QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#304286 | #8007. Egg Drop Challenge | ucup-team087# | AC ✓ | 976ms | 64556kb | C++20 | 22.8kb | 2024-01-13 17:15:51 | 2024-01-13 17:15:52 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 5 "main.cpp"
using Re = double;
const Re INF = 4'000'000'000'000'000'000;
using EVAL = pair<ll, Re>;
// a_i-sqrt(b_i-x)
template <typename T, bool COMPRESS, bool MINIMIZE>
struct LiChao_Tree_1 {
using FUNC = pair<T, ll>;
vc<FUNC> funcs;
// 定義域を右に超えた量, 定義域内ならその値
static inline EVAL evaluate(FUNC& f, ll x) {
auto [a, b] = f;
if (x > b) { return {x - b, a}; }
return {0, a - sqrt(b - x)};
}
vc<ll> X;
ll lo, hi;
vc<int> FID;
int n, log, size;
inline int get_idx(ll x) {
if constexpr (COMPRESS) { return LB(X, x); }
assert(lo <= x && x <= hi);
return x - lo;
}
template <typename XY>
LiChao_Tree_1(const vc<XY>& pts) {
static_assert(COMPRESS);
for (auto&& x: pts) X.eb(x);
UNIQUE(X);
n = len(X), log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
FID.assign(size << 1, -1);
}
LiChao_Tree_1(ll lo, ll hi) : lo(lo), hi(hi) {
static_assert(!COMPRESS);
n = hi - lo, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
FID.assign(size << 1, -1);
}
void add_line(FUNC f) {
int fid = len(funcs);
funcs.eb(f);
return add_line_at(1, fid);
}
void add_segment(ll xl, ll xr, FUNC f) {
int fid = len(funcs);
funcs.eb(f);
xl = get_idx(xl), xr = get_idx(xr);
xl += size, xr += size;
while (xl < xr) {
if (xl & 1) add_line_at(xl++, fid);
if (xr & 1) add_line_at(--xr, fid);
xl >>= 1, xr >>= 1;
}
}
// [fx, fid]
pair<T, int> query(ll x) {
x = get_idx(x);
int i = x + size;
pair<EVAL, int> res;
res = {{INF, INF}, -1};
while (i) {
if (FID[i] != -1 && FID[i] != res.se) {
pair<EVAL, int> res1 = {evaluate_inner(FID[i], x), FID[i]};
res = min(res, res1);
}
i >>= 1;
}
if (res.fi.fi > 0) return {INF, -1};
return {res.fi.se, res.se};
}
void add_line_at(int i, int fid) {
int upper_bit = 31 - __builtin_clz(i);
int l = (size >> upper_bit) * (i - (1 << upper_bit));
int r = l + (size >> upper_bit);
while (l < r) {
int gid = FID[i];
EVAL fl = evaluate_inner(fid, l), fr = evaluate_inner(fid, r - 1);
EVAL gl = evaluate_inner(gid, l), gr = evaluate_inner(gid, r - 1);
bool bl = (MINIMIZE ? fl < gl : fl > gl);
bool br = (MINIMIZE ? fr < gr : fr > gr);
if (bl && br) {
FID[i] = fid;
return;
}
if (!bl && !br) return;
int m = (l + r) / 2;
EVAL fm = evaluate_inner(fid, m), gm = evaluate_inner(gid, m);
bool bm = (MINIMIZE ? fm < gm : fm > gm);
if (bm) {
FID[i] = fid;
fid = gid;
if (!bl) { i = 2 * i + 0, r = m; }
if (bl) { i = 2 * i + 1, l = m; }
}
if (!bm) {
if (bl) { i = 2 * i + 0, r = m; }
if (!bl) { i = 2 * i + 1, l = m; }
}
}
}
private:
EVAL evaluate_inner(int fid, ll x) {
if (fid == -1) return {INF, INF};
return evaluate(funcs[fid], (COMPRESS ? X[min<int>(x, n - 1)] : x + lo));
