QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#306719 | #7759. Permutation Counting 2 | sigma425 | 100 ✓ | 2411ms | 17032kb | C++20 | 22.5kb | 2024-01-17 03:19:34 | 2024-01-17 03:19:34 |
Judging History
answer
#line 1 "7759.cpp"
// #pragma GCC target("avx2,avx512f,avx512vl,avx512bw,avx512dq,avx512cd,avx512vbmi,avx512vbmi2,avx512vpopcntdq,avx512bitalg,bmi,bmi2,lzcnt,popcnt")
// #pragma GCC optimize("Ofast")
#line 2 "/mnt/c/Users/tsigm/Documents/Cprogram/library/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
if(x<y){ x=y; return true; }
return false;
}
template<class T,class U> bool chmin(T& x, U y){
if(y<x){ x=y; return true; }
return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
o<<"{";
for(const T& v:vc) o<<v<<",";
o<<"}";
return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }
#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ~ ";
dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \
for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif
template<class D> D divFloor(D a, D b){
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
/*
x 0 1 2 3 4 5 6 7 8 9
bsr(x) -1 0 1 1 2 2 2 2 3 3
最上位bit
*/
int bsr(int x){
return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(uint x){
return x == 0 ? -1 : 31 ^ __builtin_clz(x);
}
int bsr(ll x){
return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
int bsr(ull x){
return x == 0 ? -1 : 63 ^ __builtin_clzll(x);
}
/*
x 0 1 2 3 4 5 6 7 8 9
bsl(x) -1 0 1 0 2 0 1 0 3 0
最下位bit
*/
int bsl(int x){
if(x==0) return -1;
return __builtin_ctz(x);
}
int bsl(uint x){
if(x==0) return -1;
return __builtin_ctz(x);
}
int bsl(ll x){
if(x==0) return -1;
return __builtin_ctzll(x);
}
int bsl(ull x){
if(x==0) return -1;
return __builtin_ctzll(x);
}
template<class T>
T rnd(T l,T r){ //[l,r)
using D = uniform_int_distribution<T>;
static random_device rd;
static mt19937 gen(rd());
return D(l,r-1)(gen);
}
template<class T>
T rnd(T n){ //[0,n)
return rnd(T(0),n);
}
#line 1 "/mnt/c/Users/tsigm/Documents/Cprogram/ac-library-master/atcoder/modint.hpp"
#line 6 "/mnt/c/Users/tsigm/Documents/Cprogram/ac-library-master/atcoder/modint.hpp"
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#line 1 "/mnt/c/Users/tsigm/Documents/Cprogram/ac-library-master/atcoder/internal_math.hpp"
#line 5 "/mnt/c/Users/tsigm/Documents/Cprogram/ac-library-master/atcoder/internal_math.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#line 1 "/mnt/c/Users/tsigm/Documents/Cprogram/ac-library-master/atcoder/internal_type_traits.hpp"
#line 7 "/mnt/c/Users/tsigm/Documents/Cprogram/ac-library-master/atcoder/internal_type_traits.hpp"
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#line 14 "/mnt/c/Users/tsigm/Documents/Cprogram/ac-library-master/atcoder/modint.hpp"
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#line 6 "7759.cpp"
using namespace atcoder;
using mint = modint;
V<mint> fact,ifact,invs;
mint Choose(int a,int b){
// a * .. * (a-b+1) / b!
if(b<0) return 0;
if(a-b+1 > 0) return fact[a] * ifact[b] * ifact[a-b];
if(a < 0) return fact[-(a-b+1)] * ifact[b] * ifact[-a-1] * (b&1 ? -1 : 1);
return 0;
}
void InitFact(int N){ //[0,N]
N++;
fact.resize(N);
ifact.resize(N);
invs.resize(N);
fact[0] = 1;
rep1(i,N-1) fact[i] = fact[i-1] * i;
ifact[N-1] = fact[N-1].inv();
for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
// https://qoj.ac/contest/1415/problem/7759
int main(){
cin.tie(0);
ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !!
