T x, int n) {
    T res = 1;
    for(; n; n >>= 1, x *= x)
        if(n & 1) res *= x;
    return res;
}
template <class T, class S> T POW(T x, S n, const ll &mod) {
    T res = 1;
    x %= mod;
    for(; n; n >>= 1, x = x * x % mod)
        if(n & 1) res = res * x % mod;
    return res;
}
vector<pll> factor(ll x) {
    vector<pll> ans;
    for(ll i = 2; i * i <= x; i++)
        if(x % i == 0) {
            ans.push_back({i, 1});
            while((x /= i) % i == 0) ans.back().second++;
        }
    if(x != 1) ans.push_back({x, 1});
    return ans;
}
template <class T> vector<T> divisor(T x) {
    vector<T> ans;
    for(T i = 1; i * i <= x; i++)
        if(x % i == 0) {
            ans.pb(i);
            if(i * i != x) ans.pb(x / i);
        }
    return ans;
}
template <typename T> void zip(vector<T> &x) {
    vector<T> y = x;
    UNIQUE(y);
    for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class S> void fold_in(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {
    for(auto e : a) v.emplace_back(e);
    fold_in(v, tail...);
}
template <class S> void renumber(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {
    for(auto &&e : a) e = lb(v, e);
    renumber(v, tail...);
}
template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {
    vector<S> v;
    fold_in(v, head, args...);
    sort(all(v)), v.erase(unique(all(v)), v.end());
    renumber(v, head, args...);
    return v;
}

template <typename S> void rearrange(const vector<S> &id) {}
template <typename S, typename T> void rearrange_exec(const vector<S> &id, vector<T> &v) {
    vector<T> w(v.size());
    rep(i, si(id)) w[i] = v[id[i]];
    v.swap(w);
}
// 並び替える順番, 並び替える vector 達
template <typename S, typename Head, typename... Tail> void rearrange(const vector<S> &id, Head &a, Tail &...tail) {
    rearrange_exec(id, a);
    rearrange(id, tail...);
}

template <typename T> vector<T> RUI(const vector<T> &v) {
    vector<T> res(v.size() + 1);
    for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];
    return res;
}
template <typename T> void zeta_supersetsum(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] += f[b | i];
}

template <typename T> void zeta_subsetsum(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] += f[b];
}
template <typename T> void mobius_subset(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] -= f[b | i];
}
template <typename T> void mobius_superset(vector<T> &f) {
    int n = f.size();
    for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] -= f[b];
}
// 反時計周りに 90 度回転
template <typename T> void rot(vector<vector<T>> &v) {
    if(empty(v)) return;
    int n = v.size(), m = v[0].size();
    vector<vector<T>> res(m, vector<T>(n));
    rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];
    v.swap(res);
}

vector<int> counter(const vector<int> &v, int max_num = -1) {
    if(max_num == -1) max_num = MAX(v);
    vector<int> res(max_num + 1);
    fore(e, v) res[e]++;
    return res;
}

// x in [l, r)
template <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }
template <class T, class S> bool inc(const T &x, const pair<S, S> &p) { return p.first <= x and x < p.second; }

// 便利関数
constexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }
constexpr ll tri(ll n) { return n * (n + 1) / 2; }
// l + ... + r
constexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }
ll max(int x, ll y) { return max((ll)x, y); }
ll max(ll x, int y) { return max(x, (ll)y); }
int min(int x, ll y) { return min((ll)x, y); }
int min(ll x, int y) { return min(x, (ll)y); }
// bit 演算系
#define bit(i) (1LL << i)       // (1 << i)
#define test(b, i) (b >> i & 1) // b の i bit 目が立っているか
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
constexpr ll mask(int n) { return (1LL << n) - 1; }
// int popcount(signed t) { return __builtin_popcount(t); }
// int popcount(ll t) { return __builtin_popcountll(t); }
int popcount(uint64_t t) { return __builtin_popcountll(t); }
static inline uint64_t popcount64(uint64_t x) {
    uint64_t m1 = 0x5555555555555555ll;
    uint64_t m2 = 0x3333333333333333ll;
    uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
    uint64_t h01 = 0x0101010101010101ll;

    x -= (x >> 1) & m1;
    x = (x & m2) + ((x >> 2) & m2);
    x = (x + (x >> 4)) & m4;

    return (x * h01) >> 56;
}
bool ispow2(int i) { return i && (i & -i) == i; }

ll rnd(ll l, ll r) { //[l, r)
#ifdef noimi
    static mt19937_64 gen;
#else
    static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif
    return uniform_int_distribution<ll>(l, r - 1)(gen);
}
ll rnd(ll n) { return rnd(0, n); }

template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }

int in() {
    int x;
    cin >> x;
    return x;
}
ll lin() {
    unsigned long long x;
    cin >> x;
    return x;
}

template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }
template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }
template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }
template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }
template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }

template <class T> vector<T> &operator++(vector<T> &v) {
    fore(e, v) e++;
    return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
    auto res = v;
    fore(e, v) e++;
    return res;
}
template <class T> vector<T> &operator--(vector<T> &v) {
    fore(e, v) e--;
    return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
    auto res = v;
    fore(e, v) e--;
    return res;
}
template <class T> void connect(vector<T> &l, const vector<T> &r) { fore(e, r) l.eb(e); }
template <class T> vector<T> operator+(const vector<T> &l, const vector<T> &r) {
    vector<T> res(max(si(l), si(r)));
    rep(i, si(l)) res[i] += l[i];
    rep(i, si(r)) res[i] += r[i];
    return res;
}
template <class T> vector<T> operator-(const vector<T> &l, const vector<T> &r) {
    vector<T> res(max(si(l), si(r)));
    rep(i, si(l)) res[i] += l[i];
    rep(i, si(r)) res[i] -= r[i];
    return res;
}
template <class T> vector<T> &operator+=(const vector<T> &l, const vector<T> &r) {
    if(si(l) < si(r)) l.resize(si(r));
    rep(i, si(r)) l[i] += r[i];
    return l;
}
template <class T> vector<T> &operator-=(const vector<T> &l, const vector<T> &r) {
    if(si(l) < si(r)) l.resize(si(r));
    rep(i, si(r)) l[i] -= r[i];
    return l;
}
template <class T> vector<T> &operator+=(vector<T> &v, const T &x) {
    fore(e, v) e += x;
    return v;
}
template <class T> vector<T> &operator-=(vector<T> &v, const T &x) {
    fore(e, v) e -= x;
    return v;
}