}
};
// a_i+sqrt(x-b_i)
template <typename T, bool COMPRESS, bool MINIMIZE>
struct LiChao_Tree_2 {
using FUNC = pair<T, ll>;
vc<FUNC> funcs;
static inline T evaluate(FUNC& f, ll x) {
auto [a, b] = f;
assert(x >= b);
return a + sqrt(x - b);
}
vc<ll> X;
ll lo, hi;
vc<int> FID;
int n, log, size;
inline int get_idx(ll x) {
if constexpr (COMPRESS) { return LB(X, x); }
assert(lo <= x && x <= hi);
return x - lo;
}
template <typename XY>
LiChao_Tree_2(const vc<XY>& pts) {
static_assert(COMPRESS);
for (auto&& x: pts) X.eb(x);
UNIQUE(X);
n = len(X), log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
FID.assign(size << 1, -1);
}
LiChao_Tree_2(ll lo, ll hi) : lo(lo), hi(hi) {
static_assert(!COMPRESS);
n = hi - lo, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
FID.assign(size << 1, -1);
}
void add_line(FUNC f) {
int fid = len(funcs);
funcs.eb(f);
return add_line_at(1, fid);
}
void add_segment(ll xl, ll xr, FUNC f) {
int fid = len(funcs);
funcs.eb(f);
xl = get_idx(xl), xr = get_idx(xr);
xl += size, xr += size;
while (xl < xr) {
if (xl & 1) add_line_at(xl++, fid);
if (xr & 1) add_line_at(--xr, fid);
xl >>= 1, xr >>= 1;
}
}
// [fx, fid]
pair<T, int> query(ll x) {
x = get_idx(x);
int i = x + size;
pair<T, int> res;
if (!MINIMIZE) res = {-INF, -1};
if (MINIMIZE) res = {INF, -1};
while (i) {
if (FID[i] != -1 && FID[i] != res.se) {
pair<T, int> res1 = {evaluate_inner(FID[i], x), FID[i]};
res = (MINIMIZE ? min(res, res1) : max(res, res1));
}
i >>= 1;
}
return res;
}
void add_line_at(int i, int fid) {
int upper_bit = 31 - __builtin_clz(i);
int l = (size >> upper_bit) * (i - (1 << upper_bit));
int r = l + (size >> upper_bit);
while (l < r) {
int gid = FID[i];
T fl = evaluate_inner(fid, l), fr = evaluate_inner(fid, r - 1);
T gl = evaluate_inner(gid, l), gr = evaluate_inner(gid, r - 1);
bool bl = (MINIMIZE ? fl < gl : fl > gl);
bool br = (MINIMIZE ? fr < gr : fr > gr);
if (bl && br) {
FID[i] = fid;
return;
}
if (!bl && !br) return;
int m = (l + r) / 2;
T fm = evaluate_inner(fid, m), gm = evaluate_inner(gid, m);
bool bm = (MINIMIZE ? fm < gm : fm > gm);
if (bm) {
FID[i] = fid;
fid = gid;
if (!bl) { i = 2 * i + 0, r = m; }
if (bl) { i = 2 * i + 1, l = m; }
}
if (!bm) {
if (bl) { i = 2 * i + 0, r = m; }
if (!bl) { i = 2 * i + 1, l = m; }
}
}
}
private:
T evaluate_inner(int fid, ll x) {
if (fid == -1) return (MINIMIZE ? INF : -INF);
return evaluate(funcs[fid], (COMPRESS ? X[min<int>(x, n - 1)] : x + lo));
}
};
Re mysolve(ll N, vi H, vi U, vi V) {
vi VH(N), UH(N);
FOR(i, N) VH[i] = V[i] * V[i] + 2 * H[i];
FOR(i, N) UH[i] = U[i] * U[i] + 2 * H[i];
vc<Re> dp(N, INF);
dp[0] = 0;
LiChao_Tree_2<Re, true, true> LCT2(VH);
auto dfs = [&](auto& dfs, int L, int R) -> void {
if (R == L + 1) {
// 計算
if (L > 0) {
// !! test
// {
// int j = L;
