QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#304198 | #8010. Hierarchies of Judges | ucup-team133# | AC ✓ | 3520ms | 42476kb | C++17 | 28.6kb | 2024-01-13 16:23:36 | 2024-01-13 16:23:36 |
Judging History
answer
#pragma GCC optimize("Ofast")
#pragma GCC target("avx2")
#include<bits/stdc++.h>
#include <utility>
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i <= cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i <= cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
// B = 2^63, -B <= x, r(real value) < B
// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
// r = c1[i] (mod MOD1)
// focus on MOD1
// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
// r = x,
// x - M' + (0 or 2B),
// x - 2M' + (0, 2B or 4B),
// x - 3M' + (0, 2B, 4B or 6B) (without mod!)
// (r - x) = 0, (0)
// - M' + (0 or 2B), (1)
// -2M' + (0 or 2B or 4B), (2)
// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
// we checked that
// ((1) mod MOD1) mod 5 = 2
// ((2) mod MOD1) mod 5 = 3
// ((3) mod MOD1) mod 5 = 4
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using namespace std;
using namespace atcoder;
using mint=atcoder::static_modint<998244353>;
#define rep(i,a,b) for(int i=(a);i<(b);++i)
#define all(n) (n).begin(),(n).end()
array<mint,1000000>fact;
using lint=long long;
istream& operator>>(istream& in,mint& y){
long long x;
in>>x;
y=mint(x);
return in;
}
ostream& operator>>(ostream& out,const mint& y){
out<<y.val();
return out;
}
using poly=vector<mint>;
int sz(const poly&x){return x.size();}
poly shrink(poly x){
while(sz(x)>=1&&x.back().val()==0)x.pop_back();
return x;
}
poly pre(const poly&x,int n){
auto res=x;
res.resize(n);
return res;
}
poly operator+(const poly& x,const poly& y){
poly res(max(x.size(),y.size()));
rep(i,0,x.size())res[i]+=x[i];
rep(i,0,y.size())res[i]+=y[i];
return res;
}
poly operator-(const poly& x){
poly res(x.size());
rep(i,0,x.size())res[i]=-x[i];
return res;
}
poly operator-(const poly&x,const poly&y){
return x+(-y);
}
poly operator*(const poly&x,const poly&y){
return atcoder::convolution(x,y);
}
poly& operator+=(poly& x,const poly& y){
return x=(x+y);
}
poly& operator-=(poly& x,const poly& y){
return x=(x-y);
}
poly& operator*=(poly& x,const poly& y){
return x=(x*y);
}
istream& operator>>(istream& in,poly& y){
int n=sz(y);
rep(i,0,n)in>>y[i];
return in;
}
ostream& operator<<(ostream& out,const poly& y){
int n=sz(y);
rep(i,0,n){
if(i)out<<' ';
out<<y[i].val();
}
return out;
}
poly inv(const poly& x){
int n=sz(x);
if(n==1)return poly{x[0].inv()};
auto c=inv(pre(x,(n+1)/2));
return pre(c*(poly{2}-c*x),n);
}
pair<poly,poly> divmod(const poly&a,const poly& b){
assert(!b.empty());
if(b.back().val()==0)return divmod(a,shrink(b));
if(a.empty())return make_pair(poly{},poly{});
if(a.back().val()==0)return divmod(shrink(a),b);
int n=max(0,sz(a)-sz(b)+1);
if(n==0)return make_pair(poly{},a);
auto c=a;
auto d=b;
reverse(c.begin(),c.end());
reverse(d.begin(),d.end());
d.resize(n);
c*=inv(d);
c.resize(n);
reverse(c.begin(),c.end());
return make_pair(c,pre(a-c*b,(int)b.size()-1));
}
poly multipoint_evalution(const poly&a,const poly&b){
int n=b.size();
vector<poly>v(n*2);
rep(i,0,n){
v[i+n]=poly{-mint(b[i]),mint(1)};
}
for(int i=n-1;i>=1;--i){
v[i]=v[i*2]*v[i*2+1];
}
poly ans(n);
v[0]=a;
rep(i,1,n*2){
v[i]=divmod(v[i/2],v[i]).second;
if(i>=n)ans[i-n]=v[i][0];
}
return ans;
}
struct online_multiply{
int n=0;
poly ans={0,0};
poly x={},y={};
mint operator()(mint a,mint b){
x.emplace_back(a);
y.emplace_back(b);
++n;
if(ans.size()<=2*n)ans.resize(n*4);
int m=(n+1)&(-n-1);
int s=0,val=1;
if(m==n+1)m/=2;
while(val<=m){
auto add=poly(x.begin()+s,x.begin()+s+val)*poly(y.end()-val,y.end());