cout << fixed << setprecision(20);
int N,mod; cin >> N >> mod;
mint::set_mod(mod);
// int N; cin >> N;
InitFact(1000000);
VV<mint> g(N+1,V<mint>(N+1));
// rep1(b,N){
// // V<mint> fb(N+1); rep1(i,N) fb[i] = Choose(b-1+i,i);
// // g[a][b] = [x^N]fb^a
// // { // slow
// // V<mint> dp = fb;
// // rep1(a,N){
// // g[a][b] = dp[N];
// // per1(j,N) if(dp[j]){
// // rep1(i,N-j) dp[j+i] += dp[j] * fb[i];
// // dp[j] = 0;
// // }
// // }
// // }
// /*
// fb = \sum_{i=1}^{inf} C(b-1+i,i)x^i
// = (1-x)^(-b) - 1
// */
// rep1(a,N){
// mint gab = 0;
// rep(i,a+1){
// // Choose(a,i) * (-1)^(a-i) Choose(-b*i,N) * (-1)^N
// g[a][b] += Choose(a,i) * Choose(-b*i,N) * ((a-i+N)&1 ? -1 : 1);
// }
// }
// }
rep1(a,N) rep1(b,N){
rep(i,a+1){
mint tmp = Choose(a,i) * Choose(-b*i,N);
if((a-i+N)&1) tmp = -tmp;
g[a][b] += tmp;
}
}
// g[a][b]: a block * b (possibly empty) block
rep1(a,N){
V<mint> f(N+1);
rep1(k,N){
rep1(i,k){
mint tmp = g[a][i] * Choose(k,i);
if((k-i)&1) f[k] -= tmp;
else f[k] += tmp;
}
}
g[a] = f;
}
// return 0;
// rep1(i,N){
// rep1(j,N) cout << g[i][j] << " ";
// cout << endl;
// }
{
VV<mint> f(N,V<mint>(N));
rep(i,N) rep(j,N) f[i][j] = g[i+1][j+1];
g = f;
}
rep(_,2){
rep(a,N){
V<mint> alpha(N);
rep(i,N) alpha[i] = g[a][i] / Choose(N-1,i);
V<mint> beta(N);
rep(k,N){
rep(i,k+1) beta[k] += alpha[i] * Choose(k,i) * ((k-i)&1 ? -1 : 1);
}
rep(b,N) g[a][b] = beta[b] * Choose(N-1,b);
}
rep(i,N) rep(j,i) swap(g[i][j],g[j][i]);
}
// return 0;
rep(i,N){
rep(j,N) cout << g[i][j].val() << " ";
cout << endl;
}
}
Details
Tip: Click on the bar to expand more detailed information
Subtask #1:
score: 10
Accepted
Test #1:
score: 10
Accepted
time: 7ms
memory: 14708kb
input:
7 1001458121
output:
1 0 0 0 0 0 0 0 56 56 8 0 0 0 0 56 659 440 36 0 0 0 8 440 1520 440 8 0 0 0 36 440 659 56 0 0 0 0 8 56 56 0 0 0 0 0 0 0 1
result:
ok 49 tokens
Test #2:
score: 0
Accepted
time: 14ms
memory: 14760kb
input:
8 1008735209
output:
1 0 0 0 0 0 0 0 0 84 126 36 1 0 0 0 0 126 1773 1980 405 9 0 0 0 36 1980 8436 4761 405 1 0 0 1 405 4761 8436 1980 36 0 0 0 9 405 1980 1773 126 0 0 0 0 1 36 126 84 0 0 0 0 0 0 0 0 1
result:
ok 64 tokens
Subtask #2:
score: 15
Accepted
Test #3:
score: 15
Accepted
time: 7ms
memory: 14716kb
input:
14 1000253273
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 455 3003 6435 5005 1365 105 1 0 0 0 0 0 0 0 3003 112905 730665 1629435 1456560 529956 71940 2835 15 0 0 0 0 0 6435 730665 10865585 46433475 75169560 50184540 13633740 1349931 36735 120 0 0 0 0 5005 1629435 46433475 336576825 860578230 885230850 375891370 62035485 33...
result:
ok 196 tokens
Test #4:
score: 0
Accepted
time: 9ms
memory: 14708kb
input:
15 1009800301
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 560 4368 11440 11440 4368 560 16 0 0 0 0 0 0 0 0 4368 188682 1482416 4160120 4899264 2511376 536384 41328 800 1 0 0 0 0 0 11440 1482416 26232784 139089120 291102560 265085216 106311200 17712368 1048560 15232 16 0 0 0 0 11440 4160120 139089120 216926039 947184153 3...