// Re x = INF;
// FOR(i, j) {
// if (2 * H[i] <= VH[j] && VH[j] < UH[i]) {
// chmin(x, dp[i] + sqrt(VH[j] - 2 * H[i]));
// }
// }
// print("LCT2", x, LCT2.query(VH[L]).fi);
// }
chmin(dp[L], LCT2.query(VH[L]).fi - V[L]);
};
// LCT2 に線分として追加
// a+sqrt(x-b)
LCT2.add_segment(2 * H[L], UH[L], {dp[L], 2 * H[L]});
return;
}
int M = (L + R) / 2;
dfs(dfs, L, M);
// [L,M) to [M,R)
// evaluate する点は 2h[j]
vi point;
FOR(j, M, R) point.eb(2 * H[j]);
LiChao_Tree_1<Re, true, true> LCT1(point);
// 必要なら高速化可能
vc<int> I, J;
FOR(i, L, M) I.eb(i);
FOR(j, M, R) J.eb(j);
sort(all(I), [&](auto& a, auto& b) -> bool { return UH[a] > UH[b]; });
sort(all(J), [&](auto& a, auto& b) -> bool { return VH[a] < VH[b]; });
// VH[j] が小さな j から順に計算を行う
vc<pair<Re, Re>> LINE;
for (auto& j: J) {
// UH[i] <= VH[j] となる i からの遷移を追加
while (len(I) && UH[I.back()] <= VH[j]) {
// LCT1: a-sqrt(b-x)
// dp[i] + U[i] - sqrt(UH[i]-2*H[j])
int i = POP(I);
LCT1.add_line({dp[i] + U[i], UH[i]});
LINE.eb(dp[i] + U[i], UH[i]);
}
// dp[j] を計算
chmin(dp[j], LCT1.query(2 * H[j]).fi);
// !! test
// {
// Re x = INF;
// for (auto& [a, b]: LINE) {
// if (a <= VH[j]) chmin(x, a - sqrt(b - 2 * H[j]));
// }
// print("LCT1", x, LCT1.query(2 * H[j]).fi);
// }
}
dfs(dfs, M, R);
};
dfs(dfs, 0, N);
// print("mysolve", dp);
Re ANS = dp[N - 1];
return ANS;
}
Re naive(ll N, vi H, vi U, vi V) {
auto f = [&](int i, int j) -> Re {
ll d = H[j] - H[i];
ll u = U[i], v = V[j];
if (u * u < 2 * d) return INF;
if (u * u + 2 * H[i] <= v * v + 2 * H[j]) {
return (2 * d) / (u + sqrtl(u * u - 2 * d));
// return u - sqrtl(u * u - 2 * d);
}
// return sqrtl(v * v + 2 * d) - v;
return (2 * d) / (v + sqrtl(v * v + 2 * d));
};
vc<Re> dp(N, INF);
dp[0] = 0;
FOR(j, N) FOR(i, j) { chmin(dp[j], dp[i] + f(i, j)); }
Re ANS = dp[N - 1];
// print("naive", dp);
return ANS;
}
void test() {
ll N = RNG(2, 6);
vi H(N), U(N), V(N);
FOR(i, N) {
H[i] = RNG(1, 100);
U[i] = RNG(1, 10);
V[i] = RNG(1, 10);
}
sort(all(H));
Re x = mysolve(N, H, U, V);
Re y = naive(N, H, U, V);
if (abs(x - y) > 1e-5) {
print("H", H);
print("U", U);
print("V", V);
print("xy", x, y);
}
}
void test2() {
ll N = 7;
vi H = {14, 16, 21, 25, 34, 40, 68};
vi U = {9, 9, 1, 6, 3, 8, 4};
vi V = {7, 7, 2, 2, 5, 6, 7};
mysolve(N, H, U, V);
naive(N, H, U, V);
}
void test3() {
FOR(1000) {
ll N = 10;
vc<pi> AB;
vi point(N);
FOR(i, N) point[i] = RNG(0, 10);
LiChao_Tree_1<Re, true, true> LCT1(point);
vc<pi> LINE;
FOR(10) {
ll a = RNG(1, 10);
ll b = RNG(1, 10);
LCT1.add_line({a, b});
LINE.eb(a, b);
FOR(j, N) {
Re me = INF;
Re lct = LCT1.query(point[j]).fi;
for (auto& [a, b]: LINE) {
Re x = point[j];
if (x <= b) chmin(me, a - sqrt(b - x));
}
if (abs(me - lct) > 1e-5) { print(me, lct); }
}
}
}
}
void solve() {
LL(N);
vi H(N), U(N), V(N);
FOR(i, N) read(H[i], V[i], U[i]);
Re ANS = mysolve(N, H, U, V);
