QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#304198#8010. Hierarchies of Judgesucup-team133#AC ✓3520ms42476kbC++1728.6kb2024-01-13 16:23:362024-01-13 16:23:36

Judging History

你现在查看的是最新测评结果

  • [2024-01-13 16:23:36]
  • 评测
  • 测评结果:AC
  • 用时:3520ms
  • 内存:42476kb
  • [2024-01-13 16:23:36]
  • 提交

answer

#pragma GCC optimize("Ofast")
#pragma GCC target("avx2")
#include<bits/stdc++.h>


#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

namespace internal {

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
    }
    for (int ph = 1; ph <= h; ph++) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint now = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p] * now;
                a[i + offset] = l + r;
                a[i + offset + p] = l - r;
            }
            now *= sum_e[bsf(~(unsigned int)(s))];
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
    }

    for (int ph = h; ph >= 1; ph--) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint inow = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p];
                a[i + offset] = l + r;
                a[i + offset + p] =
                    (unsigned long long)(mint::mod() + l.val() - r.val()) *
                    inow.val();
            }
            inow *= sum_ie[bsf(~(unsigned int)(s))];
        }
    }
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) {
        if (n < m) {
            std::swap(n, m);
            std::swap(a, b);
        }
        std::vector<mint> ans(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
        return ans;
    }
    int z = 1 << internal::ceil_pow2(n + m - 1);
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;
    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(move(a2), move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        // B = 2^63, -B <= x, r(real value) < B
        // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
        // r = c1[i] (mod MOD1)
        // focus on MOD1
        // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
        // r = x,
        //     x - M' + (0 or 2B),
        //     x - 2M' + (0, 2B or 4B),
        //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
        // (r - x) = 0, (0)
        //           - M' + (0 or 2B), (1)
        //           -2M' + (0 or 2B or 4B), (2)
        //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
        // we checked that
        //   ((1) mod MOD1) mod 5 = 2
        //   ((2) mod MOD1) mod 5 = 3
        //   ((3) mod MOD1) mod 5 = 4
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder

using namespace std;
using namespace atcoder;
using mint=atcoder::static_modint<998244353>;
#define rep(i,a,b) for(int i=(a);i<(b);++i)
#define all(n) (n).begin(),(n).end()
array<mint,1000000>fact;
using lint=long long;

istream& operator>>(istream& in,mint& y){
    long long x;
    in>>x;
    y=mint(x);
    return in;
}
ostream& operator>>(ostream& out,const mint& y){
    out<<y.val();
    return out;
}

using poly=vector<mint>;
int sz(const poly&x){return x.size();}
poly shrink(poly x){
    while(sz(x)>=1&&x.back().val()==0)x.pop_back();
    return x;
}

poly pre(const poly&x,int n){
    auto res=x;
    res.resize(n);
    return res;
}
poly operator+(const poly& x,const poly& y){
    poly res(max(x.size(),y.size()));
    rep(i,0,x.size())res[i]+=x[i];
    rep(i,0,y.size())res[i]+=y[i];
    return res;
}
poly operator-(const poly& x){
    poly res(x.size());
    rep(i,0,x.size())res[i]=-x[i];
    return res;
}
poly operator-(const poly&x,const poly&y){
    return x+(-y);
}
poly operator*(const poly&x,const poly&y){
    return atcoder::convolution(x,y);
}
poly& operator+=(poly& x,const poly& y){
    return x=(x+y);
}
poly& operator-=(poly& x,const poly& y){
    return x=(x-y);
}
poly& operator*=(poly& x,const poly& y){
    return x=(x*y);
}
istream& operator>>(istream& in,poly& y){
    int n=sz(y);
    rep(i,0,n)in>>y[i];
    return in;
}
ostream& operator<<(ostream& out,const poly& y){
    int n=sz(y);
    rep(i,0,n){
        if(i)out<<' ';
        out<<y[i].val();
    }
    return out;
}

poly inv(const poly& x){
    int n=sz(x);
    if(n==1)return poly{x[0].inv()};
    auto c=inv(pre(x,(n+1)/2));
    return pre(c*(poly{2}-c*x),n);
}