template <typename T> struct edge {
    int from, to;
    T cost;
    int id;
    edge(int to, T cost) : from(-1), to(to), cost(cost) {}
    edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
    edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}
    constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }
    edge &operator=(const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
    friend ostream operator<<(ostream &os, const edge &e) { return os << e.to; }
};
template <typename T> using Edges = vector<edge<T>>;

template <typename T = int> Edges<T> read_edges(int m, bool weighted = false) {
    Edges<T> res;
    res.reserve(m);
    for(int i = 0; i < m; i++) {
        int u, v, c = 0;
        scan(u), scan(v), u--, v--;
        if(weighted) scan(c);
        res.eb(u, v, c, i);
    }
    return res;
}

using Tree = vector<vector<int>>;
using Graph = vector<vector<int>>;
template <class T> using Wgraph = vector<vector<edge<T>>>;
Graph getG(int n, int m = -1, bool directed = false, int margin = 1) {
    Tree res(n);
    if(m == -1) m = n - 1;
    while(m--) {
        int a, b;
        cin >> a >> b;
        a -= margin, b -= margin;
        res[a].emplace_back(b);
        if(!directed) res[b].emplace_back(a);
    }
    return res;
}
Graph getTreeFromPar(int n, int margin = 1) {
    Graph res(n);
    for(int i = 1; i < n; i++) {
        int a;
        cin >> a;
        res[a - margin].emplace_back(i);
    }
    return res;
}
template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {
    Wgraph<T> res(n);
    if(m == -1) m = n - 1;
    while(m--) {
        int a, b;
        T c;
        scan(a), scan(b), scan(c);
        a -= margin, b -= margin;
        res[a].emplace_back(b, c);
        if(!directed) res[b].emplace_back(a, c);
    }
    return res;
}
void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }
template <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }

#define TEST                                                                                                                                                   \
    INT(testcases);                                                                                                                                            \
    while(testcases--)

i128 abs(const i128 &x) { return x > 0 ? x : -x; }
istream &operator>>(istream &is, i128 &v) {
    string s;
    is >> s;
    v = 0;
    for(int i = 0; i < (int)s.size(); i++) {
        if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }
    }
    if(s[0] == '-') { v *= -1; }
    return is;
}

ostream &operator<<(ostream &os, const i128 &v) {
    if(v == 0) { return (os << "0"); }
    i128 num = v;
    if(v < 0) {
        os << '-';
        num = -num;
    }
    string s;
    for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }
    reverse(s.begin(), s.end());
    return (os << s);
}
namespace aux {
template <typename T, unsigned N, unsigned L> struct tp {
    static void output(std::ostream &os, const T &v) {
        os << std::get<N>(v) << (&os == &cerr ? ", " : " ");
        tp<T, N + 1, L>::output(os, v);
    }
};
template <typename T, unsigned N> struct tp<T, N, N> {
    static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }
};
} // namespace aux
template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {
    if(&os == &cerr) { os << '('; }
    aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);
    if(&os == &cerr) { os << ')'; }
    return os;
}
template <typename T, typename S, typename U> std::ostream &operator<<(std::ostream &os, const priority_queue<T, S, U> &_pq) {
    auto pq = _pq;
    vector<T> res;
    while(!empty(pq)) res.emplace_back(pq.top()), pq.pop();
    return os << res;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
    if(&os == &cerr) { return os << "(" << p.first << ", " << p.second << ")"; }
    return os << p.first << " " << p.second;
}
template <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {
    bool f = true;
    if(&os == &cerr) os << "[";
    for(auto &y : x) {
        if(&os == &cerr)
            os << (f ? "" : ", ") << y;
        else
            os << (f ? "" : " ") << y;
        f = false;
    }
    if(&os == &cerr) os << "]";
    return os;
}

#define dump(...) static_cast<void>(0)
#define dbg(...) static_cast<void>(0)

void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
    cout << head;
    if(sizeof...(tail)) cout << ' ';
    OUT(tail...);
}

template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;
template <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};

template <class T> void OUT2(const T &t, T INF = inf<T>, T res = -1) { OUT(t != INF ? t : res); }
template <class T> void OUT2(vector<T> &v, T INF = inf<T>, T res = -1) {
    fore(e, v) if(e == INF) e = res;
    OUT(v);
    fore(e, v) if(e == res) e = INF;
}

template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }
};

template <class S> vector<pair<S, int>> runLength(const vector<S> &v) {
    vector<pair<S, int>> res;
    for(auto &e : v) {
        if(res.empty() or res.back().fi != e)
            res.eb(e, 1);
        else
            res.back().se++;
    }
    return res;
}
vector<pair<char, int>> runLength(const string &v) {
    vector<pair<char, int>> res;
    for(auto &e : v) {
        if(res.empty() or res.back().fi != e)
            res.eb(e, 1);
        else
            res.back().se++;
    }
    return res;
}

struct string_converter {
    char start = 0;
    char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' : isdigit(c) ? '0' : 0); }
    int convert(const char &c) {
        if(!start) start = type(c);
        return c - start;
    }
    int convert(const char &c, const string &chars) { return chars.find(c); }
    template <typename T> auto convert(const T &v) {
        vector<decltype(convert(v[0]))> ret;
        ret.reserve(size(v));
        for(auto &&e : v) ret.emplace_back(convert(e));
        return ret;
    }
    template <typename T> auto convert(const T &v, const string &chars) {
        vector<decltype(convert(v[0], chars))> ret;
        ret.reserve(size(v));
        for(auto &&e : v) ret.emplace_back(convert(e, chars));
        return ret;
    }
    int operator()(const char &v, char s = 0) {
        start = s;
        return convert(v);
    }
    int operator()(const char &v, const string &chars) { return convert(v, chars); }
    template <typename T> auto operator()(const T &v, char s = 0) {
        start = s;
        return convert(v);
    }
    template <typename T> auto operator()(const T &v, const string &chars) { return convert(v, chars); }
} toint;

template <class T, class F> T bin_search(T ok, T ng, const F &f) {
    while((ok > ng ? ok - ng : ng - ok) > 1) {
        T mid = ok + ng >> 1;
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}
template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {
    while(iter--) {
        // T mid = (ok + ng) / 2;
        T mid = sqrtl(ok * ng);
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}

struct Setup_io {
    Setup_io() {
        ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
        cout << fixed << setprecision(11);
    }
} setup_io;