if (ANS > INF * 0.6) return print(-1);
print(ANS);
}
signed main() {
// test3();
// test2();
// FOR(10000) test();
solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3736kb
input:
5 2 1 7 14 6 4 18 1 7 21 2 5 28 4 10
output:
6.000000000000000
result:
ok found '6.0000000', expected '6.0000000', error '0.0000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3708kb
input:
2 1 1 4 10 5 1
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3812kb
input:
10 16 1 6 27 8 8 32 4 8 51 6 6 62 5 10 81 5 9 84 10 6 92 1 2 94 9 6 96 7 9
output:
12.859830976959739
result:
ok found '12.8598310', expected '12.8598310', error '0.0000000'
Test #4:
score: 0
Accepted
time: 1ms
memory: 3556kb
input:
100 96 20 27 119 4 12 270 5 24 594 3 10 614 8 19 688 7 5 798 14 36 983 2 27 1057 20 21 1266 6 30 1388 18 18 1520 2 12 1809 4 26 1960 17 40 2137 8 10 2274 3 30 2320 14 34 2357 6 2 2392 12 5 2518 14 2 2681 10 29 2701 9 15 2865 3 38 3008 9 17 3021 6 39 3194 9 24 3212 14 12 3233 19 3 3628 18 6 3772 1 37...
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #5:
score: 0
Accepted
time: 1ms
memory: 3836kb
input:
1000 370 20 90 1387 5 16 2315 1 25 3657 24 78 4597 11 42 5558 11 95 6044 12 80 6577 15 40 7746 12 87 7978 22 63 9306 23 72 9957 9 51 10182 27 36 10895 12 51 12595 28 58 12924 5 4 13166 11 36 15206 9 66 15938 18 70 17654 4 71 19189 2 6 19903 22 77 20032 30 57 20493 3 51 23719 3 65 24490 17 31 25831 2...
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #6:
score: 0
Accepted
time: 15ms
memory: 5424kb
input:
10000 8007 22 578 11024 369 551 19219 226 631 49583 226 629 72385 86 271 77173 257 574 78655 25 16 83483 301 820 100132 101 466 104988 267 221 105671 361 245 116034 132 421 127581 152 516 134693 356 423 137403 344 24 145224 29 785 177093 52 151 177351 98 252 187858 59 361 198082 220 525 200929 190 4...
output:
181483.425383485679049
result:
ok found '181483.4253835', expected '181483.4253835', error '0.0000000'
Test #7:
score: 0
Accepted
time: 16ms
memory: 5900kb
input:
10000 13126 270 1489 26908 146 526 31808 317 439 37014 228 17 38133 343 524 42564 33 1534 52311 365 330 55177 188 639 56700 324 125 64335 252 1502 72034 342 210 74586 141 1355 74684 192 540 81341 221 668 83265 290 976 100618 352 1480 106923 306 201 111018 317 876 122964 105 709 136538 271 710 139072...
output:
111027.670352018758422
result:
ok found '111027.6703520', expected '111027.6703520', error '0.0000000'
Test #8:
score: 0
Accepted
time: 12ms
memory: 5468kb
input:
10000 1246 196 852 5373 81 693 11983 280 51 14659 300 364 19938 49 374 33283 163 585 52313 358 720 57071 189 416 58853 191 8 60880 375 114 63011 252 938 65547 65 213 77644 318 117 82898 272 474 94163 268 835 100416 218 534 102725 304 948 123894 396 89 136799 167 571 144790 7 538 148178 309 751 15246...