if(s+val!=n)add+=poly(y.begin()+s,y.begin()+s+val)*poly(x.end()-val,x.end());
s+=val,val*=2;
for(int i=0;i<(int)add.size();++i){
assert(n-1+i<n*2);
ans[n-1+i]+=add[i];
}
}
return ans[n-1];
}
};
struct online_exp{
mint pre;
int n;
online_multiply mul;
// g = \exp f
// g = \int gf'dx
mint operator()(mint a){
++n;
if(n==1){
assert(a==0);
return pre=1;
}else{
return pre=mul(pre,a*(n-1))/(n-1);
}
}
};
struct online_inv{
mint pref=0,preg=0,fstf,fstg;
int n;
online_multiply mul;
// (f/x)*(g/x)=0
mint operator()(mint a){
++n;
if(n==1){
assert(a!=0);
pref=fstf=a;
preg=fstg=mint(1)/a;
}else{
preg=-((n==2?mint(0):mul(pref,preg))+fstg*a)*fstg;
pref=a;
}
return preg;
}
};
#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << " )\n";
template<class T>
ostream& operator<<(ostream& os, const mint& a){
os << a.val();
return os;
}
int main(){
int N;
cin>>N;
auto fg = online_multiply();
auto exp_f = online_exp();
auto exp_fg = online_exp();
auto inv_of_1_g = online_inv();
auto gg = online_multiply();
auto exp_f_x_inv_of_1_g = online_multiply();
auto exp_fg_x_inv_of_1_g = online_multiply();
auto exp_fg_x_inv_of_1_g_x_gg = online_multiply();
poly f(N+1),g(N+1);
f[1] = 1, g[1] = 0;
for (int n=1;n<=N;n++){
mint fg_n = fg(f[n-1],g[n-1]);
mint exp_fg_n = exp_fg(fg_n);
mint exp_f_n = exp_f(f[n-1]);
mint inv_of_1_g_n;
if (n!=1){
inv_of_1_g_n = inv_of_1_g(-g[n-1]);
}
else{
inv_of_1_g_n = inv_of_1_g(1-g[n-1]);
}
auto gg_n = gg(g[n-1],g[n-1]);
auto exp_f_x_inv_of_1_g_n = exp_f_x_inv_of_1_g(exp_f_n,inv_of_1_g_n);
auto exp_fg_x_inv_of_1_g_n = exp_fg_x_inv_of_1_g(exp_fg_n,inv_of_1_g_n);
auto exp_fg_x_inv_of_1_g_x_gg_n = exp_fg_x_inv_of_1_g_x_gg(exp_fg_x_inv_of_1_g_n,gg_n);
//debug(n);
//debug(fg_n.val());
//debug(exp_f_n.val());
//debug(inv_of_1_g_n.val());
if (n!=1){
f[n] = exp_f_x_inv_of_1_g_n - exp_fg_x_inv_of_1_g_x_gg_n;
g[n] = exp_f_x_inv_of_1_g_n - exp_fg_x_inv_of_1_g_n;
}
else{
f[n] = 1, g[n] = 0;
}
}
mint res = f[N] + g[N];
for (int i=1;i<=N;i++){
res *= mint(i);
}
cout << res.val() << endl;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 7376kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 1ms
memory: 7416kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #3:
score: 0
Accepted
time: 2ms
memory: 7372kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #4:
score: 0
Accepted
time: 2ms
memory: 7488kb
input:
100
output:
413875584
result:
ok 1 number(s): "413875584"
Test #5:
score: 0
Accepted
time: 2ms
memory: 7488kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 2ms
memory: 7388kb
input:
2
output:
4
result:
ok 1 number(s): "4"
Test #7:
score: 0
Accepted
time: 2ms
memory: 7420kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #8:
score: 0
Accepted
time: 0ms
memory: 7328kb
input:
4
output:
236
result:
ok 1 number(s): "236"
Test #9:
score: 0
Accepted
time: 0ms
memory: 7452kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #10:
score: 0
Accepted
time: 1ms
memory: 7376kb
input:
6
output:
55182
result:
ok 1 number(s): "55182"
Test #11:
score: 0
Accepted
time: 0ms
memory: 7428kb
input:
7
output:
1165220
result:
ok 1 number(s): "1165220"
Test #12:
score: 0
Accepted
time: 2ms
memory: 7432kb
input:
8
output:
29013896
result:
ok 1 number(s): "29013896"
Test #13:
score: 0
Accepted
time: 2ms
memory: 7376kb
input:
9
output:
832517514
result:
ok 1 number(s): "832517514"
Test #14:
score: 0
Accepted
time: 0ms
memory: 7416kb
input:
10
output:
96547079
result:
ok 1 number(s): "96547079"
Test #15:
score: 0
Accepted
time: 2ms
memory: 7432kb
input:
11
output:
296100513
result:
ok 1 number(s): "296100513"
Test #16:
score: 0
Accepted
time: 0ms
memory: 7432kb