#endif

#pragma endregion

namespace modular {
constexpr int MOD = 998244353;
const int MAXN = 11000000;
template <int Modulus> class modint;
using mint = modint<MOD>;
using vmint = vector<mint>;
vector<mint> Inv;
mint inv(int x);
template <int Modulus> class modint {

  public:
    static constexpr int mod() { return Modulus; }
    int a;

    constexpr modint(const ll x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}
    constexpr int &val() noexcept { return a; }
    constexpr const int &val() const noexcept { return a; }
    constexpr modint operator-() const noexcept { return modint() - *this; }
    constexpr modint operator+() const noexcept { return *this; }
    constexpr modint &operator++() noexcept {
        if(++a == MOD) a = 0;
        return *this;
    }
    constexpr modint &operator--() noexcept {
        if(!a) a = MOD;
        a--;
        return *this;
    }
    constexpr modint operator++(int) {
        modint res = *this;
        ++*this;
        return res;
    }
    constexpr modint operator--(int) {
        mint res = *this;
        --*this;
        return res;
    }
    constexpr modint &operator+=(const modint rhs) noexcept {
        a += rhs.a;
        if(a >= Modulus) { a -= Modulus; }
        return *this;
    }
    constexpr modint &operator-=(const modint rhs) noexcept {
        if(a < rhs.a) { a += Modulus; }
        a -= rhs.a;
        return *this;
    }
    constexpr modint &operator*=(const modint rhs) noexcept {
        a = (long long)a * rhs.a % Modulus;
        return *this;
    }
    constexpr modint &operator/=(const modint rhs) noexcept {
        a = (long long)a * (modular::inv(rhs.a)).a % Modulus;
        return *this;
    }
    constexpr modint pow(long long n) const noexcept {
        if(n < 0) {
            n %= Modulus - 1;
            n = (Modulus - 1) + n;
        }
        modint x = *this, r = 1;
        while(n) {
            if(n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    constexpr modint inv() const noexcept { return pow(Modulus - 2); }
    constexpr friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += modint(rhs); }
    constexpr friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= modint(rhs); }
    constexpr friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= modint(rhs); }
    constexpr friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= modint(rhs); }
    constexpr friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.a == rhs.a; }
    constexpr friend bool operator!=(const modint &lhs, const modint &rhs) { return lhs.a != rhs.a; }
    // constexpr friend modint operator^=(const modint &lhs, const modint &rhs) { return modint(lhs) ^= modint(rhs); }
};
vmint Fact{1, 1}, Ifact{1, 1};
mint inv(int n) {
    if(n > MAXN) return (mint(n)).pow(MOD - 2);
    if(Inv.empty()) Inv.emplace_back(0), Inv.emplace_back(1);
    if(Inv.size() > n)
        return Inv[n];
    else {
        for(int i = Inv.size(); i <= n; ++i) {
            auto [y, x] = div(int(MOD), i);
            Inv.emplace_back(Inv[x] * (-y));
        }
        return Inv[n];
    }
}
mint fact(int n) {
    if(Fact.size() > n)
        return Fact[n];
    else
        for(int i = Fact.size(); i <= n; ++i) Fact.emplace_back(Fact[i - 1] * i);
    return Fact[n];
}
mint ifact(int n) {
    if(Ifact.size() > n)
        return Ifact[n];
    else
        for(int i = Ifact.size(); i <= n; ++i) Ifact.emplace_back(Ifact[i - 1] * inv(i));
    return Ifact[n];
}
mint modpow(ll a, ll n) { return mint(a).pow(n); }
mint inv(mint a) { return inv(a.a); }
mint ifact(mint a) { return ifact(a.a); }
mint fact(mint a) { return fact(a.a); }
mint modpow(mint a, ll n) { return modpow(a.a, n); }
mint C(int a, int b) {
    if(a < 0 || b < 0) return 0;
    if(a < b) return 0;
    if(a > MAXN) {
        b = min(b, a - b);
        mint res = 1;
        rep(i, b) res *= a - i, res /= i + 1;
        return res;
    }
    return fact(a) * ifact(b) * ifact(a - b);
}
mint P(int a, int b) {
    if(a < 0 || b < 0) return 0;
    if(a < b) return 0;
    if(a > MAXN) {
        mint res = 1;
        rep(i, b) res *= a - i;
        return res;
    }
    return fact(a) * ifact(a - b);
}
ostream &operator<<(ostream &os, mint a) {
    os << a.a;
    return os;
}
istream &operator>>(istream &is, mint &a) {
    ll x;
    is >> x;
    a = x;
    return is;
}
ostream &operator<<(ostream &os, const vmint &a) {
    if(!a.empty()) {
        os << a[0];
        for(int i = 1; i < si(a); i++) os << " " << a[i];
    }
    return os;
}
#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace convolution {

namespace internal {
int ceil_pow2(int n) {
    int x = 0;
    while((1U << x) < (unsigned int)(n)) x++;
    return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if(x < 0) x += m;
    return x;
}
struct barrett {
    unsigned int _m;
    unsigned long long im;
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    unsigned int umod() const { return _m; }
    unsigned int mul(unsigned int a, unsigned int b) const {
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if(_m <= v) v += _m;
        return v;
    }
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if(m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while(n) {
        if(n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
constexpr bool is_prime_constexpr(int n) {
    if(n <= 1) return false;
    if(n == 2 || n == 7 || n == 61) return true;
    if(n % 2 == 0) return false;
    long long d = n - 1;
    while(d % 2 == 0) d /= 2;
    for(long long a : {2, 7, 61}) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while(t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if(y != n - 1 && t % 2 == 0) { return false; }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if(a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while(t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if(m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if(m == 2) return 1;
    if(m == 167772161) return 3;
    if(m == 469762049) return 3;
    if(m == 754974721) return 11;
    if(m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while(x % 2 == 0) x /= 2;
    for(int i = 3; (long long)(i)*i <= x; i += 2) {
        if(x % i == 0) {
            divs[cnt++] = i;
            while(x % i == 0) { x /= i; }
        }
    }
    if(x > 1) { divs[cnt++] = x; }
    for(int g = 2;; g++) {
        bool ok = true;
        for(int i = 0; i < cnt; i++) {
            if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if(ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