output:
166264.590400484245038
result:
ok found '166264.5904005', expected '166264.5904005', error '0.0000000'
Test #9:
score: 0
Accepted
time: 43ms
memory: 7348kb
input:
20000 4005279410235 932144073 846501600 246203983392304 987850080 1000000000 253308227561395 949883486 905152286 304849760557616 1000000000 900558667 341777344771231 1000000000 958632875 344792803914679 904989873 925199910 374645189833605 1000000000 903348322 413848740943401 1000000000 905002905 475...
output:
1445918117.885886907577515
result:
ok found '1445918117.8858869', expected '1445918117.8858886', error '0.0000000'
Test #10:
score: 0
Accepted
time: 132ms
memory: 21228kb
input:
100000 7227341 4112 11151 9859161 3755 8103 17959892 9072 18419 26090703 6454 3358 41739292 5493 9955 51699016 2640 18380 62644366 8934 3772 72887012 8788 17167 75856403 8845 17983 105340932 2253 10217 107739289 9179 5360 123488772 6910 12512 132949057 8514 1750 136920835 6731 606 198581634 393 8317...
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #11:
score: 0
Accepted
time: 154ms
memory: 21164kb
input:
100000 5697037 6188 24679 14660775 972 2050 24738650 7602 26430 25414807 3840 10516 43086981 3336 4860 61865744 7890 20685 62135330 11827 11152 71771431 4448 7059 79798632 6709 560 80046776 5935 29566 83912983 7825 11190 107806439 246 17273 119010434 12746 9969 123624778 5767 17750 129300668 7917 21...
output:
54657178.698942318558693
result:
ok found '54657178.6989423', expected '54657178.6989424', error '0.0000000'
Test #12:
score: 0
Accepted
time: 186ms
memory: 21164kb
input:
100000 164100 23141 21552 47832335 11533 6011 63239412 5132 26597 86348248 32538 14743 92627428 20541 762 93906742 26994 19804 96457126 30871 8819 102099595 17469 21810 126027178 18088 32883 130086119 31906 9404 134525306 34544 11245 134744131 30523 26713 139029607 27202 9068 140285575 34350 17325 1...
output:
34685285.962443262338638
result:
ok found '34685285.9624433', expected '34685285.9624431', error '0.0000000'
Test #13:
score: 0
Accepted
time: 268ms
memory: 20952kb
input:
100000 6648420020 2663700 773806662 11323615387 2189541 765681404 20121686908 151830778 70618387 33614262627 470219924 75984615 69359662748 363924816 80795475 70915269183 225676003 98632793 86923518210 493627293 93106881 89829125615 4501974 480219393 92371862187 373962899 1814117 109190343813 148425...
output:
2005796.628279826603830
result:
ok found '2005796.6282798', expected '2005796.6282798', error '0.0000000'
Test #14:
score: 0
Accepted
time: 263ms
memory: 20408kb
input:
100000 1659547604 313014 96425275 2072277024 29698151 8934665 20897723503 141753 17468095 28706891133 427929 98016974 38208884972 86172 77990971 66395135530 17797814 22157 73462147262 851125 5624037 81148242912 15635804 970117 96243170601 26549957 6313231 102136603726 20838372 5794091 134681419643 2...
output:
17292211.864728771150112
result:
ok found '17292211.8647288', expected '17292211.8647288', error '0.0000000'
Test #15:
score: 0
Accepted
time: 217ms
memory: 21220kb
input:
100000 32926470052 43529 9189311 35858175194 26862 824981 41426548891 485540 196235 45657525179 3739810 62894 47076931471 21861 6610581 49901659792 284 1419939 64203226958 1137823 377328 64561024668 33966 5226517 69785468202 14879 8653486 86740727433 14574 5034454 101757484163 1203550 999881 1163463...
output:
140590275.892516344785690
result:
ok found '140590275.8925163', expected '140590275.8925164', error '0.0000000'
Test #16:
score: 0
Accepted
time: 150ms
memory: 21208kb
input:
100000 6339561073 22858 552066 16814837044 2790 100979 21694884913 329931 66975 29967054154 1161 503257 45190458535 475003 97375 56577569615 2222 331862 59658042186 3573 824289 66004351872 4631 54622 79419761298 3543 606429 86234063177 335802 35407 88396692369 3957 892475 90680866377 553 982372 1113...