pair<poly,poly> divmod(const poly&a,const poly& b){
    assert(!b.empty());
    if(b.back().val()==0)return divmod(a,shrink(b));
    if(a.empty())return make_pair(poly{},poly{});
    if(a.back().val()==0)return divmod(shrink(a),b);
    int n=max(0,sz(a)-sz(b)+1);
    if(n==0)return make_pair(poly{},a);
    auto c=a;
    auto d=b;
    reverse(c.begin(),c.end());
    reverse(d.begin(),d.end());
    d.resize(n);
    c*=inv(d);
    c.resize(n);
    reverse(c.begin(),c.end());
    return make_pair(c,pre(a-c*b,(int)b.size()-1));
}

poly multipoint_evalution(const poly&a,const poly&b){
    int n=b.size();
    vector<poly>v(n*2);
    rep(i,0,n){
        v[i+n]=poly{-mint(b[i]),mint(1)};
    }
    for(int i=n-1;i>=1;--i){
        v[i]=v[i*2]*v[i*2+1];
    }
    poly ans(n);
    v[0]=a;
    rep(i,1,n*2){
        v[i]=divmod(v[i/2],v[i]).second;
        if(i>=n)ans[i-n]=v[i][0];
    }
    return ans;
}

struct online_multiply{
    int n=0;
    poly ans={0,0};
    poly x={},y={};
    mint operator()(mint a,mint b){
        x.emplace_back(a);
        y.emplace_back(b);
        ++n;
        if(ans.size()<=2*n)ans.resize(n*4);
        int m=(n+1)&(-n-1);
        int s=0,val=1;
        if(m==n+1)m/=2;
        while(val<=m){
            auto add=poly(x.begin()+s,x.begin()+s+val)*poly(y.end()-val,y.end());
            if(s+val!=n)add+=poly(y.begin()+s,y.begin()+s+val)*poly(x.end()-val,x.end());
            s+=val,val*=2;
            for(int i=0;i<(int)add.size();++i){
                assert(n-1+i<n*2);
                ans[n-1+i]+=add[i];
            }
        }
        return ans[n-1];
    }
};
struct online_exp{
    mint pre;
    int n;
    online_multiply mul;
    // g = \exp f
    // g = \int gf'dx
    mint operator()(mint a){
        ++n;
        if(n==1){
            assert(a==0);
            return pre=1;
        }else{
            return pre=mul(pre,a*(n-1))/(n-1);
        }
    }
};
struct online_inv{
    mint pref=0,preg=0,fstf,fstg;
    int n;
    online_multiply mul;
    // (f/x)*(g/x)=0
    mint operator()(mint a){
        ++n;
        if(n==1){
            assert(a!=0);
            pref=fstf=a;
            preg=fstg=mint(1)/a;
        }else{
            preg=-((n==2?mint(0):mul(pref,preg))+fstg*a)*fstg;
            pref=a;
        }
        return preg;
    }

};

#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << " )\n";

template<class T>
ostream& operator<<(ostream& os, const mint& a){
  os << a.val();
  return os;
}

int main(){
    int N;
    cin>>N;

    auto fg = online_multiply();
    auto exp_f = online_exp();
    auto exp_fg = online_exp();
    auto inv_of_1_g = online_inv();
    auto gg = online_multiply();

    auto exp_f_x_inv_of_1_g = online_multiply();
    auto exp_fg_x_inv_of_1_g = online_multiply();
    auto exp_fg_x_inv_of_1_g_x_gg = online_multiply();

    poly f(N+1),g(N+1);
    f[1] = 1, g[1] = 0;

    for (int n=1;n<=N;n++){
      mint fg_n = fg(f[n-1],g[n-1]);
      mint exp_fg_n = exp_fg(fg_n);
      mint exp_f_n = exp_f(f[n-1]);
      mint inv_of_1_g_n;
      if (n!=1){
        inv_of_1_g_n = inv_of_1_g(-g[n-1]);
      }
      else{
        inv_of_1_g_n = inv_of_1_g(1-g[n-1]);
      }
      
      auto gg_n = gg(g[n-1],g[n-1]);

      auto exp_f_x_inv_of_1_g_n = exp_f_x_inv_of_1_g(exp_f_n,inv_of_1_g_n);
      auto exp_fg_x_inv_of_1_g_n = exp_fg_x_inv_of_1_g(exp_fg_n,inv_of_1_g_n);
      auto exp_fg_x_inv_of_1_g_x_gg_n = exp_fg_x_inv_of_1_g_x_gg(exp_fg_x_inv_of_1_g_n,gg_n);

