QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#307605 | #7677. Easy Diameter Problem | 275307894a | WA | 5ms | 9380kb | C++14 | 3.0kb | 2024-01-18 21:16:05 | 2024-01-18 21:16:06 |
Judging History
answer
#include<bits/stdc++.h>
#define Gc() getchar()
#define Me(x,y) memset(x,y,sizeof(x))
#define Mc(x,y) memcpy(x,y,sizeof(x))
#define d(x,y) ((m)*(x-1)+(y))
#define R(n) (rnd()%(n)+1)
#define Pc(x) putchar(x)
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define eb emplace_back
using namespace std;using ll=long long;using db=double;using lb=long db;using ui=unsigned;using ull=unsigned long long;using pii=pair<int,int>;
const int N=600+5,M=200+5,K=(1<<25)+5,mod=1e9+7,Mod=mod-1;const db eps=1e-9;const int INF=1e9+7;mt19937 rnd(time(0));
int n,m;vector<pii> S[N];
int x[N],y[N],cnt=-1;
void con(int u,int v){
S[u].emplace_back(v,++cnt);x[cnt]=u;y[cnt]=v;//cerr<<u<<' '<<v<<' '<<cnt<<'\n';
S[v].emplace_back(u,++cnt);x[cnt]=v;y[cnt]=u;//cerr<<v<<' '<<u<<' '<<cnt<<'\n';
}
int rt,r1,r2,d1[N],d2[N],len;ll C[N][N],frc[N],inv[N];
void dfs(int x,int La,int *d){
d[x]=d[La]+1;if(d[x]>d[r1]) r1=x;
for(auto i:S[x]) if(i.fi^La) dfs(i.fi,x,d);
}
int siz[N][N],d[N];
void make(int x,int La,int ds,int *siz){
d[x]=d[La]+1;siz[x]=(d[x]==ds+1);
for(auto i:S[x]) if(i.fi^La) make(i.fi,x,ds,siz),siz[x]+=siz[i.fi];
}
ll f[N][N/2],g[N][N/2];
void Solve(){
int i,j,h;scanf("%d",&n);
for(i=1;i<n;i++) {int x,y;scanf("%d%d",&x,&y);con(x,i+n);con(y,i+n);}
r1=1;dfs(1,0,d1);r2=r1;dfs(r1,0,d2);r2=r1;dfs(r1,0,d1);len=(d1[r1]-1)/2;
for(i=1;i<=2*n;i++) if(d1[i]==len+1&&d2[i]==len+1) rt=i;
for(i=0;i<=n;i++) for(C[i][0]=j=1;j<=i;j++) C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
inv[1]=1;for(i=2;i<=n;i++) inv[i]=(mod-inv[mod%i])*(mod/i)%mod;
for(frc[0]=inv[0]=i=1;i<=n;i++) frc[i]=frc[i-1]*i%mod,inv[i]=inv[i-1]*inv[i]%mod;
cerr<<rt<<'\n';
for(i=len;i;i--){
if(i&1) for(j=n+1;j<2*n;j++) make(j,0,i,siz[j]);
else for(j=1;j<=n;j++) make(j,0,i,siz[j]);
if(i==len)for(j=0;j<=cnt;j++) if(x[j]==rt){f[j][siz[x[j]][x[j]]-siz[x[j]][y[j]]]=1;break;}
Mc(g,f);Me(f,0);
for(j=0;j<=cnt;j++)if((x[j]<=n)^(i&1)){
int u=x[j],v=y[j];
for(h=1;h<=siz[u][u]-siz[u][v];h++)if(g[j][h]){
// cerr<<i<<' '<<u<<' '<<v<<' '<<h<<' '<<g[j][h]<<'\n';
// if(i==2&&u==1&&v==6&&h==2) g[j][h]=0;
// if(i==2&&u==4&&v==6&&h==1) g[j][h]=0;
for(int p=1;p<=siz[u][v];p++){
ll w=g[j][h]*frc[siz[u][u]-siz[u][v]-h]%mod;
w=w*C[h-1+siz[u][v]-p][h-1]%mod*frc[siz[u][u]-siz[u][v]]%mod;
f[j^1][p]=(f[j^1][p]+w)%mod;
}
for(auto o:S[u]) if(o.se^j){
for(int p=1;p<=h&&p<=siz[u][o.fi];p++){
ll w1=C[h-p+siz[u][v]][siz[u][v]]*C[siz[u][u]-p-siz[u][v]][siz[u][u]-siz[u][o.fi]-siz[u][v]]%mod;
ll w2=C[h-p-1+siz[u][v]][siz[u][v]]*C[siz[u][u]-p-siz[u][v]-1][siz[u][u]-siz[u][o.fi]-siz[u][v]]%mod;
// cerr<<w1<<' '<<w2<<'\n';
ll w=g[j][h]*(w1-w2+mod)%mod*frc[siz[u][v]]%mod*frc[siz[u][u]-siz[u][o.fi]-siz[u][v]]%mod;
// cerr<<w<<'\n';
f[o.se^1][p]=(f[o.se^1][p]+w)%mod;
}
}
}
}
}
ll tot=0;for(i=0;i<=cnt;i++) tot+=f[i][1];printf("%lld\n",tot%mod);
}
int main(){
int t=1;
// scanf("%d",&t);
while(t--) Solve();
cerr<<clock()*1.0/CLOCKS_PER_SEC<<'\n';
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 8932kb
input:
3 1 2 3 2
output:
4
result:
ok 1 number(s): "4"
Test #2:
score: 0
Accepted
time: 2ms
memory: 8872kb
input:
5 4 1 4 5 1 2 1 3
output:
28
result:
ok 1 number(s): "28"
Test #3:
score: 0
Accepted
time: 0ms
memory: 8348kb
input:
7 5 7 2 5 2 1 1 6 3 6 4 1
output:
116
result:
ok 1 number(s): "116"
Test #4:
score: -100
Wrong Answer
time: 5ms
memory: 9380kb
input:
100 89 60 66 37 59 74 63 49 69 37 9 44 94 22 70 30 79 14 25 33 23 4 78 43 63 30 95 7 6 59 56 31 21 56 58 43 95 28 81 19 63 40 58 87 81 38 100 55 78 23 37 78 86 70 33 11 52 17 42 19 19 13 70 100 97 79 66 67 66 27 82 55 15 27 68 33 97 26 46 20 70 93 1 10 69 79 81 45 58 95 24 63 79 51 85 11 12 43 41 64...
output:
333099876
result:
wrong answer 1st numbers differ - expected: '748786623', found: '333099876'