void butterfly(std::vector<mint> &a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    if(first) {
        first = false;
        mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for(int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for(int i = 0; i < cnt2 - 2; i++) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
    }
    for(int ph = 1; ph <= h; ph++) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint now = 1;
        for(int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for(int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p] * now;
                a[i + offset] = l + r;
                a[i + offset + p] = l - r;
            }
            now *= sum_e[bsf(~(unsigned int)(s))];
        }
    }
}

void butterfly_inv(std::vector<mint> &a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    if(first) {
        first = false;
        mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for(int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for(int i = 0; i < cnt2 - 2; i++) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
    }

    for(int ph = h; ph >= 1; ph--) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint inow = 1;
        for(int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for(int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p];
                a[i + offset] = l + r;
                a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
            }
            inow *= sum_ie[bsf(~(unsigned int)(s))];
        }
    }
    mint z = mint(n).inv();
    for(int i = 0; i < n; i++) a[i] *= z;
}

} // namespace internal

std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    if(!n || !m) return {};
    if(std::min(n, m) <= 60) {
        if(n < m) {
            std::swap(n, m);
            std::swap(a, b);
        }
        std::vector<mint> ans(n + m - 1);
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; }
        }
        return ans;
    }
    int z = 1 << internal::ceil_pow2(n + m - 1);
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for(int i = 0; i < z; i++) { a[i] *= b[i]; }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    // mint iz = mint(z).inv();
    // for(int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

} // namespace convolution

using Poly = vmint;
Poly low(const Poly &f, int s) { return Poly(f.begin(), f.begin() + min<int>(max(s, 1), f.size())); }
Poly operator-(Poly f) {
    for(auto &&e : f) e = -e;
    return f;
}
Poly &operator+=(Poly &l, const Poly &r) {
    l.resize(max(l.size(), r.size()));
    rep(i, r.size()) l[i] += r[i];
    return l;
}
Poly operator+(Poly l, const Poly &r) { return l += r; }
Poly &operator-=(Poly &l, const Poly &r) {
    l.resize(max(l.size(), r.size()));
    rep(i, r.size()) l[i] -= r[i];
    return l;
}
Poly operator-(Poly l, const Poly &r) { return l -= r; }
Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }
Poly operator<<(Poly f, size_t n) { return f <<= n; }
Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }
Poly operator>>(Poly f, size_t n) { return f >>= n; }
Poly operator*(const Poly &l, const Poly &r) { return convolution::convolution(l, r); }
Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; }
Poly &operator*=(Poly &l, const mint &x) {
    for(auto &e : l) e *= x;
    return l;
}
Poly operator*(const Poly &l, const mint &x) {
    auto res = l;
    return res *= x;
}

Poly inv(const Poly &f, int s = -1) {
    if(s == -1) s = f.size();
    Poly r(s);
    r[0] = mint(1) / f[0];
    for(int n = 1; n < s; n *= 2) {
        auto F = low(f, 2 * n);
        F.resize(2 * n);
        convolution::internal::butterfly(F);
        auto g = low(r, 2 * n);
        g.resize(2 * n);
        convolution::internal::butterfly(g);
        rep(i, 2 * n) F[i] *= g[i];
        convolution::internal::butterfly_inv(F);
        rep(i, n) F[i] = 0;
        convolution::internal::butterfly(F);
        rep(i, 2 * n) F[i] *= g[i];
        convolution::internal::butterfly_inv(F);
        rep(i, n, min(2 * n, s)) r[i] -= F[i];
    }
    return r;
}
Poly integ(const Poly &f) {
    Poly res(f.size() + 1);
    for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;
    return res;
}
Poly deriv(const Poly &f) {
    if(f.size() == 0) return Poly();
    Poly res(f.size() - 1);
    rep(i, res.size()) res[i] = f[i + 1] * (i + 1);
    return res;
}
Poly log(Poly f, int deg = -1) {
    if(deg != -1) f.resize(deg + 1);
    Poly g = integ(inv(f) * deriv(f));
    return Poly{g.begin(), g.begin() + f.size()};
}
Poly exp(Poly f, int deg = -1) {
    if(deg != -1) f.resize(deg + 1);
    Poly g{1};
    while(g.size() < f.size()) {
        Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));
        x[0] += 1;
        g.resize(2 * g.size());
        x -= log(g);
        x *= {g.begin(), g.begin() + g.size() / 2};
        rep(i, g.size() / 2, min<int>(x.size(), g.size())) g[i] = x[i];
    }
    return {g.begin(), g.begin() + f.size()};
}

Poly pow(const Poly &f, ll k, int need = -1) {
    const int n = (int)f.size();
    if(need == -1) need = n;
    int z = 0;
    rep(i, n) {
        if(f[i].a) break;
        z++;
    }
    if(z * k >= need) return Poly(need);
    mint rev = f[z].inv();
    Poly res = exp(log((f >> z) * rev, need - k * z) * k) * f[z].pow(k);
    res.resize(need - z * k);
    res <<= z * k;
    return res;
}

struct Prd {
    deque<Poly> deq;
    Prd() = default;
    void emplace(const Poly &f) { deq.emplace_back(f); }
    Poly calc() {
        if(deq.empty()) return {1};
        sort(all(deq), [&](const Poly &f, const Poly &g) { return si(f) < si(g); });
        while(deq.size() > 1) {
            deq.emplace_back(deq[0] * deq[1]);
            for(int i = 0; i < 2; ++i) deq.pop_front();
        }
        return deq.front();
    }
};
Poly prd(vector<Poly> &v) {
    Prd p;
    for(auto &e : v) p.emplace(e);
    return p.calc();
}

vmint power_table(mint x, int len) {
    vmint res(len + 1);
    res[0] = 1;
    rep(i, len) res[i + 1] = res[i] * x;
    return res;
}