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #17:
score: 0
Accepted
time: 128ms
memory: 21196kb
input:
100000 3447834310 187717 276585 3531382770 3806 110098 4399606107 43025 15601 44100005915 452431 21634 56689641288 113257 3472 59570759525 105259 26961 73252665504 4261 16009 75711788291 490239 19367 77077325179 373216 12687 90177030949 350406 3372 111193359679 83931 3527 115921498363 3097 65426 130...
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #18:
score: 0
Accepted
time: 140ms
memory: 21148kb
input:
100000 13227947628 455895 498495 16746902813 472177 486874 45726326814 480128 453295 56164383926 450971 456997 57897159700 472089 487567 71501076783 500000 500000 102404177869 500000 474234 121923846224 478494 500000 129826609821 500000 488029 147490731457 470309 494810 149446924149 500000 500000 15...
output:
2157355568.992496013641357
result:
ok found '2157355568.9924960', expected '2157355568.9925303', error '0.0000000'
Test #19:
score: 0
Accepted
time: 242ms
memory: 21188kb
input:
100000 39997630501081 1000000000 946016527 45749326627784 975207618 903396854 47599535530176 910305380 901309617 67467301148414 933381283 873487313 92840558246244 943356764 896524131 100822482468300 1000000000 911943695 101635579691125 1000000000 962211108 102398564821149 969333800 1000000000 109172...
output:
1108799545.806522607803345
result:
ok found '1108799545.8065226', expected '1108799545.8065085', error '0.0000000'
Test #20:
score: 0
Accepted
time: 587ms
memory: 63404kb
input:
300000 1415239 8424 27507 1553363 9978 22288 4589255 6976 24113 10342731 2863 20843 19320823 7024 2979 31383607 11886 7395 34022897 9010 3074 34080783 8748 18293 34993285 499 6868 41132044 8561 27872 42174500 3063 19956 47567134 2006 19354 54026291 1105 3521 54285630 9005 24540 60039415 4843 9132 60...
output:
52247027.292702689766884
result:
ok found '52247027.2927027', expected '52247027.2927030', error '0.0000000'
Test #21:
score: 0
Accepted
time: 559ms
memory: 64556kb
input:
300000 646538 8829 16644 1458395 4940 19792 6633868 3140 13438 9447629 6708 7968 13698929 8613 18397 16012876 5066 15517 19179343 4482 2225 19516027 5137 16341 25572557 8414 7609 26380827 4558 19677 26559681 9329 19835 31783045 235 8905 56472452 7847 13311 62075369 8344 12791 67211392 9857 9236 6939...
output:
76481192.355169415473938
result:
ok found '76481192.3551694', expected '76481192.3551702', error '0.0000000'
Test #22:
score: 0
Accepted
time: 455ms
memory: 62668kb
input:
300000 6906671684 87725 270183 9788135922 65460 155494 11521764664 66622 198257 15063446571 64560 124670 15300888526 17520 189710 29302539897 7020 271155 31903824401 94586 247219 32084279054 62144 206764 33302573791 42326 170199 42622816439 31177 161808 43002694484 95841 284661 45032461606 77830 223...
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #23:
score: 0
Accepted
time: 554ms
memory: 63464kb
input:
300000 4201751331 193383 288872 14580160625 287224 213204 15629556272 59466 451464 21172014845 186745 429301 22737430241 52538 114954 22775798495 112923 422045 30988280199 262888 297418 34229819211 1136 184892 34634584948 198152 230539 35660753912 5519 145349 38087295447 292722 321552 43891157426 12...
output:
3004094568.063807964324951
result:
ok found '3004094568.0638080', expected '3004094568.0638080', error '0.0000000'
Test #24:
score: 0
Accepted
time: 596ms
memory: 64472kb
input:
300000 418047190 124196 3731128 2314747537 29329 568023 10109663558 65942 2884507 16751733614 98765 2194305 17369299484 166261 6819 18426102632 26094 2370041 25089468593 179654 46799 26502082517 264628 881976 36186885227 156580 3020610 38852509554 192242 2140586 39651331490 32667 1664466 40125717468...
