QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#305832 | #8010. Hierarchies of Judges | ucup-team1134 | AC ✓ | 1058ms | 75652kb | C++23 | 35.0kb | 2024-01-16 03:01:16 | 2024-01-16 03:01:16 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=300005,INF=1<<30;
// https://suisen-cp.github.io/cp-library-cpp/library/polynomial/formal_power_series_relaxed.hpp
#ifndef SUISEN_FPS_RELAXED
#define SUISEN_FPS_RELAXED
//#include <atcoder/convolution>
//#include "library/math/inv_mods.hpp"
//#include "library/convolution/relaxed_convolution_ntt.hpp"
//#include "library/math/modint_extension.hpp"
//modint+畳み込み+逆元テーブル
// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
for (long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using mint=atcoder::modint998244353;
mint inv[MAX],fac[MAX],finv[MAX];
void make(){
fac[0]=fac[1]=1;
finv[0]=finv[1]=1;
inv[1]=1;
for(int i=2;i<MAX;i++){
inv[i]=-inv[mod%i]*(mod/i);
fac[i]=fac[i-1]*i;
finv[i]=finv[i-1]*inv[i];
}
}
mint comb(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[b]*finv[a-b];
}
mint perm(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[a-b];
}
#ifndef SUISEN_INV_MOD
#define SUISEN_INV_MOD
#include <vector>
namespace suisen {
template <typename mint>
class inv_mods {
public:
inv_mods() = default;
inv_mods(int n) { ensure(n); }
const mint& operator[](int i) const {
ensure(i);
return invs[i];
}
static void ensure(int n) {
int sz = invs.size();
if (sz < 2) invs = { 0, 1 }, sz = 2;
if (sz < n + 1) {
invs.resize(n + 1);
for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i];
}
}
private:
static std::vector<mint> invs;
static constexpr int mod = mint::mod();
};
template <typename mint>
std::vector<mint> inv_mods<mint>::invs{};
template <typename mint>
std::vector<mint> get_invs(const std::vector<mint>& vs) {
const int n = vs.size();
mint p = 1;
for (auto& e : vs) {
p *= e;
assert(e != 0);
}
mint ip = p.inv();
std::vector<mint> rp(n + 1);
rp[n] = 1;
for (int i = n - 1; i >= 0; --i) {
rp[i] = rp[i + 1] * vs[i];
}
std::vector<mint> res(n);
for (int i = 0; i < n; ++i) {
res[i] = ip * rp[i + 1];
ip *= vs[i];
}
return res;
}
}
#endif // SUISEN_INV_MOD
#ifndef SUISEN_RELAXED_CONVOLUTION_NTT
#define SUISEN_RELAXED_CONVOLUTION_NTT
//#include <atcoder/convolution>
namespace suisen {
// reference: https://qiita.com/Kiri8128/items/1738d5403764a0e26b4c
template <typename mint>
struct RelaxedConvolutionNTT {
RelaxedConvolutionNTT(): _n(0), _f{}, _g{}, _h{} {}
mint append(const mint& fi, const mint& gi) {
static constexpr int threshold_log = 6;
static constexpr int threshold = 1 << threshold_log;
static constexpr int threshold_mask = threshold - 1;
++_n;
_f.push_back(fi), _g.push_back(gi);
const int q = _n >> threshold_log, r = _n & threshold_mask;
if (r == 0) {
if (q == (-q & q)) {
std::vector<mint> f_fft = _f;
std::vector<mint> g_fft = _g;
f_fft.resize(2 * _n);
g_fft.resize(2 * _n);
atcoder::internal::butterfly(f_fft);
atcoder::internal::butterfly(g_fft);
std::vector<mint> h(2 * _n);
for (int i = 0; i < 2 * _n; ++i) {
h[i] = f_fft[i] * g_fft[i];
}
atcoder::internal::butterfly_inv(h);
ensure(2 * _n);
const mint z = mint(2 * _n).inv();
for (int i = _n - 1; i < 2 * _n; ++i) {
_h[i] += h[i] * z;
}
_f_fft.push_back(std::move(f_fft));
_g_fft.push_back(std::move(g_fft));
} else {
