QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#304089 | #8010. Hierarchies of Judges | ucup-team087# | AC ✓ | 1640ms | 221784kb | C++14 | 39.0kb | 2024-01-13 14:07:41 | 2024-01-13 14:07:44 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
// https://fjzzq2002.blog.uoj.ac/blog/7281
/*
A Better Polynomial Template
by zzq
*/
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
typedef long long ll;
#define fi first
#define se second
#define SS 524288 //max length of DFT
#define PS (SS*20+1000) //pool for temp arrays
#define PS2 (SS*20+1000) //another pool, see ocmul
#define FS 666666 //length of fac, rfac
const int MOD=998244353;
ll qp(ll a,ll b) {
ll ans=1; a%=MOD;
while(b) {
if(b&1) ans=ans*a%MOD;
a=a*a%MOD; b>>=1;
}
return ans;
}
int getK(int n) {int s=1; while(s<n) s<<=1; return s;}
typedef unsigned us;
typedef unsigned long long ull;
namespace RawNTT {
us pool[SS*8+10000],*ptr=pool;
us *p0[SS],*p1[SS],*q0[SS],*q1[SS];
template<class T>
void bit_flip(T*p,int t) {
for(int i=0,j=0;i<t;++i)
{
if(i>j) swap(p[i],p[j]);
for(int l=t>>1;(j^=l)<l;l>>=1);
}
}
void prep(int n) {
static int t=1;
for(;t<n;t<<=1) {
int g=qp(3,(MOD-1)/(t*2));
us*p,*q;
p=p0[t]=ptr; ptr+=max(t,16); p[0]=1;
for(int m=1;m<t;++m)
p[m]=p[m-1]*(ull)g%us(MOD);
bit_flip(p,t);
q=q0[t]=ptr; ptr+=max(t,16);
for(int i=0;i<t;++i)
q[i]=(ull(p[i])<<32)/MOD;
g=qp(g,MOD-2);
p=p1[t]=ptr; ptr+=max(t,16); p[0]=1;
for(int m=1;m<t;++m)
p[m]=p[m-1]*(ull)g%us(MOD);
bit_flip(p,t);
q=q1[t]=ptr; ptr+=max(t,16);
for(int i=0;i<t;++i)
q[i]=(ull(p[i])<<32)/MOD;
}
}
typedef unsigned long long ull;
us my_mul(us a,us b,us c) {
return b*(ull)a-((ull(a)*c)>>32)*ull(998244353);
}
void ntt(us* x,int n,bool f=true) {
prep(n); int t=n>>1;
for(int m=1;m<n;m<<=1,t>>=1)
{
us *p=p0[m],*q=q0[m],*xa=x,*xb=x+t;
for(int i=0;i<m;++i,xa+=t+t,xb+=t+t)
for(int j=0;j<t;++j)
{
us u=xa[j]-(xa[j]>=us(MOD+MOD))*us(MOD+MOD);
us v=my_mul(xb[j],p[i],q[i]);
xa[j]=u+v; xb[j]=u-v+us(MOD+MOD);
}
}
for(int i=0;i<n;++i)
x[i]-=(x[i]>=us(MOD+MOD))*us(MOD+MOD),
x[i]-=(x[i]>=us(MOD))*us(MOD);
if(f) bit_flip(x,n);
}
void intt(us* x,int n,bool f=true) {
prep(n); int t=1;
if(f) bit_flip(x,n);
for(int m=(n>>1);m;m>>=1,t<<=1)
{
us *p=p1[m],*q=q1[m],*xa=x,*xb=x+t;
for(int i=0;i<m;++i,xa+=t+t,xb+=t+t)
for(int j=0;j<t;++j)
{
us u=xa[j],v=xb[j];
xa[j]=u+v-(u+v>=us(MOD+MOD))*us(MOD+MOD);
xb[j]=my_mul(u-v+us(MOD+MOD),p[i],q[i]);
}
}
us rn=qp(n,MOD-2);
for(int i=0;i<n;++i)
x[i]=x[i]*(ull)rn%MOD;
}
}
union mi //modint, treat as POD
{
us w;
mi() {w=0;}
mi(us u) {w=u;}
mi(int u) {u%=MOD; w=u+((u<0)?MOD:0);}
explicit operator us() const {return w;}
explicit operator int() const {return w;}
};
mi operator + (const mi& a,const mi& b)
{return mi{a.w+b.w-((a.w+b.w>=MOD)?(MOD):0)};}
mi operator - (const mi& a,const mi& b)
{return mi{a.w-b.w+((a.w<b.w)?(MOD):0)};}
mi operator * (const mi& a,const mi& b)
{return mi{us((ull)a.w*b.w%MOD)};}
mi operator / (const mi& a,const mi& b)
{return mi{us((ull)a.w*qp(b.w,MOD-2)%MOD)};}
mi inv(const mi& a)
{return mi{us(qp(a.w,MOD-2))};}
bool operator == (const mi& a,const mi& b) {return a.w==b.w;}
bool operator != (const mi& a,const mi& b) {return a.w!=b.w;}
mi& operator += (mi& a,const mi& b)
{a.w=a.w+b.w-((a.w+b.w>=MOD)?MOD:0); return a;}
mi& operator -= (mi& a,const mi& b)
{a.w=a.w-b.w+((a.w<b.w)?MOD:0); return a;}
mi operator - (const mi& a) {return mi{a.w?(MOD-a.w):0};}
mi& operator ++ (mi& a) {a.w=a.w+1-((a.w+1>=MOD)?MOD:0); return a;}
mi& operator -- (mi& a) {a.w=a.w-1+(a.w?0:MOD); return a;}
//what could possibly go wrong?