      //debug(n);
      //debug(fg_n.val());
      //debug(exp_f_n.val());
      //debug(inv_of_1_g_n.val());

      if (n!=1){
        f[n] = exp_f_x_inv_of_1_g_n - exp_fg_x_inv_of_1_g_x_gg_n;
        g[n] = exp_f_x_inv_of_1_g_n - exp_fg_x_inv_of_1_g_n;
      }
      else{
        f[n] = 1, g[n] = 0;
      }

      

    }

    mint res = f[N] + g[N];
    for (int i=1;i<=N;i++){
      res *= mint(i);
    }

    cout << res.val() << endl;



    
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 7376kb

input:

1

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 0
Accepted
time: 1ms
memory: 7416kb

input:

3

output:

24

result:

ok 1 number(s): "24"

Test #3:

score: 0
Accepted
time: 2ms
memory: 7372kb

input:

5

output:

3190

result:

ok 1 number(s): "3190"

Test #4:

score: 0
Accepted
time: 2ms
memory: 7488kb

input:

100

output:

413875584

result:

ok 1 number(s): "413875584"

Test #5:

score: 0
Accepted
time: 2ms
memory: 7488kb

input:

1

output:

1

result:

ok 1 number(s): "1"

Test #6:

score: 0
Accepted
time: 2ms
memory: 7388kb

input:

2

output:

4

result:

ok 1 number(s): "4"

Test #7:

score: 0
Accepted
time: 2ms
memory: 7420kb

input:

3

output:

24

result:

ok 1 number(s): "24"

Test #8:

score: 0
Accepted
time: 0ms
memory: 7328kb

input:

4

output:

236

result:

ok 1 number(s): "236"

Test #9:

score: 0
Accepted
time: 0ms
memory: 7452kb

input:

5

output:

3190

result:

ok 1 number(s): "3190"

Test #10:

score: 0
Accepted
time: 1ms
memory: 7376kb

input:

6

output:

55182

result:

ok 1 number(s): "55182"

Test #11:

score: 0
Accepted
time: 0ms
memory: 7428kb

input:

7

output:

1165220

result:

ok 1 number(s): "1165220"

Test #12:

score: 0
Accepted
time: 2ms
memory: 7432kb

input:

8

output:

29013896

result:

ok 1 number(s): "29013896"

Test #13:

score: 0
Accepted
time: 2ms
memory: 7376kb

input:

9

output:

832517514

result:

ok 1 number(s): "832517514"

Test #14:

score: 0
Accepted
time: 0ms
memory: 7416kb

input:

10

output:

96547079

result:

ok 1 number(s): "96547079"

Test #15:

score: 0
Accepted
time: 2ms
memory: 7432kb

input:

11

output:

296100513

result:

ok 1 number(s): "296100513"

Test #16:

score: 0
Accepted
time: 0ms
memory: 7432kb

input:

12

output:

672446962

result:

ok 1 number(s): "672446962"

Test #17:

score: 0
Accepted
time: 2ms
memory: 7496kb

input:

13

output:

986909297

result:

ok 1 number(s): "986909297"

Test #18:

score: 0
Accepted
time: 0ms
memory: 7392kb

input:

14

output:

306542229

result:

ok 1 number(s): "306542229"

Test #19:

score: 0
Accepted
time: 2ms
memory: 7384kb

input:

15

output:

8548107

result:

ok 1 number(s): "8548107"

Test #20:

score: 0
Accepted
time: 0ms
memory: 7392kb

input:

16

output:

773960239

result:

ok 1 number(s): "773960239"

Test #21:

score: 0
Accepted
time: 2ms
memory: 7388kb

input:

17

output:

611627547

result:

ok 1 number(s): "611627547"

Test #22:

score: 0
Accepted
time: 2ms
memory: 7388kb

input:

18

output:

91793980

result:

ok 1 number(s): "91793980"

Test #23:

score: 0
Accepted
time: 2ms
memory: 7460kb

input:

19

output:

689202618

result:

ok 1 number(s): "689202618"

Test #24:

score: 0
Accepted
time: 2ms
memory: 7388kb

input:

20

output:

605957782

result:

ok 1 number(s): "605957782"

Test #25:

score: 0
Accepted
time: 108ms
memory: 9460kb

input:

10000

output:

713782215

result:

ok 1 number(s): "713782215"

Test #26:

score: 0
Accepted
time: 240ms
memory: 11424kb

input:

20000

output:

337916836

result:

ok 1 number(s): "337916836"

Test #27:

score: 0
Accepted
time: 383ms
memory: 11844kb

input:

30000

output:

580803285

result:

ok 1 number(s): "580803285"

Test #28:

score: 0
Accepted
time: 523ms
memory: 15552kb

input:

40000

output:

732660392

result:

ok 1 number(s): "732660392"

Test #29:

score: 0
Accepted
time: 708ms
memory: 15936kb

input:

50000

output:

660835595

result:

ok 1 number(s): "660835595"

Test #30:

score: 0
Accepted
time: 832ms
memory: 16252kb

input:

60000

output:

323452070

result:

ok 1 number(s): "323452070"

Test #31:

score: 0
Accepted
time: 1030ms
memory: 23684kb

input:

70000

output:

307315915

result:

ok 1 number(s): "307315915"

Test #32:

score: 0
Accepted
time: 1177ms
memory: 23832kb

input:

80000

output:

951757567

result:

ok 1 number(s): "951757567"

Test #33:

score: 0
Accepted
time: 1349ms
memory: 24144kb

input:

90000

output:

426123208

result:

ok 1 number(s): "426123208"

Test #34:

score: 0
Accepted
time: 1593ms
memory: 25056kb

input:

100000

output:

827418228

result:

ok 1 number(s): "827418228"

Test #35:

score: 0
Accepted
time: 1705ms
memory: 25400kb

input:

110000

output:

541614559

result:

ok 1 number(s): "541614559"

Test #36:

score: 0
Accepted
time: 1870ms
memory: 25716kb

input:

120000

output:

184688986

result:

ok 1 number(s): "184688986"

Test #37:

score: 0
Accepted
time: 2006ms
memory: 26064kb

input:

130000

output:

898089371

result:

ok 1 number(s): "898089371"

Test #38:

score: 0
Accepted
time: 2317ms
memory: 40064kb

input:

140000

output:

949540221

result:

ok 1 number(s): "949540221"

Test #39:

score: 0
Accepted
time: 2498ms
memory: 40136kb

input:

150000

output:

767689851

result:

ok 1 number(s): "767689851"

Test #40:

score: 0
Accepted
time: 2602ms
memory: 40340kb

input:

160000

output:

553494563

result:

ok 1 number(s): "553494563"

Test #41:

score: 0
Accepted
time: 2835ms
memory: 40772kb

input:

170000

output:

270711750

result:

ok 1 number(s): "270711750"

Test #42:

score: 0
Accepted
time: 2959ms
memory: 41024kb

input:

180000

output:

108155689

result:

ok 1 number(s): "108155689"

Test #43:

score: 0
Accepted
time: 3196ms
memory: 41604kb

input:

190000

output:

327542856

result:

ok 1 number(s): "327542856"

Test #44:

score: 0
Accepted
time: 3484ms
memory: 42476kb

input:

200000

output:

236144151

result:

ok 1 number(s): "236144151"

Test #45:

score: 0
Accepted
time: 3520ms
memory: 42228kb

input:

198798

output:

16935264

result:

ok 1 number(s): "16935264"

Extra Test:

score: 0
Extra Test Passed