const int log_q = __builtin_ctz(q);
const int k = (-q & q) << threshold_log;
std::vector<mint> f_fft(_f.end() - k, _f.end());
std::vector<mint> g_fft(_g.end() - k, _g.end());
f_fft.resize(2 * k);
g_fft.resize(2 * k);
atcoder::internal::butterfly(f_fft);
atcoder::internal::butterfly(g_fft);
std::vector<mint> h(2 * k);
for (int i = 0; i < 2 * k; ++i) {
h[i] = _f_fft[log_q + 1][i] * g_fft[i] + f_fft[i] * _g_fft[log_q + 1][i];
}
atcoder::internal::butterfly_inv(h);
const mint z = mint(2 * k).inv();
for (int i = 0; i < k; ++i) {
_h[_n - 1 + i] += h[k - 1 + i] * z;
}
}
} else {
// naive convolve
ensure(_n);
for (int i = 0; i < r; ++i) {
_h[_n - 1] += _f[i] * _g[_n - 1 - i];
}
if (_n != r) {
for (int i = 0; i < r; ++i) {
_h[_n - 1] += _f[_n - i - 1] * _g[i];
}
}
}
return _h[_n - 1];
}
const mint& operator[](int i) const {
return _h[i];
}
std::vector<mint> get() const {
return _h;
}
private:
int _n;
std::vector<mint> _f, _g, _h;
std::vector<std::vector<mint>> _f_fft, _g_fft;
void ensure(std::size_t n) {
if (_h.size() < n) _h.resize(n);
}
};
} // namespace suisen
#endif // SUISEN_RELAXED_CONVOLUTION_NTT
namespace suisen {
template <typename mint>
struct RelaxedInv {
mint append(const mint& fi) {
const int i = g.size();
if (i == 0) {
assert(fi != 0);
g.push_back(fi.inv());
} else {
g.push_back(-g[0] * fg.append(fi, g[i - 1]));
}
return g.back();
}
mint operator[](int i) const {
return g[i];
}
private:
std::vector<mint> g;
RelaxedConvolutionNTT<mint> fg;
};
template <typename mint>
struct RelaxedExp {
mint append(const mint& fi) {
static inv_mods<mint> invs;
const int i = g.size();
if (i == 0) {
assert(fi == 0);
g.push_back(1);
} else {
g.push_back(df_g.append(i * fi, g[i - 1]) * invs[i]);
}
return g.back();
}
mint operator[](int i) const {
return g[i];
}
private:
std::vector<mint> g;
RelaxedConvolutionNTT<mint> df_g;
};
template <typename mint>
struct RelaxedLog {
mint append(const mint& fi) {
static inv_mods<mint> invs;
f.push_back(fi);
const int i = g.size();
if (i == 0) {
assert(f[i] == 1);
g.push_back(0);
} else if (i == 1) {
g.push_back(f[i]);
} else {
g.push_back(f[i] - fg.append((i - 1) * g[i - 1], f[i - 1]) * invs[i]);
}
return g.back();
}
mint operator[](int i) const {
return g[i];
}
private:
std::vector<mint> f, g;
RelaxedConvolutionNTT<mint> fg;
};
template <typename mint>
struct RelaxedPow {
RelaxedPow(long long k = 0) : k(k) {}
mint append(const mint& fi) {
if (k == 0) {
return g.emplace_back(g.empty() ? 1 : 0);
}
static inv_mods<mint> invs;
if (is_zero) {
if (fi == 0) {
z = std::min(z + k, 1000000000LL);
} else {
is_zero = false;
inv_base = fi.inv();
}
}
if (not is_zero) {
f.push_back(fi);
}
if (index < z) {
g.push_back(0);
} else if (index == z) {
g.push_back(f[0].pow(k));
} else {
int i = index - z;
mint v1 = fg1.append(mint(k - (i - 1)) * g[z + i - 1], f[i]);
mint v2 = fg2.append(g[z + i - 1], mint(k) * (i - 1) * f[i]);
g.push_back((v1 + v2) * inv_base * invs[i]);
}
++index;
return g.back();
}
mint operator[](int i) const {
return g[i];
}
private:
long long k;
long long z = 0;
long long index = 0;
bool is_zero = true;
mint inv_base = 0;
std::vector<mint> f, g;
RelaxedConvolutionNTT<mint> fg1;
RelaxedConvolutionNTT<mint> fg2;
};
template <typename mint>
struct RelaxedSqrt {
std::optional<mint> append(const mint& fi) {