void ntt(mi* x,int n,bool f=true) {RawNTT::ntt((us*)x,n,f);}
void intt(mi* x,int n,bool f=true) {RawNTT::intt((us*)x,n,f);}
void fft(mi* x,int n,bool r,bool f=true) {
if(r) intt(x,n,f); else ntt(x,n,f);
}
void cp(mi*t,mi*s,int K) {
if(s) memcpy(t,s,sizeof(mi)*K);
else memset(t,0,sizeof(mi)*K);
}
void cp(mi*t,mi s,int K) {
if(s.w==0) memset(t,0,sizeof(mi)*K);
else for(int i=0;i<K;++i) t[i]=s;
}
mi qp(mi a,ll b) {
mi x=1;
while(b) {
if(b&1) x=x*a;
a=a*a; b>>=1;
}
return x;
}
mi fac[FS],rfac[FS];
struct Fac_Initer {
Fac_Initer() {
fac[0]=1;
for(int i=1;i<FS;++i) fac[i]=fac[i-1]*i;
rfac[FS-1]=inv(fac[FS-1]);
for(int i=FS-1;i;--i) rfac[i-1]=rfac[i]*i;
}
}fac__initer__;
mi mempool[PS],*pt=mempool;
mi*alc(int t,bool c=0) {
if(c) cp(pt,0,t);
pt+=t;
assert(pt<mempool+PS);
return pt-t;
}
void ginv_K(mi*x,mi*o,int K) {
if(K==1) {
o[0]=inv(x[0]);
return;
}
ginv_K(x,o,K>>1);
mi*fo=alc(K,1),*fx=alc(K),*fw=alc(K);
cp(fo,o,(K>>1)); fft(fo,K,0); cp(fx,x,K); fft(fx,K,0);
for(int i=0;i<K;++i) fw[i]=fx[i]*fo[i];
fft(fw,K,1); cp(fw,fw+(K>>1),K>>1);
cp(fw+(K>>1),0,K>>1); ntt(fw,K);
for(int i=0;i<K;++i) fw[i]=fw[i]*fo[i];
fft(fw,K,1);
for(int i=0;i<(K>>1);++i) o[i+(K>>1)]=-fw[i];
pt-=K+K+K;
}
void ginv(mi*x,mi*o,int n) {
int K=getK(n);
mi *fx=alc(K,1),*fo=alc(K);
cp(fx,x,n); ginv_K(fx,fo,K);
cp(o,fo,n); pt-=K+K;
}
void gdiv(mi*a,mi*b,mi*d,int n,int m) {
int s=getK(max(n,m));
mi *ra=alc(s+s,1),*rb=alc(s+s,1);
for(int i=0;i<n;++i) ra[i]=a[n-1-i];
for(int i=0;i<m;++i) rb[i]=b[m-1-i];
ginv(rb,rb,s); fft(ra,s+s,0); fft(rb,s+s,0);
for(int i=0;i<s+s;++i) rb[i]=ra[i]*rb[i];
fft(rb,s+s,1); for(int i=0;i<=n-m;++i) d[i]=rb[n-m-i];
pt-=s*4;
}
void gdiv(mi*a,mi*b,mi*d,mi*r,int n,int m) {
gdiv(a,b,d,n,m);
int s=getK(n+1);
mi *bb=alc(s,1),*dd=alc(s,1);
cp(bb,b,m); cp(dd,d,n-m+1);
fft(bb,s,0); fft(dd,s,0);
for(int i=0;i<s;++i)
bb[i]=-bb[i]*dd[i];
fft(bb,s,1);
for(int i=0;i<m-1;++i)
r[i]=a[i]+bb[i];
pt-=s*2;
}
void gln(mi*a,mi*b,int n) {
int s=getK(n+n);
mi *ra=alc(s,1);
ginv(a,ra,n);
mi *rb=alc(s,1);
for(int i=0;i+1<n;++i)
rb[i]=a[i+1]*(i+1);
fft(ra,s,0); fft(rb,s,0);
for(int i=0;i<s;++i)
ra[i]=ra[i]*rb[i];
fft(ra,s,1); b[0]=0;
for(int i=1;i<n;++i)
b[i]=ra[i-1]*rfac[i]*fac[i-1];
pt-=s*2;
}
mi sqrt_f0;
void gsqrt_K(mi*f,mi*g,mi*h,int K,bool ch=1) {
static mi gh[SS];
if(K==1) {
assert(sqrt_f0*sqrt_f0-f[0]==0);
g[0]=sqrt_f0;
h[0]=inv(sqrt_f0);
gh[0]=sqrt_f0;
return;
}
gsqrt_K(f,g,h,K>>1);
mi*fh=alc(K,1),*gg=alc(K>>1),*rr=alc(K,1);
cp(fh,h,(K>>1)); fft(fh,K,0); cp(gg,gh,K>>1);
for(int i=0;i<(K>>1);++i)
gg[i]=gg[i]*gg[i];
fft(gg,K>>1,1);
for(int i=0;i<(K>>1);++i)
rr[i+(K>>1)]=gg[i]-f[i]-f[i+(K>>1)];
fft(rr,K,0);
for(int i=0;i<K;++i)
rr[i]=rr[i]*fh[i]*((MOD+1)/2);
fft(rr,K,1);
for(int i=(K>>1);i<K;++i)
g[i]=-rr[i];
if(ch) {
mi *fg=alc(K),*fw=alc(K);
cp(fg,g,K); fft(fg,K,0);
for(int i=0;i<K;++i) fw[i]=fg[i]*fh[i];
fft(fw,K,1);
for(int i=0;i<(K>>1);++i) fw[i]=fw[i+(K>>1)];
cp(fw+(K>>1),0,K>>1); fft(fw,K,0);
for(int i=0;i<K;++i) fw[i]=fw[i]*fh[i];
fft(fw,K,1);
for(int i=0;i<(K>>1);++i) h[i+(K>>1)]=-fw[i];
cp(gh,fg,K); pt-=K+K;
}
pt-=K+K+(K>>1);
}
void gsqrt(mi*f,mi*g,int n) {
int s=getK(n);
mi *mf=alc(s,1),
*mg=alc(s),*mh=alc(s);
cp(mf,f,n); gsqrt_K(mf,mg,mh,s,0);
cp(g,mg,n); pt-=s+s+s;
}
void gexp_K(mi*f,mi*g,mi*h,int K,bool ch=1) {
if(K==1) {
g[0]=h[0]=1;
return;
}
gexp_K(f,g,h,K>>1);
mi*gg=alc(K>>1),*hh=alc(K>>1),*fh=0,
*dg=alc(K>>1),*t1=alc(K,1),*t2=alc(K,1);
dg[(K>>1)-1]=0;
for(int i=0;i+1<(K>>1);++i)
dg[i]=g[i+1]*(i+1);
cp(gg,g,K>>1); mi c=0;
for(int i=0;i<(K>>1);++i)
c=c+dg[i]*h[((K>>1)-1)-i];
if(!ch)
cp(hh,h,K>>1), fft(hh,K>>1,0);
else {
fh=alc(K,1); cp(fh,h,(K>>1)); fft(fh,K,0);
for(int i=0;i<K;i+=2) hh[i>>1]=fh[i];
}
fft(gg,K>>1,0); fft(dg,K>>1,0);
for(int i=0;i<(K>>1);++i) gg[i]=gg[i]*hh[i];
fft(gg,K>>1,1);
for(int i=0;i<(K>>1);++i)
t1[i+(K>>1)]=(i==0)-gg[i];
for(int i=0;i+1<(K>>1);++i)
t2[i]=f[i+1]*(i+1);
fft(t1,K,0); fft(t2,K,0);
for(int i=0;i<K;++i) t1[i]=t1[i]*t2[i];
fft(t1,K,1);
for(int i=0;i<(K>>1);++i) t1[i]=0;
for(int i=0;i+1<K;++i)
t1[i]=t1[i]-f[i+1]*(i+1);
for(int i=0;i<(K>>1);++i) dg[i]=dg[i]*hh[i];
fft(dg,K>>1,1); mi r;
for(int i=0;i<(K>>1);++i)
r=(i+1==(K>>1))?c:(f[i+1]*(i+1)),
t1[i]=t1[i]+r,t1[i+(K>>1)]=t1[i+(K>>1)]+dg[i]-r;
t2[0]=0;
for(int i=0;i+1<K;++i)
t2[i+1]=t1[i]*rfac[i+1]*fac[i];
cp(t1,g,K>>1); cp(t1+(K>>1),0,K>>1);
fft(t1,K,0); fft(t2,K,0);
for(int i=0;i<K;++i) t1[i]=t1[i]*t2[i];
fft(t1,K,1);
for(int i=(K>>1);i<K;++i)