// calc f(x + a)
Poly TaylorShift(Poly f, mint a) {
    int n = f.size();
    rep(i, n) f[i] *= fact(i);
    reverse(all(f));
    Poly g(n, 1);
    rep(i, 1, n) g[i] = g[i - 1] * a * inv(i);
    f = (f * g);
    f.resize(n);
    reverse(begin(f), end(f));

    rep(i, n) f[i] *= ifact(i);
    return f;
}

// ボールの数、一個以上必要な数、入っていなくてもいい数(区別あり)
mint choose(int num, int a, int b = 0) {
    if(num == 0) return !a;
    return C(num + b - 1, a + b - 1);
}

} // namespace modular
using namespace modular;

template <class T, const int N> struct Matrix {
    int n = N;
    array<array<T, N>, N> A;

    Matrix() {}

    Matrix(size_t n) : n(n) { rep(i, n) rep(j, n) A[i][j] = 0; }

    inline const array<T, N> &operator[](int k) const { return A[k]; }

    inline array<T, N> &operator[](int k) { return A[k]; }

    static Matrix I(size_t n) {
        Matrix mat(n);
        rep(i, n) rep(j, n) mat[i][j] = (i == j);
        return (mat);
    }

    Matrix &operator+=(const Matrix &B) {
        assert(n == B.n);
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++) (*this)[i][j] += B[i][j];
        return (*this);
    }

    Matrix &operator-=(const Matrix &B) {
        assert(n == B.n);
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++) (*this)[i][j] -= B[i][j];
        return (*this);
    }

    Matrix &operator*=(const Matrix &B) {
        assert(n == B.n);
        array<array<T, N>, N> res;
        rep(i, n) rep(j, n) res[i][j] = 0;
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                for(int k = 0; k < n; k++) res[i][j] = (res[i][j] + (*this)[i][k] * B[k][j]);
        A.swap(res);
        return (*this);
    }

    Matrix &operator^=(long long k) {
        Matrix B = Matrix::I(n);
        while(k > 0) {
            if(k & 1) B *= *this;
            *this *= *this;
            k >>= 1LL;
        }
        A.swap(B.A);
        return (*this);
    }

    Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

    Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

    Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

    Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

    friend ostream &operator<<(ostream &os, Matrix &p) {
        size_t n = p.n;
        for(int i = 0; i < n; i++) {
            os << "[";
            for(int j = 0; j < n; j++) { os << p[i][j] << (j + 1 == n ? "]\n" : ","); }
        }
        return (os);
    }

    T determinant() {
        Matrix B(*this);
        T ret = 1;
        for(int i = 0; i < n; i++) {
            int idx = -1;
            for(int j = i; j < n; j++) {
                if(B[j][i] != 0) idx = j;
            }
            if(idx == -1) return (0);
            if(i != idx) {
                ret *= -1;
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T vv = B[i][i].inv();
            for(int j = 0; j < n; j++) { B[i][j] /= vv; }
            for(int j = i + 1; j < n; j++) {
                T a = B[j][i];
                for(int k = 0; k < n; k++) { B[j][k] -= B[i][k] * a; }
            }
        }
        return (ret);
    }
    friend vector<T> operator*(const Matrix &A, const vector<T> &b) {
        assert(A.n == b.size());
        vector<T> res(A.n);
        rep(i, A.n) rep(j, A.n) res[i] += A[i][j] * b[j];
        return res;
    }
    friend vector<T> operator*(const vector<T> &b, const Matrix &A) {
        assert(A.n == b.size());
        vector<T> res(A.n);
        rep(i, A.n) rep(j, A.n) res[i] += A[i][j] * b[i];
        return res;
    }
};

namespace segtree_impl {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while(!(n & (1 << x))) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

} // namespace internal

} // namespace segtree_impl

namespace segtree_impl {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S> &v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for(int i = 0; i < _n; i++) d[size + i] = v[i];
        for(int i = size - 1; i >= 1; i--) { update(i); }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for(int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S operator[](int k) const { return get(k); }

    S prod(int l, int r) const {
#ifdef ONLINE_JUDGE
        if(l < 0) l = 0;
        if(r > _n) r = _n;
        if(l > r) return e();
#endif
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while(l < r) {
            if(l & 1) sml = op(sml, d[l++]);
            if(r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
#ifdef ONLINE_JUDGE
        if(l < 0) l = 0;
        if(l > _n) l = _n;
#endif
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if(l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while(l % 2 == 0) l >>= 1;
            if(!f(op(sm, d[l]))) {
                while(l < size) {
                    l = (2 * l);
                    if(f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
#ifdef ONLINE_JUDGE
        if(r < 0) r = 0;
        if(r > _n) r = _n;
#endif
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if(r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while(r > 1 && (r % 2)) r >>= 1;
            if(!f(op(d[r], sm))) {
                while(r < size) {
                    r = (2 * r + 1);
                    if(f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while((r & -r) != r);
        return 0;
    }

    friend std::ostream &operator<<(std::ostream &os, segtree &ls) {
        os << "{";
        for(int i = 0; i < ls._n; i++) os << ls.get(i) << (i == ls._n - 1 ? "" : ", ");
        return os << "}";
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

template <class T> constexpr T inf = std::numeric_limits<T>::max() / 2;
template <class T, class U> constexpr std::pair<T, U> inf<std::pair<T, U>> = {inf<T>, inf<U>};
template <typename T> T min_func(T x, T y) { return min(x, y); }
template <typename T> T max_func(T x, T y) { return max(x, y); }
template <typename T> T plus_func(T x, T y) { return x + y; }
template <typename T, int ID> T set_func(T x, T y) { return (y == ID ? x : y); }
template <typename T> T min_e() { return inf<T>; }
template <typename T> T max_e() { return -inf<T>; }
template <typename T> T plus_e() { return T(); }

template <typename T> using RST = segtree<T, plus_func<T>, plus_e<T>>;
template <typename T> using RmT = segtree<T, min_func<T>, min_e<T>>;
template <typename T> using RMT = segtree<T, max_func<T>, max_e<T>>;

template <typename T> struct mMinfo {
    T mi, ma;
};
template <typename T> mMinfo<T> mM_func(mMinfo<T> x, mMinfo<T> y) { return mMinfo{min(x.mi, y.mi), max(x.ma, y.ma)}; };
template <typename T> mMinfo<T> mM_e() { return {inf<T>, -inf<T>}; }
template <typename T> using RmMT = segtree<mMinfo<T>, mM_func<T>, mM_e<T>>;