output:
386465086.880862951278687
result:
ok found '386465086.8808630', expected '386465086.8808629', error '0.0000000'
Test #25:
score: 0
Accepted
time: 364ms
memory: 63744kb
input:
300000 7229256724825 34489 77929 10313020626100 2736 18247 12032973606991 9254 73545 16757367011449 18413 64363 17614087389853 34985 96530 17655913024068 20584 53675 18473608908022 42836 59239 18867769884515 9124 85824 22677600839268 47653 36100 24519362874776 24484 81021 37350916116728 24224 113117...
output:
-1
result:
ok found '-1.0000000', expected '-1.0000000', error '-0.0000000'
Test #26:
score: 0
Accepted
time: 586ms
memory: 63432kb
input:
300000 5709280683 1420 4898700 6233907245 94291 134758 10928864763 2406 1615159 16701521993 1135 4326826 25100454065 240011 62711 27990401782 247080 368741 31607282212 279943 478153 32643692308 167905 395351 38614589303 2857 124527 40608764328 218951 479071 41965746493 2487 1427040 42660515861 71 16...
output:
395997308.002615272998810
result:
ok found '395997308.0026153', expected '395997308.0026152', error '0.0000000'
Test #27:
score: 0
Accepted
time: 607ms
memory: 59720kb
input:
300000 7413535783 446 48658145 10652373796 120280 3051854 12225430339 1179 44670071 13458942306 1178 40965476 18210916419 248424 2643479 19007024003 160541 48115 21125792125 1172 36814683 25913035930 516 11456893 36247986794 2065 25010698 47435878481 60148 175183 48180618419 107843 1019190 535096137...
output:
44489125.039017938077450
result:
ok found '44489125.0390179', expected '44489125.0390179', error '0.0000000'
Test #28:
score: 0
Accepted
time: 683ms
memory: 63180kb
input:
300000 1289407341 2439 3139926 4624984777 19493 1430203 16364331136 1299036 286433 19547639224 8050 166831 21179995745 2513689 249702 24695934771 578141 66200 27148243177 1980348 54674 32602124737 2526819 350135 36836825540 668816 38666 37205500143 7027 3675052 38783616027 1138709 403708 40552348857...
output:
265668393.535767704248428
result:
ok found '265668393.5357677', expected '265668393.5357678', error '0.0000000'
Test #29:
score: 0
Accepted
time: 696ms
memory: 54704kb
input:
300000 7504369016 2839649 372723379 10538451901 1719122 27520833 19859233613 130175 13319489 20956007188 634572 21302847 21382994872 2208 170253191 25081052131 11025 323365332 29626037343 1439446 34831090 29826031268 2102570 48277783 39651496794 2921726 29029883 40450494467 23675 230918084 450456915...
output:
41879628.847887761890888
result:
ok found '41879628.8478878', expected '41879628.8478878', error '0.0000000'
Test #30:
score: 0
Accepted
time: 526ms
memory: 63176kb
input:
300000 346918745 500000 500000 1292368987 500000 487832 4755384579 489492 447875 5450749992 500000 500000 6935023078 468430 479685 7992577840 500000 500000 8720072397 500000 500000 10761502190 500000 500000 11364311868 480218 500000 16546086637 489307 500000 16792070565 482644 486830 25947279995 500...
output:
2062267213.183311223983765
result:
ok found '2062267213.1833112', expected '2062267213.1833270', error '0.0000000'
Test #31:
score: 0
Accepted
time: 615ms
memory: 64532kb
input:
300000 685221505 1500000 1461050 2107263329 1443824 1465975 3230953484 1500000 1460390 8482126636 1403505 1477869 8570811397 1500000 1458693 15889200000 1500000 1500000 17364577950 1500000 1390560 19075066761 1500000 1500000 19848642778 1382018 1424916 22667677697 1500000 1390041 25588323334 1364620...