g[i]=-t1[i];
pt-=K*2+(K>>1)*3;
if(ch) {
mi *fg=alc(K),*fw=alc(K);
cp(fg,g,K); fft(fg,K,0);
for(int i=0;i<K;++i) fw[i]=fg[i]*fh[i];
fft(fw,K,1);
for(int i=0;i<(K>>1);++i) fw[i]=fw[i+(K>>1)];
cp(fw+(K>>1),0,K>>1); fft(fw,K,0);
for(int i=0;i<K;++i) fw[i]=fw[i]*fh[i];
fft(fw,K,1);
for(int i=0;i<(K>>1);++i) h[i+(K>>1)]=-fw[i];
pt-=K+K+K;
}
}
void gexp(mi*f,mi*g,int n) {
int s=getK(n);
mi *mf=alc(s,1),
*mg=alc(s),*mh=alc(s);
cp(mf,f,n); gexp_K(mf,mg,mh,s,0);
cp(g,mg,n); pt-=s+s+s;
}
string to_string(mi f) {
return to_string((int)f);
}
string pretty_guess(mi x,int max_dem=1000) {
string s=to_string((int)x);
auto upd=[&](string v) {
if(v.size()<s.size()) s=v;
};
upd("-"+to_string((int)(-x)));
for(int i=1;i<=max_dem;++i) {
mi w=x*i;
upd(to_string((int)w)+"/"+to_string(i));
upd("-"+to_string((int)(-w))+"/"+to_string(i));
}
return s;
}
ostream& operator << (ostream& os,const mi& m) {
os<<m.w; return os;
}
istream& operator >> (istream& is,mi& m) {
int x; is>>x; m=x; return is;
}
namespace QR{
typedef pair<ll,ll> pll; ll pll_s;
inline pll mul(pll a,pll b,ll p) {
pll ans;
ans.fi=a.fi*b.fi%p+a.se*b.se%p*pll_s%p;
ans.se=a.fi*b.se%p+a.se*b.fi%p;
ans.fi%=p; ans.se%=p; return ans;
}
pll qp(pll a,ll b,ll c) {
pll ans(1,0);
while(b) {
if(b&1) ans=mul(ans,a,c);
a=mul(a,a,c); b>>=1;
}
return ans;
}
ll qp(ll a,ll b,ll c) {
ll ans=1;
while(b) {
if(b&1) ans=ans*a%c;
a=a*a%c; b>>=1;
}
return ans;
}
int mod_sqrt(ll a,ll p=MOD) {
if(!a) return 0;
if(p==2) return 1;
ll w,q;
while(1) {
w=rand()%p; q=w*w-a;
q=(q%p+p)%p;
if(qp(q,(p-1)/2,p)!=1)
break;
}
pll_s=q;
pll rst=qp(pll(w,1),(p+1)/2,p);
ll ans=rst.fi; ans=(ans%p+p)%p;
return min(ans,p-ans);
}
}
using QR::mod_sqrt;
#include <functional>
int default_shrink=-1; //mod x^n
struct poly {
vector<mi> coeff;
int shrink_len;
void rev() {
fit_shrink();
reverse(coeff.begin(),coeff.end());
}
void insert(mi x) {
coeff.insert(coeff.begin(),x); shrink();
}
mi& operator [] (int x) {
if((x<0)||(shrink_len!=-1&&x>=shrink_len))
throw out_of_range("invalid offset");
if((int)coeff.size()<x+1) coeff.resize(x+1);
return coeff[x];
}
mi operator [] (int x) const {
if((x<0)||(shrink_len!=-1&&x>=shrink_len))
throw out_of_range("invalid offset");
if((int)coeff.size()<x+1) return mi(0);
return coeff[x];
}
mi get(int x) const {
if((x<0)||(shrink_len!=-1&&x>=shrink_len))
return 0;
if((int)coeff.size()<x+1) return mi(0);
return coeff[x];
}
explicit poly(int shrink_len_=default_shrink):
shrink_len(shrink_len_){
}
poly(vector<mi> coeff_,int shrink_len_=default_shrink):
coeff(coeff_),shrink_len(shrink_len_){
this->shrink();
}
poly(vector<int> coeff_,int shrink_len_=default_shrink):
shrink_len(shrink_len_){
this->coeff.resize(coeff_.size());
for(int i=0;i<(int)coeff.size();++i) this->coeff[i]=coeff_[i];
this->shrink();
}
void clean_maybe() {
if(is_poly())
while(coeff.size()&&coeff.back()==0)
coeff.pop_back();
}
void clean() {
assert(is_poly());
clean_maybe();
}
void fit_shrink() {
assert(is_series());
coeff.resize(shrink_len);
}
void set_shrink(int shrink_len_=default_shrink) {
this->shrink_len=shrink_len_; this->shrink();
}
void dump(char e=0,bool g=1,int l=9) const {
auto format=[&](mi num) {
return g?pretty_guess(num):to_string(num);
};
int u=(int)coeff.size()-1;
while(u>=0&&coeff[u]==0) --u;
if(u<0) {
printf("{}");
}
else {
for(int j=0;j<=u&&j<=l;++j)
printf("%c%s","{,"[j!=0],format(coeff[j]).c_str());
if(u>l)
printf("...%s(x^%d)",format(coeff[u]).c_str(),u);
printf("}");
}
if(shrink_len==-1)
printf(" (poly)");
else printf(" (mod x^%d)",shrink_len);
if(e) putchar(e);
}
mi* coeff_ptr() {
if(!coeff.size()) return 0;
return coeff.data();
}
int size() const {
return coeff.size();
}
void reserve(int l) {
if(shrink_len!=-1)
l=min(l,shrink_len);
if(l>(int)coeff.size())
coeff.resize(l);
}
void print_shrink(char e) {
fit_shrink();
for(int i=0;i<shrink_len;++i) {
if(i) printf(" ");
printf("%d",(int)coeff[i]);
}
if(e) printf("%c",e);
}
void print_len(int s,char e) {
for(int i=0;i<s;++i) {
if(i) printf(" ");
printf("%d",(int)get(i));
}
if(e) printf("%c",e);
}
void shrink() {
if(shrink_len!=-1&&(int)coeff.size()>shrink_len)
coeff.resize(shrink_len);
}
bool is_poly() const {
return shrink_len==-1;
}
bool is_series() const {
return shrink_len!=-1;
}
mi eval(mi x) {
assert(is_poly());
mi w=0;
for(int i=size()-1;i>=0;--i)
w=w*x+coeff[i];
return w;
}
};
void share_shrink(poly&a,poly&b) {
int l=max(a.shrink_len,b.shrink_len);