if (g.empty()) {
auto opt_g0 = safe_sqrt(fi);
if (not opt_g0) return std::nullopt;
mint g0 = *opt_g0;
c = (2 * g0).inv();
return g.emplace_back(g0);
} else if (g.size() == 1) {
return g.emplace_back(c * fi);
} else {
mint gi = c * (fi - gg.append(g.back(), g.back()));
return g.emplace_back(gi);
}
}
mint operator[](int i) const {
return g[i];
}
private:
mint c = 0;
std::vector<mint> g;
RelaxedConvolutionNTT<mint> gg;
};
} // namespace suisen
#endif // SUISEN_FPS_RELAXED
using mint = atcoder::modint998244353;
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
int N;cin>>N;
suisen::RelaxedConvolutionNTT<mint> fg,gg,expfinvg,expfginvg,ggexpfginvg;
suisen::RelaxedExp<mint> expf,expfg;
suisen::RelaxedInv<mint> invg;
vector<mint> f={0},g={0};
fg.append(0,0);
gg.append(0,0);
expf.append(0);
expfg.append(0);
invg.append(1);
expfinvg.append(expf[0],1);
expfginvg.append(expfg[0],1);
ggexpfginvg.append(0,expfginvg[0]);
for(int n=1;n<=N;n++){
mint fn=expfinvg[n-1]-ggexpfginvg[n-1];
mint gn=expfinvg[n-1]-expfginvg[n-1];
f.push_back(fn);
g.push_back(gn);
fg.append(fn,gn);
gg.append(gn,gn);
expf.append(fn);
expfg.append(fg[n]);
invg.append(-gn);
expfinvg.append(expf[n],invg[n]);
expfginvg.append(expfg[n],invg[n]);
ggexpfginvg.append(gg[n],expfginvg[n]);
}
mint ans=f[N]+g[N];
for(int i=1;i<=N;i++) ans*=i;
cout<<ans.val()<<endl;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 7400kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 1ms
memory: 7152kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #3:
score: 0
Accepted
time: 0ms
memory: 7212kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #4:
score: 0
Accepted
time: 1ms
memory: 7280kb
input:
100
output:
413875584
result:
ok 1 number(s): "413875584"
Test #5:
score: 0
Accepted
time: 1ms
memory: 7144kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 0ms
memory: 7148kb
input:
2
output:
4
result:
ok 1 number(s): "4"
Test #7:
score: 0
Accepted
time: 1ms
memory: 7036kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #8:
score: 0
Accepted
time: 2ms
memory: 7144kb
input:
4
output:
236
result:
ok 1 number(s): "236"
Test #9:
score: 0
Accepted
time: 1ms
memory: 7200kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #10:
score: 0
Accepted
time: 1ms
memory: 7144kb
input:
6
output:
55182
result:
ok 1 number(s): "55182"
Test #11:
score: 0
Accepted
time: 1ms
memory: 7212kb
input:
7
output:
1165220
result:
ok 1 number(s): "1165220"
Test #12:
score: 0
Accepted
time: 1ms
memory: 7248kb
input:
8
output:
29013896
result:
ok 1 number(s): "29013896"
Test #13:
score: 0
Accepted
time: 0ms
memory: 7152kb
input:
9
output:
832517514
result:
ok 1 number(s): "832517514"
Test #14:
score: 0
Accepted
time: 1ms
memory: 7144kb
input:
10
output:
96547079
result:
ok 1 number(s): "96547079"
Test #15:
score: 0
Accepted
time: 0ms
memory: 7148kb
input:
11
output:
296100513
result:
ok 1 number(s): "296100513"
Test #16:
score: 0
Accepted
time: 0ms
memory: 7152kb
input:
12
output:
672446962
result:
ok 1 number(s): "672446962"
Test #17:
score: 0
Accepted
time: 2ms
memory: 7452kb
input:
13
output:
986909297
result:
ok 1 number(s): "986909297"
Test #18:
score: 0
Accepted
time: 1ms
memory: 7452kb
input:
14
output:
306542229
result:
ok 1 number(s): "306542229"
Test #19:
score: 0
Accepted
time: 0ms
memory: 7380kb
