QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#307482 | #7895. Graph Partitioning 2 | asxziill | RE | 0ms | 3624kb | C++23 | 8.6kb | 2024-01-18 17:49:56 | 2024-01-18 17:49:57 |
Judging History
answer
#include <bits/stdc++.h>
using ll = long long;
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
constexpr i64 mul(i64 a, i64 b, i64 p) {
i64 res = a * b - i64(1.L * a * b / p) * p;
res %= p;
if (res < 0) {
res += p;
}
return res;
}
template<i64 P>
struct MLong {
i64 x;
constexpr MLong() : x{} {}
constexpr MLong(i64 x) : x{norm(x % getMod())} {}
static i64 Mod;
constexpr static i64 getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(i64 Mod_) {
Mod = Mod_;
}
constexpr i64 norm(i64 x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr i64 val() const {
return x;
}
explicit constexpr operator i64() const {
return x;
}
constexpr MLong operator-() const {
MLong res;
res.x = norm(getMod() - x);
return res;
}
constexpr MLong inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MLong &operator*=(MLong rhs) & {
x = mul(x, rhs.x, getMod());
return *this;
}
constexpr MLong &operator+=(MLong rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MLong &operator-=(MLong rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MLong &operator/=(MLong rhs) & {
return *this *= rhs.inv();
}
friend constexpr MLong operator*(MLong lhs, MLong rhs) {
MLong res = lhs;
res *= rhs;
return res;
}
friend constexpr MLong operator+(MLong lhs, MLong rhs) {
MLong res = lhs;
res += rhs;
return res;
}
friend constexpr MLong operator-(MLong lhs, MLong rhs) {
MLong res = lhs;
res -= rhs;
return res;
}
friend constexpr MLong operator/(MLong lhs, MLong rhs) {
MLong res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
i64 v;
is >> v;
a = MLong(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
return os << a.val();
}
friend constexpr bool operator==(MLong lhs, MLong rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MLong lhs, MLong rhs) {
return lhs.val() != rhs.val();
}
};
template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 998244353;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
using Z = MInt<998244353>;
constexpr int B = std::sqrt(1e5) + 1;
void solve(){
int n, k;
std::cin >> n >> k;
std::vector<std::vector<int>> t(n);
for (int i = 0; i < n - 1; i++){
int u, v;
std::cin >> u >> v;
u--, v--;
t[u].push_back(v);
t[v].push_back(u);
}
std::vector<int> siz(n);
// k <= B
if (k <= B){
auto dfs = [&](auto self, int u, int p)->std::vector<Z>{
siz[u] = 1;
std::vector<Z> dp(k + 2);
dp[0] = 1;
for (int v : t[u]){
if (v == p) continue;
auto dpv = self(self, v, u);
std::vector<Z> f(k + 2);
for (int i = std::min(k, siz[u] + siz[v]); i >= 0; i--){
for (int j = std::max(0, i - siz[u]); j <= std::min(i, siz[v]); j++){
f[i] += dp[i - j] * dpv[j];
}
}
std::swap(f, dp);
siz[u] += siz[v];
}
for (int i = k; i >= 0; i--){
dp[i + 1] = dp[i];
}
dp[0] = dp[k] + dp[k + 1];
return dp;
};
auto res = dfs(dfs, 0, -1);
std::cout << res[0] << "\n";
}
else{
// assert(1 == -1);
//移除几个k块,剩下的就是模(k + 1)的大小
std::vector<std::bitset<B>> vis(n);//对应是否可以组成
auto dfs = [&](auto self, int u, int p)->std::vector<Z>{
std::vector<Z> dp(B);
std::vector<int> fsiz(B);//剩下的连通块大小
dp[0] = 1;
vis[u][0] = 1;
for (int v : t[u]){
if (v == p) continue;
auto dpv = self(self, v, u);
std::vector<Z> f(B);
std::vector<int> dps(B);
std::bitset<B> vu;
for (int i = std::min(k, (siz[u] + siz[v]) / k); i >= 0; i--){
//i - j <= siz[u] / k
for (int j = std::max(0, i - (siz[u] / k)); j <= std::min(siz[v] / k, i); j++){
f[i] += dp[i - j] * dpv[j];
if (vis[v][j] && vis[u][i - j]){
dps[i] = std::max(dps[i], fsiz[i - j] + ((siz[v] - j * k) % (k + 1)));
vu[i] = 1;
}
}
}
std::swap(dp, f);
std::swap(dps, fsiz);
std::swap(vu, vis[u]);
siz[u] += siz[v];
}
siz[u] += 1;
for (int i = k; i >= 0; i--){
if (fsiz[i] + 1 > k + 1){
dp[i] = 0;
vis[u][i] = 0;
continue;
}
if (fsiz[i] + 1 == k){
dp[i + 1] += dp[i];
if (vis[u][i] == 1){
vis[u][i + 1] = 1;
}
}
}
return dp;
};
auto res = dfs(dfs, 0, -1);
Z ans = 0;
for (int i = 0; i <= k; i++){
if ((n - i * k) % (k + 1) == 0){
ans += res[i];
}
}
std::cout << ans << "\n";
}
}
int main(){
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t;
std::cin >> t;
while (t--){
solve();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3624kb
input:
2 8 2 1 2 3 1 4 6 3 5 2 4 8 5 5 7 4 3 1 2 1 3 2 4
output:
2 1
result:
ok 2 lines
Test #2:
score: -100
Runtime Error
input:
5550 13 4 10 3 9 1 10 8 3 11 8 5 10 7 9 6 13 5 9 7 2 7 5 12 4 8 8 2 4 1 3 4 7 8 2 5 6 7 4 8 2 3 11 1 11 10 1 4 9 10 8 4 3 6 5 7 6 1 10 2 11 7 11 1 17 2 14 16 13 15 17 3 15 11 1 6 13 2 13 17 4 8 14 10 8 14 14 5 9 12 14 2 12 17 17 6 15 7 14 6 2 14 2 13 2 4 8 4 3 11 7 3 14 1 11 9 13 3 5 10 6 8 3 10 14 ...
output:
0 3 112 0 1 0 1 0 0 0 1 0 1 0 0 1 0 140 0 0 0 814 1 6 1 1 2 2 0 612 0 1 0 0 0 1 1 0 0 121 4536 0 0 1718 0 0 1 0 444 1 1908 1813 3 74 0 1 0 46 0 0 0 0 0 0 0 0 0 1 0 1 1 1 239 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 48 0 2 0 0 0 1 364 0 206 0 0 76 0 1 0 0 2 0 1 2 0 0 1 0 0 4 0 1 1 0 0 1 1 1 0 0 1 1 ...