a.set_shrink(l);b.set_shrink(l);
}
poly ginv(poly p) {
p.fit_shrink();
ginv(p.coeff_ptr(),p.coeff_ptr(),p.shrink_len);
return p;
}
poly gln(poly p) {
p.fit_shrink();
gln(p.coeff_ptr(),p.coeff_ptr(),p.shrink_len);
return p;
}
poly gsqrt(poly p,mi f0=mi(1)) {
p.fit_shrink(); sqrt_f0=f0;
gsqrt(p.coeff_ptr(),p.coeff_ptr(),p.shrink_len);
return p;
}
poly gexp(poly p) {
p.fit_shrink();
gexp(p.coeff_ptr(),p.coeff_ptr(),p.shrink_len);
return p;
}
int merge_shrink(int s1,int s2) {
if(s1==-1) return s2;
if(s2==-1) return s1;
assert(s1==s2); //usually s1=s2
return min(s1,s2);
}
//guess this is pretty clean
poly operator + (const poly& a,const poly& b) {
poly c(merge_shrink(a.shrink_len,b.shrink_len));
c.reserve(max(a.size(),b.size()));
for(int i=0;i<c.size();++i) c[i]=a[i]+b[i];
return c;
}
poly operator - (const poly& a,const poly& b) {
poly c(merge_shrink(a.shrink_len,b.shrink_len));
c.reserve(max(a.size(),b.size()));
for(int i=0;i<c.size();++i) c[i]=a[i]-b[i];
return c;
}
poly operator * (mi v,poly a) {
for(auto&t:a.coeff) t=t*v;
return a;
}
poly operator * (poly a,mi v) {
for(auto&t:a.coeff) t=t*v;
return a;
}
poly operator + (poly a,mi b) {
a.reserve(1);
if(a.size()) a[0]+=b;
return a;
}
poly operator - (poly a,mi b) {
a.reserve(1);
if(a.size()) a[0]-=b;
return a;
}
poly operator * (const poly& a,const poly& b) {
if(!a.size()) return a;
if(!b.size()) return b;
poly c(merge_shrink(a.shrink_len,b.shrink_len));
c.reserve(a.size()+b.size()-1);
int as=min(a.size(),c.size()),
bs=min(b.size(),c.size());
int K=getK(as+bs-1);
mi*da=alc(K,1),*db=alc(K,1);
for(int i=0;i<as;++i) da[i]=a[i];
for(int i=0;i<bs;++i) db[i]=b[i];
fft(da,K,0); fft(db,K,0);
for(int i=0;i<K;++i) da[i]=da[i]*db[i];
fft(da,K,1);
for(int i=0;i<c.size();++i) c[i]=da[i];
pt-=K*2;
return c;
}
//(quotient, remainder)
pair<poly,poly> gdiv(poly a,poly b) {
assert(a.is_poly()&&b.is_poly());
int n=a.size(),m=b.size(); assert(m>0);
if(n<m)
return make_pair(poly(-1),a);
poly d(-1),r(-1); d.reserve(n-m+1); r.reserve(m-1);
gdiv(a.coeff_ptr(),b.coeff_ptr(),d.coeff_ptr(),r.coeff_ptr(),n,m);
return make_pair(d,r);
}
poly gint(poly a) {
a.reserve(a.size()+1);
for(int i=a.size()-1;i>=1;--i)
a[i]=a[i-1]*rfac[i]*fac[i-1];
if(a.size()) a[0]=0;
return a;
}
//note: this actually decreases shrink!
poly gde(poly a) {
if(!a.size()) return a;
for(int i=1;i<a.size();++i)
a[i-1]=a[i]*i;
a[a.size()-1]=0;
a.clean_maybe();
return a;
}
//solve G(f)=0
poly gnewton(
function<poly(const poly&)> g,
function<poly(const poly&)> gp,
int f0,int len=default_shrink) {
poly f(1); f[0]=f0;
while(f.shrink_len!=len) {
int old_len=f.shrink_len;
int new_len=min(old_len*2,len);
f.set_shrink(new_len);
poly s=g(f); s.fit_shrink();
poly h=f;
h.set_shrink(new_len-old_len);
h=ginv(gp(h));
s.coeff.erase(s.coeff.begin(),s.coeff.begin()+old_len);
s.set_shrink(new_len-old_len);
s=h*s; s.set_shrink(new_len);
s.coeff.insert(s.coeff.begin(),old_len,mi(0));
f=f-s;
}
return f;
}
//find [x^n](a(x)/b(x))
mi linear_eval(poly a,poly b,ll n) {
assert(a.is_poly()&&b.is_poly()&&b.size()>=1);
while(n) {
poly nb=b;
for(int i=1;i<nb.size();i+=2)
nb[i]=-nb[i];
auto clip=[&](poly p) {
p.reserve(1);
int u=p.size()-1;
for(int i=1;i<=u/2;++i)
p[i]=p[i+i];
p.coeff.resize(u/2+1);
return p;
};
poly s=a*nb,t=b*nb;
if(n&1)
s.reserve(1),s.coeff.erase(s.coeff.begin());
a=clip(s); b=clip(t);
n>>=1;
}
return a.get(0)*inv(b.get(0));
}
vector<mi> BM(vector<mi> x) {
vector<mi> ls,cur;
int lf=0; mi ldt;
for(int i=0;i<int(x.size());++i) {
mi t=-x[i];
for(int j=0;j<int(cur.size());++j)
t=t+x[i-j-1]*cur[j];
if(t==0) continue;
if(!cur.size()) {
cur.resize(i+1); lf=i; ldt=t; continue;
}
mi k=-t*inv(ldt);
vector<mi> c(i-lf-1); c.pb(-k);
for(int j=0;j<int(ls.size());++j) c.pb(ls[j]*k);
if(c.size()<cur.size()) c.resize(cur.size());
for(int j=0;j<int(cur.size());++j)
c[j]=c[j]+cur[j];
if(i-lf+(int)ls.size()>=(int)cur.size())
ls=cur,lf=i,ldt=t;
cur=c;
}
return cur;
}
pair<poly,poly> bm_poly(vector<mi> x) {
vector<mi> f=BM(x); int k=f.size();
f.insert(f.begin(),mi(-1)); x.resize(k);
poly r(f,-1),s(x,-1);
poly u=r*s; u.coeff.resize(k);
return make_pair(u,r);
}
mi linear_eval(vector<mi> x,ll n) {
auto s=bm_poly(x);
return linear_eval(s.first,s.second,n);
}
vector<poly> eval_tmp;
void eval_build(int x,mi*a,int n) {
if((int)eval_tmp.size()<x+1) eval_tmp.resize(x+1);
if(n==1) {
eval_tmp[x]=poly(vector<mi>{mi(1),-*a},-1);
return;