input:
15
output:
8548107
result:
ok 1 number(s): "8548107"
Test #20:
score: 0
Accepted
time: 0ms
memory: 7160kb
input:
16
output:
773960239
result:
ok 1 number(s): "773960239"
Test #21:
score: 0
Accepted
time: 1ms
memory: 7220kb
input:
17
output:
611627547
result:
ok 1 number(s): "611627547"
Test #22:
score: 0
Accepted
time: 1ms
memory: 7156kb
input:
18
output:
91793980
result:
ok 1 number(s): "91793980"
Test #23:
score: 0
Accepted
time: 1ms
memory: 7188kb
input:
19
output:
689202618
result:
ok 1 number(s): "689202618"
Test #24:
score: 0
Accepted
time: 0ms
memory: 7156kb
input:
20
output:
605957782
result:
ok 1 number(s): "605957782"
Test #25:
score: 0
Accepted
time: 37ms
memory: 11320kb
input:
10000
output:
713782215
result:
ok 1 number(s): "713782215"
Test #26:
score: 0
Accepted
time: 72ms
memory: 15428kb
input:
20000
output:
337916836
result:
ok 1 number(s): "337916836"
Test #27:
score: 0
Accepted
time: 114ms
memory: 15752kb
input:
30000
output:
580803285
result:
ok 1 number(s): "580803285"
Test #28:
score: 0
Accepted
time: 172ms
memory: 23864kb
input:
40000
output:
732660392
result:
ok 1 number(s): "732660392"
Test #29:
score: 0
Accepted
time: 217ms
memory: 24196kb
input:
50000
output:
660835595
result:
ok 1 number(s): "660835595"
Test #30:
score: 0
Accepted
time: 237ms
memory: 24408kb
input:
60000
output:
323452070
result:
ok 1 number(s): "323452070"
Test #31:
score: 0
Accepted
time: 342ms
memory: 39856kb
input:
70000
output:
307315915
result:
ok 1 number(s): "307315915"
Test #32:
score: 0
Accepted
time: 373ms
memory: 40136kb
input:
80000
output:
951757567
result:
ok 1 number(s): "951757567"
Test #33:
score: 0
Accepted
time: 408ms
memory: 40740kb
input:
90000
output:
426123208
result:
ok 1 number(s): "426123208"
Test #34:
score: 0
Accepted
time: 461ms
memory: 41008kb
input:
100000
output:
827418228
result:
ok 1 number(s): "827418228"
Test #35:
score: 0
Accepted
time: 511ms
memory: 41288kb
input:
110000
output:
541614559
result:
ok 1 number(s): "541614559"
Test #36:
score: 0
Accepted
time: 558ms
memory: 41724kb
input:
120000
output:
184688986
result:
ok 1 number(s): "184688986"
Test #37:
score: 0
Accepted
time: 578ms
memory: 42052kb
input:
130000
output:
898089371
result:
ok 1 number(s): "898089371"
Test #38:
score: 0
Accepted
time: 725ms
memory: 73692kb
input:
140000
output:
949540221
result:
ok 1 number(s): "949540221"
Test #39:
score: 0
Accepted
time: 788ms
memory: 73992kb
input:
150000
output:
767689851
result:
ok 1 number(s): "767689851"
Test #40:
score: 0
Accepted
time: 825ms
memory: 74316kb
input:
160000
output:
553494563
result:
ok 1 number(s): "553494563"
Test #41:
score: 0
Accepted
time: 874ms
memory: 74844kb
input:
170000
output:
270711750
result:
ok 1 number(s): "270711750"
Test #42:
score: 0
Accepted
time: 905ms
memory: 75100kb
input:
180000
output:
108155689
result:
ok 1 number(s): "108155689"
Test #43:
score: 0
Accepted
time: 948ms
memory: 75352kb
input:
190000
output:
327542856
result:
ok 1 number(s): "327542856"
Test #44:
score: 0
Accepted
time: 1058ms
memory: 75476kb
input:
200000
output:
236144151
result:
ok 1 number(s): "236144151"
Test #45:
score: 0
Accepted
time: 1035ms
memory: 75652kb
input:
198798
output:
16935264
result:
ok 1 number(s): "16935264"
Extra Test:
score: 0
Extra Test Passed