result:
ok 225 tokens
Test #5:
score: 0
Accepted
time: 7ms
memory: 14692kb
input:
16 1006729121
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 680 6188 19448 24310 12376 2380 136 1 0 0 0 0 0 0 0 0 6188 305150 2867696 9916066 14924539 10288876 3196000 410329 17748 153 0 0 0 0 0 0 19448 2867696 59852036 387206263 15304436 216863763 683915984 173666645 18275272 650641 4828 1 0 0 0 0 24310 9916066 38720626...
result:
ok 256 tokens
Subtask #3:
score: 25
Accepted
Test #6:
score: 25
Accepted
time: 11ms
memory: 14804kb
input:
36 1003299797
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7770 435897 10295472 124403620 854992152 552567909 334501587 855871755 616535351 836177106 87288018 849183199 348330136 38608020 2324784 66045 666 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 435897 133844910 939232742 752696285 94...
result:
ok 1296 tokens
Test #7:
score: 0
Accepted
time: 10ms
memory: 14720kb
input:
37 1009736899
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8436 501942 12620256 163011640 193585389 366265801 325233075 508510208 4472335 508510208 325233075 366265801 193585389 163011640 12620256 501942 8436 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 501942 164674938 380061172 7953...
result:
ok 1369 tokens
Test #8:
score: 0
Accepted
time: 15ms
memory: 14848kb
input:
38 1002064493
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9139 575757 15380937 211915132 673991551 105909500 89228335 917893160 782878886 231145424 634874749 53537001 904603957 635745396 61523748 3262623 82251 741 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 575757 201514950 2661126...
result:
ok 1444 tokens
Test #9:
score: 0
Accepted
time: 8ms
memory: 14724kb
input:
39 1000696681
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9880 658008 18643560 273438880 310408078 24862708 197477816 671070872 191143189 191143189 671070872 197477816 24862708 310408078 273438880 18643560 658008 9880 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 658008 24533645...
result:
ok 1521 tokens
Test #10:
score: 0
Accepted
time: 10ms
memory: 14712kb
input:
40 1002813283
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10660 749398 22481940 350343565 151022119 572250549 255038067 159674717 979042431 374977376 547170717 790491840 141687815 878961939 118286125 95548245 4496388 101270 820 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7493...
result:
ok 1600 tokens
Subtask #4:
score: 25
Accepted
Test #11:
score: 25
Accepted
time: 32ms
memory: 14988kb
input:
96 1005401729
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 147440 64446024 781420036 468430311 27733626 62151757 454795566 711626792 885805006 401110492 711423106 3...
result:
ok 9216 tokens
Test #12:
score: 0
Accepted
time: 26ms
memory: 14784kb
input:
97 1003022927
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 152096 67910864 795115101 924546504 230011659 577127906 564913191 11843263 171607987 697964156 4314087 ...
result:
ok 9409 tokens
Test #13:
score: 0
Accepted
time: 26ms
memory: 14812kb
input:
98 1000259233
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 156849 71523144 883402282 582472554 858367843 730708960 476781508 806308877 286962083 221796390 32768...
result:
ok 9604 tokens
Test #14:
score: 0
Accepted
time: 32ms
memory: 14852kb
input:
99 1000444889
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 161700 75287520 442576 386074411 823487426 504618380 971268883 734797176 388493421 848753352 857480...
result:
ok 9801 tokens
Test #15:
score: 0
Accepted
time: 31ms
memory: 14980kb
input:
100 1008746839
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166650 79208745 50916937 213745970 953400361 882774939 595265332 362179793 339853992 820776686 20...
result:
ok 10000 tokens
Subtask #5:
score: 25
Accepted
Test #16:
score: 25
Accepted
time: 2345ms
memory: 16840kb
input:
496 1005266363
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 246016 tokens
Test #17:
score: 0
Accepted
time: 2386ms
memory: 16908kb
input:
497 1000331767
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 247009 tokens
Test #18:
score: 0
Accepted
time: 2373ms
memory: 16840kb
input:
498 1000148759
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 248004 tokens
Test #19:
score: 0
Accepted
time: 2411ms
memory: 17032kb
input:
499 1000176851
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 249001 tokens
Test #20:
score: 0
Accepted
time: 2395ms
memory: 16856kb
input:
500 1002873259
output:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 250000 tokens