}
int m=(n+1)>>1;
eval_build(x+x,a,m);
eval_build(x+x+1,a+m,n-m);
eval_tmp[x]=eval_tmp[x+x]*eval_tmp[x+x+1];
}
//transposed multiplication
poly mul_transpose(const poly& a,const poly& b) {
assert(a.is_poly()&&b.size()>0&&b.is_poly());
if(a.size()<b.size()) return poly(-1);
poly c(-1);
c.reserve(a.size()-b.size()+1);
int K=getK(a.size());
mi*da=alc(K,1),*db=alc(K,1);
for(int i=0;i<a.size();++i) da[i]=a[i];
for(int i=0;i<b.size();++i) db[i]=b[b.size()-1-i];
fft(da,K,0); fft(db,K,0);
for(int i=0;i<K;++i) da[i]=da[i]*db[i];
fft(da,K,1);
for(int i=0;i<c.size();++i) c[i]=da[i+b.size()-1];
pt-=K*2;
return c;
}
void eval_recurse(int x,poly p,mi*o,int n) {
if(n==1) {
*o=p.get(0);
return;
}
int m=(n+1)>>1;
eval_recurse(x+x,mul_transpose(p,eval_tmp[x+x+1]),o,m);
eval_recurse(x+x+1,mul_transpose(p,eval_tmp[x+x]),o+m,n-m);
}
vector<mi> multipoint_eval(poly p,vector<mi> q) {
assert(p.is_poly());
if(!q.size()) return q;
eval_build(1,q.data(),q.size());
int d=p.size(); p.set_shrink(d); p.rev();
poly o=eval_tmp[1]; o.set_shrink(d);
p=p*ginv(o); p.rev();
p.set_shrink(-1); p.coeff.resize(q.size());
vector<mi> s(q.size());
eval_recurse(1,p,s.data(),q.size());
eval_tmp.clear(); return s;
}
vector<poly> interp_tmp;
vector<mi> interp_y;
void interp_build(int x,mi*a,int n) {
if((int)interp_tmp.size()<x+1) interp_tmp.resize(x+1);
if(n==1) {
interp_tmp[x]=poly(vector<mi>{-*a,mi(1)},-1);
return;
}
int m=(n+1)>>1;
interp_build(x+x,a,m);
interp_build(x+x+1,a+m,n-m);
interp_tmp[x]=interp_tmp[x+x]*interp_tmp[x+x+1];
}
poly interp_calc(int x,int o,int n) {
if(n==1)
return poly(vector<mi>{interp_y[o]},-1);
int m=(n+1)>>1;
return
interp_calc(x+x,o,m)*interp_tmp[x+x+1]
+interp_calc(x+x+1,o+m,n-m)*interp_tmp[x+x];
}
poly multipoint_interp(vector<mi> x,vector<mi> y) {
assert(x.size()==y.size());
interp_build(1,x.data(),x.size());
interp_y=multipoint_eval(gde(interp_tmp[1]),x);
for(int i=0;i<(int)y.size();++i)
interp_y[i]=y[i]*inv(interp_y[i]);
poly ans=interp_calc(1,0,x.size());
interp_tmp.clear();
interp_y.clear(); return ans;
}
poly gpow(poly p,string k) {
int u=p.shrink_len,x=0;
p.fit_shrink();
while(x<u&&p[x]==0) ++x;
double kd=0; mi m0=0; ll m1=0;
for(char c:k) {
kd=kd*10+c-48;
m0=m0*10+int(c-48);
m1=(m1*10+int(c-48))%(MOD-1);
}
if(x==u||x*kd>=u*2) return poly(u);
p.coeff.erase(p.coeff.begin(),p.coeff.begin()+x);
mi v=p[0],s=qp(v,m1),iv=inv(v);
for(mi&w:p.coeff) w=w*iv;
p=gexp(m0*gln(p));
for(mi&w:p.coeff) w=w*s;
p.coeff.insert(p.coeff.begin(),x*m1,mi(0));
p.fit_shrink(); return p;
}
poly gpow(poly p,ll k) {
return gpow(p,to_string(k));
}
poly powersum_recurse(mi*a,int n) {
if(n==1) return poly({mi(1),-*a},-1);
int m=n>>1;
return powersum_recurse(a,m)*
powersum_recurse(a+m,n-m);
}
vector<mi> powersum(vector<mi> x,int n) {
poly s=powersum_recurse(x.data(),x.size());
s.set_shrink(n); poly t=s;
for(int i=0;i<=(int)x.size()&&i<t.size();++i)
t[i]=t[i]*((int)x.size()-i);
poly w=t*ginv(s);
vector<mi> o(n);
for(int i=0;i<n;++i) o[i]=w.get(i);
return o;
}
poly PMSet(poly p,bool s) {
p.fit_shrink();
assert(p.get(0)==0);
poly q(p.shrink_len);
q.fit_shrink();
for(int i=1;i<p.size();++i) {
mi iv=rfac[i]*fac[i-1];
if(!(i&1)&&s) iv=-iv;
for(int j=1;i*j<p.size();++j)
q[i*j]=q[i*j]+p[j]*iv;
}
return gexp(q);
}
poly MSet(poly p) {return PMSet(p,0);}
poly PSet(poly p) {return PMSet(p,1);}
poly invPMSet(poly p,bool s) {
p.fit_shrink();
assert(p.get(0)==1);
p=gln(p); p.fit_shrink();
for(int i=1;i<p.size();++i) {
for(int j=2;i*j<p.size();++j) {
mi iv=rfac[j]*fac[j-1];
if(!(j&1)&&s) iv=-iv;
p[i*j]=p[i*j]-p[i]*iv;
}
}
return p;
}
poly invMSet(poly p) {return invPMSet(p,0);}
poly invPSet(poly p) {return invPMSet(p,1);}
//solve f'=G(f), gp=(G,G')
poly gnewton_d(
function<pair<poly,poly>(const poly&)> gp,
int f0,int len=default_shrink) {
poly f(1); f[0]=f0;
while(f.shrink_len!=len) {
int old_len=f.shrink_len;
int new_len=min(old_len*2,len);
f.set_shrink(new_len);
auto fp=gp(f);
poly gpf=fp.second,r=gexp(mi(-1)*gint(gpf));
f=gint((fp.first-gpf*f)*r);
f[0]=f0; f=f*ginv(r);
}
return f;
}
poly gnewton_d(
function<poly(const poly&)> g,
function<poly(const poly&)> gp,
int f0,int len=default_shrink) {
return gnewton_d([&](const poly& s) {
return make_pair(g(s),gp(s));
},f0,len);
}
//G^<-1>, gp=(G,G')
poly gcompinv(
function<pair<poly,poly>(const poly&)> gp,
int f0,int len=default_shrink) {
poly f(1); f[0]=f0;
while(f.shrink_len!=len) {
int old_len=f.shrink_len;