} // namespace segtree_impl
using segtree_impl::RmT;
using segtree_impl::RMT;
using segtree_impl::RST;
using segtree_impl::segtree;

using M = Matrix<mint, 3>;

M f(M l, M r) { return l * r; }
M e() {
    M e;
    return e.I(3);
}

M R(M t) {
    mint x = t[0][0], y = t[1][0], z = t[2][0];
    M res;
    res[0][0] = 0;
    res[0][1] = z;
    res[0][2] = -y;
    res[1][0] = -z;
    res[1][1] = 0;
    res[1][2] = x;
    res[2][0] = y;
    res[2][1] = -x;
    res[2][2] = 0;
    return res;
}
M L(M t) {
    mint x = t[0][0], y = t[1][0], z = t[2][0];
    M res;
    res[0][0] = 0;
    res[0][1] = -z;
    res[0][2] = y;
    res[1][0] = z;
    res[1][1] = 0;
    res[1][2] = -x;
    res[2][0] = -y;
    res[2][1] = x;
    res[2][2] = 0;
    return res;
}

template <typename G> struct HLDecomposition {
    G &g;
    vector<int> sz, in, out, head, rev, par, d, vis, roots;
    bool build_flag = false;

    vi lr;

    HLDecomposition(G &g, vector<int> r = vector<int>())
        : g(g), d(g.size()), sz(g.size()), in(g.size()), out(g.size()), head(g.size()), rev(g.size()), par(g.size()), lr(g.size()) {
        if(empty(r)) {
            vector<bool> vis(g.size());
            for(int i = 0; i < g.size(); i++) {
                if(vis[i]) continue;
                roots.emplace_back(i);
                queue<int> q;
                q.emplace(i);
                while(!empty(q)) {
                    int x = q.front();
                    vis[x] = true;
                    q.pop();
                    for(auto e : g[x]) {
                        if(!vis[e]) q.emplace(e);
                    }
                }
            }
        } else
            roots = r;
    }

    void dfs_sz(int idx, int p) {
        par[idx] = p;
        sz[idx] = 1;
        if(g[idx].size() and g[idx][0] == p) swap(g[idx][0], g[idx].back());
        for(auto &to : g[idx]) {
            if(to == p) continue;
            d[to] = d[idx] + 1;
            dfs_sz(to, idx);
            sz[idx] += sz[to];
            if(sz[g[idx][0]] < sz[to]) swap(g[idx][0], to);
        }
    }

    void dfs_hld(int idx, int par, int &times) {
        in[idx] = times++;
        rev[in[idx]] = idx;
        for(auto &to : g[idx]) {
            if(to == par) continue;
            head[to] = (g[idx][0] == to ? head[idx] : to);
            dfs_hld(to, idx, times);
        }
        out[idx] = times;
    }

    template <typename T> void dfs_hld(int idx, int par, int &times, vector<T> &v) {
        in[idx] = times++;
        rev[in[idx]] = idx;
        for(auto &to : g[idx]) {
            if(to == par) {
                v[in[idx]] = to.cost;
                continue;
            }
            head[to] = (g[idx][0] == to ? head[idx] : to);
            dfs_hld(to, idx, times, v);
        }
        out[idx] = times;
    }

    template <typename T> void dfs_hld(int idx, int par, int &times, vector<T> &v, vector<T> &a) {
        in[idx] = times++;
        rev[in[idx]] = idx;
        v[in[idx]] = a[idx];
        for(auto &to : g[idx]) {
            if(to == par) continue;
            head[to] = (g[idx][0] == to ? head[idx] : to);
            dfs_hld(to, idx, times, v, a);
        }
        out[idx] = times;
    }

    void build() {
        build_flag = true;
        int t = 0;
        for(auto root : roots) {
            head[root] = root;
            dfs_sz(root, -1);
            dfs_hld(root, -1, t);
        }
    }

    template <typename T> vector<T> build(int root = 0) {
        build_flag = true;
        vector<T> res(g.size());
        int t = 0;
        for(auto root : roots) {
            head[root] = root;
            dfs_sz(root, -1);
            dfs_hld(root, -1, t, res);
        }
        return res;
    }

    template <typename T> vector<T> build(vector<T> &a, int root = 0) {
        build_flag = true;
        vector<T> res(g.size());
        for(auto root : roots) {
            head[root] = root;
            dfs_sz(root, -1);
            int t = 0;
            dfs_hld(root, -1, t, res, a);
        }
        return res;
    }

    int la(int v, int k) {
        assert(build_flag);
        while(1) {
            int u = head[v];
            if(in[v] - k >= in[u]) return rev[in[v] - k];
            k -= in[v] - in[u] + 1;
            v = par[u];
        }
    }

    int lca(int u, int v) {
        assert(build_flag);
        for(;; v = par[head[v]]) {
            if(in[u] > in[v]) swap(u, v);
            if(head[u] == head[v]) return u;
        }
    }

    template <typename T, typename Q, typename F> T query(int u, int v, const T &e, const Q &q, const F &f, bool edge = false) {
        assert(build_flag);
        T l = e, r = e;
        for(;; v = par[head[v]]) {
            if(in[u] > in[v]) swap(u, v), swap(l, r);
            if(head[u] == head[v]) break;
            l = f(q(in[head[v]], in[v] + 1), l);
        }
        return f(f(q(in[u] + edge, in[v] + 1), l), r);
    }

    template <typename T, typename Q, typename Q2, typename F> T query(int u, int v, const T &e, const Q &q1, const Q2 &q2, const F &f, bool edge = false) {
        assert(build_flag);
        T l = e, r = e;
        for(;;) {
            if(head[u] == head[v]) break;
            if(in[u] > in[v]) {
                l = f(l, q2(in[head[u]], in[u] + 1));
                u = par[head[u]];
            } else {
                r = f(q1(in[head[v]], in[v] + 1), r);
                v = par[head[v]];
            }
        }
        if(in[u] > in[v]) return f(f(l, q2(in[v] + edge, in[u] + 1)), r);
        return f(f(l, q1(in[u] + edge, in[v] + 1)), r);
    }

    template <typename Q> void add(int u, int v, const Q &q, bool edge = false) {
        assert(build_flag);
        for(;; v = par[head[v]]) {
            if(in[u] > in[v]) swap(u, v);
            if(head[u] == head[v]) break;
            q(in[head[v]], in[v] + 1);
        }
        q(in[u] + edge, in[v] + 1);
    }

    constexpr int operator[](int k) {
        assert(build_flag);
        return in[k];
    }

    constexpr int dist(int u, int v) {
        assert(build_flag);
        return d[u] + d[v] - 2 * d[lca(u, v)];
    }