input:
12
output:
672446962
result:
ok 1 number(s): "672446962"
Test #17:
score: 0
Accepted
time: 2ms
memory: 7496kb
input:
13
output:
986909297
result:
ok 1 number(s): "986909297"
Test #18:
score: 0
Accepted
time: 0ms
memory: 7392kb
input:
14
output:
306542229
result:
ok 1 number(s): "306542229"
Test #19:
score: 0
Accepted
time: 2ms
memory: 7384kb
input:
15
output:
8548107
result:
ok 1 number(s): "8548107"
Test #20:
score: 0
Accepted
time: 0ms
memory: 7392kb
input:
16
output:
773960239
result:
ok 1 number(s): "773960239"
Test #21:
score: 0
Accepted
time: 2ms
memory: 7388kb
input:
17
output:
611627547
result:
ok 1 number(s): "611627547"
Test #22:
score: 0
Accepted
time: 2ms
memory: 7388kb
input:
18
output:
91793980
result:
ok 1 number(s): "91793980"
Test #23:
score: 0
Accepted
time: 2ms
memory: 7460kb
input:
19
output:
689202618
result:
ok 1 number(s): "689202618"
Test #24:
score: 0
Accepted
time: 2ms
memory: 7388kb
input:
20
output:
605957782
result:
ok 1 number(s): "605957782"
Test #25:
score: 0
Accepted
time: 108ms
memory: 9460kb
input:
10000
output:
713782215
result:
ok 1 number(s): "713782215"
Test #26:
score: 0
Accepted
time: 240ms
memory: 11424kb
input:
20000
output:
337916836
result:
ok 1 number(s): "337916836"
Test #27:
score: 0
Accepted
time: 383ms
memory: 11844kb
input:
30000
output:
580803285
result:
ok 1 number(s): "580803285"
Test #28:
score: 0
Accepted
time: 523ms
memory: 15552kb
input:
40000
output:
732660392
result:
ok 1 number(s): "732660392"
Test #29:
score: 0
Accepted
time: 708ms
memory: 15936kb
input:
50000
output:
660835595
result:
ok 1 number(s): "660835595"
Test #30:
score: 0
Accepted
time: 832ms
memory: 16252kb
input:
60000
output:
323452070
result:
ok 1 number(s): "323452070"
Test #31:
score: 0
Accepted
time: 1030ms
memory: 23684kb
input:
70000
output:
307315915
result:
ok 1 number(s): "307315915"
Test #32:
score: 0
Accepted
time: 1177ms
memory: 23832kb
input:
80000
output:
951757567
result:
ok 1 number(s): "951757567"
Test #33:
score: 0
Accepted
time: 1349ms
memory: 24144kb
input:
90000
output:
426123208
result:
ok 1 number(s): "426123208"
Test #34:
score: 0
Accepted
time: 1593ms
memory: 25056kb
input:
100000
output:
827418228
result:
ok 1 number(s): "827418228"
Test #35:
score: 0
Accepted
time: 1705ms
memory: 25400kb
input:
110000
output:
541614559
result:
ok 1 number(s): "541614559"
Test #36:
score: 0
Accepted
time: 1870ms
memory: 25716kb
input:
120000
output:
184688986
result:
ok 1 number(s): "184688986"
Test #37:
score: 0
Accepted
time: 2006ms
memory: 26064kb
input:
130000
output:
898089371
result:
ok 1 number(s): "898089371"
Test #38:
score: 0
Accepted
time: 2317ms
memory: 40064kb
input:
140000
output:
949540221
result:
ok 1 number(s): "949540221"
Test #39:
score: 0
Accepted
time: 2498ms
memory: 40136kb
input:
150000
output:
767689851
result:
ok 1 number(s): "767689851"
Test #40:
score: 0
Accepted
time: 2602ms
memory: 40340kb
input:
160000
output:
553494563
result:
ok 1 number(s): "553494563"
Test #41:
score: 0
Accepted
time: 2835ms
memory: 40772kb
input:
170000
output:
270711750
result:
ok 1 number(s): "270711750"
Test #42:
score: 0
Accepted
time: 2959ms
memory: 41024kb
input:
180000
output:
108155689
result:
ok 1 number(s): "108155689"
Test #43:
score: 0
Accepted
time: 3196ms
memory: 41604kb
input:
190000
output:
327542856
result:
ok 1 number(s): "327542856"
Test #44:
score: 0
Accepted
time: 3484ms
memory: 42476kb
input:
200000
output:
236144151
result:
ok 1 number(s): "236144151"
Test #45:
score: 0
Accepted
time: 3520ms
memory: 42228kb
input:
198798
output:
16935264
result:
ok 1 number(s): "16935264"
Extra Test:
score: 0
Extra Test Passed