int new_len=min(old_len*2,len);
f.set_shrink(new_len);
auto fp=gp(f);
auto gf=fp.first; gf=mi(-1)*gf;
gf.reserve(2);++gf[1];
f=f+gf*ginv(fp.second);
}
return f;
}
poly gcompinv(
function<poly(const poly&)> g,
function<poly(const poly&)> gp,
int f0,int len=default_shrink) {
return gcompinv([&](const poly& s) {
return make_pair(g(s),gp(s));
},f0,len);
}
poly prod_recurse(poly*a,int n) {
if(n==1) return *a;
int m=n>>1;
return prod_recurse(a,m)
*prod_recurse(a+m,n-m);
}
poly prod(vector<poly> p) {
if(!p.size()) return poly(-1);
sort(p.begin(),p.end(),[&](const poly&a,const poly&b) {
return a.size()<b.size();
}); //maybe faster?
return prod_recurse(p.data(),p.size());
}
poly polyi(mi x) {
return poly(vector<mi>{x},-1);
}
poly operator"" _p(unsigned long long int x) {
return poly(vector<mi>{int(x%MOD)},-1);
}
poly operator"" _p(const char *str,std::size_t len) {
poly ans(-1); int sgn=1,phase=0,coeff=0,touch=0;
ll cnum=0;
auto clean=[&]() {
if(phase==-1) ans[1]+=sgn*coeff;
else if(phase==0) ans[0]+=sgn*(int)cnum;
else if(phase==1) ans[cnum]+=sgn*coeff;
else assert(0);
phase=0; cnum=0; touch=0;
};
for(int i=0;i<(int)len;++i) {
if(str[i]=='+') clean(),sgn=1;
else if(str[i]=='-') clean(),sgn=-1;
else if(isdigit(str[i])) {
assert(phase==0||phase==1);
if(phase==0)
touch=1,
cnum=(cnum*10LL+str[i]-48)%MOD;
else
cnum=cnum*10LL+str[i]-48,
assert(cnum<1e8);
}
else if(str[i]=='x') {
assert(str[i+1]=='^'||str[i+1]=='+'||str[i+1]=='-'||str[i+1]==0);
phase=-1; coeff=touch?cnum:1; cnum=0;
}
else if(str[i]=='^') {
assert(phase==-1); phase=1;
}
}
clean();
return ans;
}
pair<poly,poly> gsincos(poly p) {
assert(p.is_series());
mi j=qp(mi(3),(MOD-1)/4);
poly a=gexp(j*p),b=gexp(-j*p);
poly s=(a-b)*inv(2*j),c=(a+b)*inv(2);
return make_pair(s,c);
}
poly gcorner(poly a,vector<mi> b) {
a.reserve(b.size());
for(int i=0;i<a.size()&&i<(int)b.size();++i)
a[i]=b[i];
return a;
}
poly gshl(poly a,int b) {
a.coeff.insert(a.coeff.begin(),b,mi(0));
a.shrink(); return a;
}
poly gshr(poly a,int b) {
if(a.size()<b) a.coeff.clear();
else a.coeff.erase(a.coeff.begin(),a.coeff.begin()+b);
a.shrink(); return a;
}
//A(x)=a(x^u)
poly gamp(const poly& a,int u) {
assert(a.is_series()&&u>=1);
poly b(a.shrink_len);
for(int i=0;i*u<a.shrink_len;++i)
b[i*u]=a[i];
return b;
}
poly operator - (poly a) {
for(auto&s:a.coeff) s=-s;
return a;
}
namespace onlineconv {
struct ocpoly {
function<mi(int)> get_handle;
vector<int> vis;
vector<mi> val;
string typ; //debug purpose
mi get(int x) {
// cerr<<"debug: get("<<x<<") ("<<this<<","<<typ<<")\n";
assert(x>=0);
if((int)vis.size()>x&&vis[x]) return val[x];
if((int)vis.size()<=x)
vis.resize(x+1),val.resize(x+1);
val[x]=get_handle(x); vis[x]=1; return val[x];
}
poly await(int n) {
poly s(-1);
for(int i=0;i<n;++i)
s[i]=get(i);
return s;
}
void copy(ocpoly*b) {
if(typ=="") typ="copier";
get_handle=[=](int c) {
return b->get(c);
};
}
ocpoly() {}
ocpoly(ocpoly const&) = delete;
ocpoly& operator = (ocpoly const&) = delete;
};
struct ocint: public ocpoly {
ocint(ocpoly*p,mi c=0) {
typ="integ";
get_handle=[=](int u) {
if(u==0) return c;
return p->get(u-1)*rfac[u]*fac[u-1];
};
}
};
struct ocde: public ocpoly {
ocde(ocpoly*p) {
typ="deriv";
get_handle=[=](int u) {
return p->get(u+1)*mi(u+1);
};
}
};
struct ocshr: public ocpoly {
ocshr(ocpoly*p,int c) {
typ="shiftr";
assert(c>=0);
get_handle=[=](int u) {
return p->get(u+c);
};
}
};
struct ocshl: public ocpoly {
ocshl(ocpoly*p,int c) {
typ="shiftl";
assert(c>=0);
get_handle=[=](int u) {
if(u<c) return mi(0);
return p->get(u-c);
};
}
};
struct ocscale: public ocpoly {
ocscale(ocpoly*p,mi c) {
typ="scale";
get_handle=[=](int u) {
return p->get(u)*c;
};
}
};
struct ocadd: public ocpoly {
ocadd(ocpoly*a,ocpoly*b) {
typ="add";
get_handle=[=](int u) {
return a->get(u)+b->get(u);
};
}
};
struct ocminus: public ocpoly {
ocminus(ocpoly*a,ocpoly*b) {
typ="minus";
get_handle=[=](int u) {
return a->get(u)-b->get(u);
};
}
};
struct ocfixed: public ocpoly {
ocfixed(const poly&p) {
typ="fixed";
get_handle=[=](int u) {
return p.get(u);
};
}
};
struct occorner: public ocpoly {
occorner(ocpoly*p,vector<mi> v) {
typ="corner";
get_handle=[=](int u) {
if(u<(int)v.size()) return v[u];
return p->get(u);
};
}
};
mi pool1[PS2],*ptr1=pool1;
mi*alc1(int t,bool c=0) {
if(c) cp(ptr1,0,t);
ptr1+=t; assert(ptr1<pool1+PS2);
return ptr1-t;
}
struct ocmul: public ocpoly {
//fully-relaxed convultion!