output:
670618769.449624061584473
result:
ok found '670618769.4496241', expected '670618769.4496224', error '0.0000000'
Test #32:
score: 0
Accepted
time: 689ms
memory: 64188kb
input:
300000 1112640576 4719059 4440206 1200012423 4821994 4432253 1623764840 4850698 4467236 5073802653 4729772 4861589 5109153966 4726214 5000000 7602304150 4522575 4120190 16062565113 4961819 4987331 16227595721 5000000 4778946 18662118589 4565450 4520792 19617315724 4552953 4109078 20602673858 4765829...
output:
200841715.104297697544098
result:
ok found '200841715.1042977', expected '200841715.1042983', error '0.0000000'
Test #33:
score: 0
Accepted
time: 913ms
memory: 63240kb
input:
300000 90293161 36417077 33023398 1166707794 40000000 40000000 4128682644 40000000 36770526 8655563089 38981604 36482570 15481052699 36109554 38431459 17743658418 40000000 39702002 19765045728 39707621 39168779 21881407440 40000000 40000000 22295754705 36512421 37720094 23260038730 37029430 38979127...
output:
29121735.717040181159973
result:
ok found '29121735.7170402', expected '29121735.7170402', error '0.0000000'
Test #34:
score: 0
Accepted
time: 883ms
memory: 61640kb
input:
300000 397883302222 902213009 836186589 5411437316673 1000000000 945098225 7200518480978 1000000000 974306046 7464612239253 1000000000 1000000000 11010582746806 1000000000 992695112 11806507584779 1000000000 985722109 11874868593251 961898036 946604382 16164191406725 986039131 997038520 164702692023...
output:
1106786018.968485355377197
result:
ok found '1106786018.9684854', expected '1106786018.9684761', error '0.0000000'
Test #35:
score: 0
Accepted
time: 951ms
memory: 63940kb
input:
300000 836944369 6839674 12987368 1964510702 7874283 7142591 2307635013 8627205 10405058 2840034894 10457755 10709726 3152100619 9771326 8184150 3281101252 11636938 14191631 4350218780 8924343 14325999 4732321284 7437749 12102040 4848432173 6666420 6871881 5179841337 9351656 12227565 5588237716 8415...
output:
6409375.428266447037458
result:
ok found '6409375.4282664', expected '6409375.4282664', error '0.0000000'
Test #36:
score: 0
Accepted
time: 975ms
memory: 62388kb
input:
300000 1493574139 21243875 21273146 9047251671 16940293 20542436 14307266002 19843480 26352766 17869691083 18922495 19502542 19743474813 24690134 23507899 20703394268 21555735 25423941 24899388089 20764627 19504895 25928585191 11085645 12591350 26116490121 18627926 15639741 29689417957 35133279 2470...
output:
34688874.952300444245338
result:
ok found '34688874.9523004', expected '34688874.9523004', error '0.0000000'
Test #37:
score: 0
Accepted
time: 952ms
memory: 64000kb
input:
300000 4627199912 31441030 38005463 8519646730 24250289 23891226 8581255003 33339965 37633189 10125817195 23636733 22364370 14600719672 40138572 31517791 15996910687 22179489 29706017 16661755610 31913716 32374955 18135454958 32913903 25614194 18175044761 50551555 38246309 18673483661 36686546 37201...
output:
17821855.913574881851673
result:
ok found '17821855.9135749', expected '17821855.9135749', error '0.0000000'
Test #38:
score: 0
Accepted
time: 976ms
memory: 62156kb
input:
300000 1769561116 30066513 38339426 5775641440 21298635 26540123 12555287832 37158110 22995368 14312401636 19818010 14599722 14405651830 17621875 16424495 14566963268 28111270 33085837 17174891308 25209627 29997397 18248774175 30228501 26343526 20723591607 29630447 29630195 23977275083 28810908 3457...
output:
25337972.835555776953697
result:
ok found '25337972.8355558', expected '25337972.8355558', error '0.0000000'
Extra Test:
score: 0
Extra Test Passed