    // u -> v の unique path
    vector<int> road(int u, int v) {
        assert(build_flag);
        int l = lca(u, v);
        vector<int> a, b;
        for(; v != l; v = par[v]) b.eb(v);
        for(; u != l; u = par[u]) a.eb(u);
        a.eb(l);
        per(i, si(b), 0) a.eb(b[i]);
        return a;
    }

    int jump(int s, int t, int i) {
        assert(build_flag);
        if(!i) return s;
        int l = lca(s, t);
        int dst = d[s] + d[t] - d[l] * 2;
        if(dst < i) return -1;
        if(d[s] - d[l] >= i) return la(s, i);
        i -= d[s] - d[l];
        return la(t, d[t] - d[l] - i);
    }

    vi path_leaf;
    void pre() {
        path_leaf.resize(si(g));
        rep(i, 1, si(g)) {
            if(empty(g[i])) {
                int now = i;
                while(true) {
                    path_leaf[now] = i;
                    if(now == head[now]) break;
                    now = par[now];
                }
            }
        }
    }
};

int main() {
    INT(n, q);
    vector<M> now(n);
    Graph g(n);
    vi lr(n);
    rep(i, n) {
        CHR(c);
        if(c == 'x') {
            INT(l, r);
            --l, --r;
            lr[l] = 0;
            lr[r] = 1;
            g[i].eb(l);
            g[i].eb(r);
        } else {
            INT(x, y, z);
            now[i][0][0] = x;
            now[i][1][0] = y;
            now[i][2][0] = z;
        }
    }
    HLDecomposition hld(g);
    hld.build();
    hld.pre();

    segtree<M, f, e> seg(n);

    vi l;
    rep(i, n) if(si(g[i]) == 0) l.eb(i);
    sort(all(l), [&](int x, int y) { return hld.d[hld.head[x]] > hld.d[hld.head[y]]; });
    fore(x, l) {
        // int x = hld.rev[i];
        int h = hld.head[x];
        // if(si(g[i])) continue;
        M t = seg.prod(hld.in[h], hld.in[x]) * now[x];
        dump(x, h, t[0][0], t[1][0], t[2][0]);
        if(h) {
            int nxt = hld.par[h];
            if(lr[h]) {
                seg.set(hld.in[nxt], R(t));
            } else {
                seg.set(hld.in[nxt], L(t));
            }
        } else {
            dump(t[0][0], t[1][0], t[2][0]);
        }
    }
    rep(q) {
        INT(i);
        INT(x, y, z);
        --i;
        now[i][0][0] = x;
        now[i][1][0] = y;
        now[i][2][0] = z;
        while(true) {
            int h = hld.head[i];
            M t = seg.prod(hld.in[h], hld.in[i]) * now[i];
            dump(i, h, t[0][0], t[1][0], t[2][0]);
            if(!h) {
                cout << t[0][0] << " " << t[1][0] << " " << t[2][0] << endl;
                break;
            } else {
                int nxt = hld.par[h];
                if(lr[h]) {
                    seg.set(hld.in[nxt], R(t));
                } else {
                    seg.set(hld.in[nxt], L(t));
                }
                i = hld.path_leaf[nxt];
            }
        }
    }
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3768kb

input:

5 3
x 2 3
v 1 0 1
x 4 5
v 0 2 1
v 1 1 1
4 1 2 3
5 0 1 1
4 0 2 2

output:

998244351 0 2
1 998244351 998244352
0 0 0

result:

ok 9 numbers

Test #2:

score: 0
Accepted
time: 1202ms
memory: 55152kb

input:

199999 100000
x 137025 65661
v 572518668 158967010 74946561
x 129836 192657
x 141948 187810
v 574918069 328924434 141474729
x 143312 111002
x 52772 148497
v 922857701 690080961 651915759
v 656198340 28002884 129579416
v 639893144 265359784 646791226
v 796871409 411409966 598676495
v 882562617 224394...

output:

393120558 773766615 387297348
759959566 981774500 128012497
294611811 980011608 533642029
404379574 745296852 53493560
404565501 828869760 78021156
592494858 647751304 881427733
190018467 515243135 518180555
628180500 509984554 257430135
13737245 352087791 917410487
932051309 366591227 479931477
199...

result:

ok 300000 numbers

Test #3:

score: 0
Accepted
time: 1049ms
memory: 55228kb

input:

199999 100000
x 154525 80092
v 450407262 725458410 590777520
x 24720 135901
v 719242117 114943104 186796011
v 382530926 89156744 943939337
x 183376 26042
x 109984 157873
x 151637 150600
x 4115 27454
x 163135 92648
x 16764 33212
v 849210403 945083972 689295397
v 471196117 68587428 225597765
x 24643 5...

output:

677067461 996514296 449166851
810403092 258196842 853459733
410756156 253348518 912664471
327134890 519245783 922528759
317367558 536888537 506214109
484753530 879045782 772404948
422920052 152084658 517340457
1207902 348787162 320821077
776293878 699474926 711114530
871858473 468497588 822120121
24...

result:

ok 300000 numbers

Test #4:

score: 0
Accepted
time: 843ms
memory: 55172kb

input:

199999 100000
x 72889 193806
x 35339 33069
v 314802407 406980523 492377265
x 108307 60027
x 144922 140917
v 328481079 117663280 644171354
v 482028404 951751561 166221217
v 936461869 436114879 421819757
x 152919 99965
x 61168 150607
v 56403640 743462679 134896557
v 24809217 462947115 966139991
v 7828...

output:

23709876 380448367 629159667
760678420 539369190 611778104
114926687 653692915 939877414
674199470 304745735 544123803
953800112 186017361 49200537
327282782 871001677 293980713
588783157 502130649 190564297
102680906 993889016 963478755
510012481 105416897 281770975
811082806 367139818 493674194
32...

result:

ok 300000 numbers

Test #5:

score: 0
Accepted
time: 723ms
memory: 55192kb

input:

199999 100000
x 134204 79203
v 152855933 152545887 271660214
v 393332175 182708769 115884220
v 731792305 965028257 676889584
x 89631 14495
x 142016 85686
v 600051847 172947969 906920949
v 846126215 214556203 657929902
x 125721 133526
x 93179 35713
v 330716449 450417250 611411649
v 114397688 58644961...

output:

139597616 375474977 14619793
889328460 79727434 363703631
397351102 877961602 429046190
588368345 819425899 502148739
520578911 186408072 484373545
997888597 816534316 338411279
334166269 288211584 608252640
509280845 362972392 286415695
363396960 878881251 3658455
711270872 94816531 100279034
48844...

result:

ok 300000 numbers

Test #6:

score: 0
Accepted
time: 645ms
memory: 55172kb

input:

199999 100000
x 29842 60343
x 22382 27649
v 148997533 411153785 529195552
v 831453378 856711025 439562917
x 183061 152107
v 208562249 845550020 248974502
x 8708 152913
v 901332053 480035531 424365358
v 120556946 620074725 884675784
v 493886564 455460926 851190410
x 63346 64739
x 35246 36255
v 762936...

output:

236797322 190218414 70559261
661765898 266356472 481630021
410967670 613729303 804008156
92638320 37926778 82924205
357869883 232766711 579608532
691702082 124868602 187367212
237610689 608489848 581104410
848616732 907873139 859807891
614624615 454674844 673629667
485784731 743926138 168595096
1826...

result:

ok 300000 numbers

Test #7:

score: 0
Accepted
time: 617ms
memory: 55460kb

input:

199999 100000
x 179471 175117
x 189060 178495
x 20142 58065
x 22916 150184
v 704047412 186112247 660817663
v 761554808 199099716 794321264
v 362925435 508140595 251556541
v 65674025 717152823 157775106
v 325965317 977108704 50644678
v 566946741 833186394 771714200
v 996708965 76780827 625429369
v 85...

output:

365258325 105829774 612397830
731509055 576900445 663777200
553518677 415454275 7683807
468131249 577225931 513594285
215590236 861146274 812820392
669985796 229486834 564691763
929231866 520228049 774609748
29950289 569366391 721072115
644573107 513714638 554458153
728007201 423847330 100860143
192...

result:

ok 300000 numbers

Test #8:

score: 0
Accepted
time: 629ms
memory: 55756kb

input:

199999 100000
x 73506 171332
x 135330 187765
v 308206068 679940956 278078069
v 442448744 196158033 738117032
x 194709 115786
v 208526122 936976225 340056181
x 42663 43401
x 55484 199464
v 865443128 131903961 74265613
x 44659 44773
x 32199 18455
v 986118756 284329619 244212114
v 793747964 649179736 4...

output:

429717039 868308596 175018519
966246118 532451840 773132006
457086098 631788280 989689243
550574851 6706768 416615899
285141084 505326489 916518702
457465389 653530244 951605771
614211832 767828057 44273794
698196640 494937773 99337798
718503234 422078037 151379051
20520347 707143833 781787052
24220...

result:

ok 300000 numbers

Test #9:

score: 0
Accepted
time: 578ms
memory: 56044kb

input:

199999 100000
x 109220 170287
v 563361501 367416904 98790213
x 31431 96958
x 99594 159052
x 95382 129615
v 61965807 547448247 405891792
v 443530416 578856323 588763197
v 761021716 795533831 212530056
v 370964907 391812631 255457982
x 49713 153066
x 141543 111694
v 144135957 614962153 284136518
x 416...

output:

433293962 336914247 747368803
992117520 9180464 159616244
483825959 496735833 964507719
912495370 737285784 595438897
467123496 44306423 562070292
903488238 42971643 61415659
269853145 336741491 565138878
926999098 134871683 277614816
644727031 476324825 69621281
984868613 112590560 688626178
657736...

result:

ok 300000 numbers

Test #10:

score: 0
Accepted
time: 0ms
memory: 3736kb

input:

3 1
x 2 3
v 998244352 998244352 998244352
v 0 0 0
3 1 2 0

output:

2 998244352 998244352

result:

ok 3 number(s): "2 998244352 998244352"

Test #11:

score: 0
Accepted
time: 558ms
memory: 56516kb

input:

199999 100000
x 199465 1690
x 70268 106693
v 194793703 729830314 457557419
x 64673 6910
v 755452906 141328541 558160677
v 725017524 158685295 201414156
x 161801 27226
x 181414 47025
v 387724146 819109666 514628998
v 252532326 97757436 828777580
v 200868967 692540096 706977766
v 300419109 2053530 824...

output:

627210517 640945891 400484640
305641486 893058825 99893167
735729088 805595533 283037791
377070714 357962902 336785549
835938680 634694731 22388934
493696932 612552793 516945234
963890355 517530875 48223226
215318080 742583745 379791022
135074745 970450812 921824280
86572382 481696244 728925909
6372...

result:

ok 300000 numbers

Test #12:

score: 0
Accepted
time: 499ms
memory: 58500kb

input:

199999 100000
x 37758 141919
v 148792593 369372129 595139892
x 59335 149367
v 452667329 904801829 628919068
v 160106559 532238331 179544300
v 850489754 705167899 265598880
x 120963 167491
x 92157 46815
v 444945978 987276260 843838004
x 189040 28027
v 889755401 760730228 3237333
x 168907 82672
v 2329...

output:

897185498 177437016 653646802
48860209 883514812 764698776
505088312 585962448 546090395
914246027 540944167 682989725
965835151 803706423 302298107
452996535 714783487 961852197
882717809 425959754 886391042
203667304 454663502 78105722
512196135 727218227 418204527
274934801 270977361 824228740
74...

result:

ok 300000 numbers

Extra Test:

score: 0
Extra Test Passed