//try to put 0 on a if possible
ocmul(ocpoly*a,ocpoly*b) {
typ="mul";
int&oaf=*new int(),&obf=*new int(),
&oa=*new int(),&ob=*new int(),
&cm=*new int(),&cpool=*new int();
oaf=obf=oa=ob=cm=cpool=0;
poly&cp=*new poly(-1);
vector<pair<pair<mi*,mi*>,int>> &st
=*new vector<pair<pair<mi*,mi*>,int>>();
vector<pair<pair<mi*,mi*>,int>> &fa=
*new vector<pair<pair<mi*,mi*>,int>>();
vector<mi> &pool=*new vector<mi>();
mi*sa=new mi[128],*sb=new mi[128],
*la=new mi[128],*lb=new mi[128];
get_handle=[=,&oa,&ob,&oaf,&obf,&cm,&cp,&st,&fa,&pool,&cpool]
(int u) {
if(u) this->get(u-1); //necessary for ocmul
auto alc0=[&](int s) {
//ok I hate memory management
if(cpool+s>(int)pool.size()) {
auto od=pool.data();
pool.resize(max(cpool+s,(int)pool.size()*2));
auto dt=pool.data()-od;
if(dt) for(auto&x:st)
if(x.first.first)
x.first.first+=dt,
x.first.second+=dt;
}
assert(cpool+s<=(int)pool.size());
mi*ptr=pool.data()+cpool;
::cp(ptr,0,s); cpool+=s; return ptr;
};
auto cnt_bk=[&](int x) {
int ans=0;
for(int j=(int)st.size()-1;j>=0;--j)
if(st[j].second==x) ++ans; else break;
return ans;
};
auto st_pop=[&]() {
if(st.back().first.first)
cpool-=st.back().second*4;
assert(cpool>=0);
st.pop_back();
};
// cerr<<u<<":"<<oa<<","<<ob<<"\n"; //debug
//this is where deadlock usually happens..
while(u>=oa+ob&&!(oaf&&obf)) {
if((oa<=ob&&!oaf)||obf) {
assert(!oaf);
if(oa>u) break;
if(a->get(oa)==0) ++oa;
else oaf=1;
}
else {
assert(!obf);
if(ob>u) break;
if(b->get(ob)==0) ++ob;
else obf=1;
}
}
if(u<oa+ob) return mi(0);
assert(oaf&&obf); u-=oa+ob;
#define ga(x) (a->get((x)+oa))
#define gb(x) (b->get((x)+ob))
la[u&127]=ga(u), lb[u&127]=gb(u);
if(u<128) sa[u]=ga(u), sb[u]=gb(u);
if(u==0) cp[0]+=sa[0]*sb[0];
else cp[u]+=sa[0]*lb[u&127]+la[u&127]*sb[0];
if((cm+1)*2<=u) {
poly p(-1),q(-1);
p.reserve(u+1); q.reserve(u+1);
for(int i=0;i<=u;++i) p[i]=ga(i);
for(int i=0;i<=u;++i) q[i]=gb(i);
while(st.size()) st_pop();
cp=p*q; cm=u;
}
//for i+j=u, at least one of [i,j] is <=cm
if(u>cm&&u!=cm*2+1) {
auto gfa=[&](int cu,int of,int cs) {
int id=cu*4+of;
if((int)fa.size()<id+1)
fa.resize(id+1,make_pair(pair<mi*,mi*>(0,0),0));
if(fa[id].second) {
assert(fa[id].second==cs);
return fa[id].first;
}
fa[id].second=cs;
mi*da=alc1(cs+cs,1),*db=alc1(cs+cs,1);
for(int i=0;i<cs;++i)
da[i]=ga(i+cs*of),db[i]=gb(i+cs*of);
fft(da,cs+cs,0); fft(db,cs+cs,0);
return fa[id].first=make_pair(da,db);
};
int cs=1,cu=0;
while(cnt_bk(cs)==3)
st_pop(),st_pop(),st_pop(),cs*=4,++cu;
//[u-cs+1,u]
assert(getK(cs)==cs);
if(cs>=64) {
mi*da=alc0(cs+cs+cs+cs),*db=da+(cs+cs);
for(int i=0;i<cs;++i)
da[i]=ga(u-cs+1+i),db[i]=gb(u-cs+1+i);
fft(da,cs+cs,0); fft(db,cs+cs,0);
st.push_back(make_pair(make_pair(da,db),cs));
}
else
st.push_back(make_pair(pair<mi*,mi*>(0,0),cs));
int c=cnt_bk(cs); assert(c>=1&&c<=3);
if(cs>=64) {
mi*tg=alc(cs+cs,1); int l=st.size();
for(int i=0;i<c;++i) {
auto cur=st[l-c+i];
int bd=c-i-1; //in [0,2]
pair<mi*,mi*> fbd=gfa(cu,bd,cs);
for(int j=0;j<cs+cs;++j)
tg[j]+=cur.first.first[j]*fbd.second[j]
+cur.first.second[j]*fbd.first[j];
fbd=gfa(cu,bd+1,cs);
for(int j=0;j<cs+cs;++j)
tg[j]+=((j&1)?mi(-1):mi(1))
*(cur.first.first[j]*fbd.second[j]
+cur.first.second[j]*fbd.first[j]);
}
fft(tg,cs+cs,1);
for(int i=cs;i<cs+cs;++i)
cp[i-cs+u+1]+=tg[i];
pt-=cs+cs;
}
else {
int l=u-cs*c+1,r=min(cm*2+1,u+cs);
assert(r-l+1<128);
static mi ta[128],tb[128];
mi*pa=ta-l,*pb=tb-l;
for(int i=l;i<=u;++i)
pa[i]=la[i&127],pb[i]=lb[i&127];
for(int i=u+1;i<=r;++i) {
ull sum=0;
int j=l;
for(;j+7<=u;j+=8) {
#define par(s) \
(ull)pa[j+s].w*sb[i-j-s].w\
+(ull)pb[j+s].w*sa[i-j-s].w
sum+=par(0)+par(1)+par(2)+par(3)\
+par(4)+par(5)+par(6)+par(7);
sum%=MOD;
}
for(;j<=u;++j) {
sum+=(ull)pa[j].w*sb[i-j].w
+(ull)pb[j].w*sa[i-j].w;
}
cp[i]+=int(sum%MOD);
}
}
}
#undef ga
#undef gb
return cp.get(u);
};
}
};
struct ocexp: public ocpoly {
ocexp(ocpoly*a) {
typ="exp";
ocpoly*tmp=new ocpoly();
tmp->typ="exp_helper";
tmp->get_handle=[=](int u) {
if(u==0) return mi(0);
return a->get(u)*u;
};
ocmul*m=new ocmul(tmp,this);
get_handle=[=](int u) {
if(u==0) return mi(1);
return m->get(u)*rfac[u]*fac[u-1];
};
}
};
struct ocmpsetp: public ocpoly {
//mpset without exp
ocmpsetp(ocpoly*a,bool s) {
typ="mpset1";
vector<mi> &tmp=*new vector<mi>();
tmp.push_back(0);
get_handle=[=,&tmp](int u) {
if(u) this->get(u-1); //necessary
int l=u;
if(u>=(int)tmp.size()) {
l=1; int ns=tmp.size()*2;
tmp.clear();tmp.resize(ns);
}
for(int j=l;j<=u;++j) {
mi v=a->get(j);
if(j==0) assert(v==0);
if(v==0) continue;
for(int i=1;i*j<(int)tmp.size();++i) {
mi iv=rfac[i]*fac[i-1];
if(!(i&1)&&s) iv=-iv;
tmp[i*j]+=iv*v;
}
}
return tmp[u];
};
}
};
struct ocinvmpsetp: public ocpoly {
//invmpset without ln
ocinvmpsetp(ocpoly*a,bool s) {
typ="invmpset1";
vector<mi> &tmp=*new vector<mi>();
tmp.push_back(0);
get_handle=[=,&tmp](int u) {
if(u) this->get(u-1); //necessary
int l=u;
if(u>=(int)tmp.size()) {
l=1; int ns=tmp.size()*2;
tmp.clear();tmp.resize(ns);
}
for(int j=l;j<=u;++j) {
mi v=a->get(j)-tmp[j];
if(j==0) assert(v==0);
if(v==0) continue;
for(int i=2;i*j<(int)tmp.size();++i) {
mi iv=rfac[i]*fac[i-1];
if(!(i&1)&&s) iv=-iv;
tmp[i*j]+=iv*v;
}
}
return a->get(u)-tmp[u];
};
}
};
struct ocmset: public ocpoly {
ocmset(ocpoly*a) {
typ="mset";
copy(new ocexp(new ocmpsetp(a,0)));
}
};
struct ocpset: public ocpoly {
ocpset(ocpoly*a) {
typ="pset";
copy(new ocexp(new ocmpsetp(a,1)));
}
};
struct ocinv: public ocpoly {
ocinv(ocpoly*a) {
typ="inv";
mi &oi=*new mi();
ocpoly *s=new ocmul(new occorner(a,vector<mi>{0}),this);
get_handle=[=,&oi](int u) {
if(!u) return oi=inv(a->get(0));
this->get(0); return s->get(u)*(-oi);
};
}
};
struct ocsqrt: public ocpoly {
ocsqrt(ocpoly*a,mi f0=1) {
typ="sqrt"; mi c=inv(f0*2);
ocpoly *g=new occorner(this,vector<mi>{0});
ocpoly *s=new ocminus(a,new ocmul(g,g));
get_handle=[=](int u) {
if(!u) {
mi w=s->get(u);
assert(f0*f0==w);
return f0;
}
return s->get(u)*c;
};
}
};
struct ocquo: public ocpoly {
ocquo(ocpoly*a,ocpoly*b) {
typ="quo";
mi &oi=*new mi();
ocpoly *s=new ocminus(a,
new ocmul(new occorner(b,vector<mi>{0}),this));
get_handle=[=,&oi](int u) {
if(!u) return s->get(0)*(oi=inv(b->get(0)));
this->get(0); return s->get(u)*oi;
};
}
};
struct ocln: public ocpoly {
ocln(ocpoly*a) {
typ="ln";
copy(new ocint(new ocquo(new ocde(a),a)));
}
};
struct ocinvmset: public ocpoly {
ocinvmset(ocpoly*a) {
typ="invmset";
copy(new ocinvmpsetp(new ocln(a),0));
}
};
struct ocinvpset: public ocpoly {
ocinvpset(ocpoly*a) {
typ="invpset";
copy(new ocinvmpsetp(new ocln(a),1));
}
};
struct ocpow: public ocpoly {
ocpow(ocpoly*a,string k) {
typ="pow";
mi m0=0; ll m1=0,m2=0;
for(auto c:k)
m0=m0*10+int(c-48),
m1=(m1*10+c-48)%(MOD-1),
m2=min(m2*10+c-48,ll(1e9));
ocpoly *&s=*new ocpoly*(); s=0;
int &pad=*new int(); pad=0;
get_handle=[=,&pad,&s](int u) {
if(m2==0) return (u==0)?mi(1):mi(0);
if(u) this->get(u-1);
if(pad==u&&a->get(u)==0) ++pad;
if(u<pad*m2) return mi(0);
u-=pad*m2;
if(!u) {
ocpoly *r=new ocshr(a,pad);
s=new ocint(new ocquo(new ocscale(new ocmul(
new ocde(r),new ocshr(this,pad*m2)
),m0),r));
return qp(r->get(0),m1);
}
return s->get(u);
};
}
ocpow(ocpoly*a,ll k): ocpow(a,to_string(k)) {}
};
struct ocamp: public ocpoly {
ocamp(ocpoly*a,int k) {
typ="amp";
get_handle=[=](int u) {
if(u%k) return mi(0);
return a->get(u/k);
};
}
};
//the rest is, well, sugar
struct pipeline {
ocpoly*p;
pipeline() {p=new ocpoly();}
pipeline(ocpoly *q) {assert(q);p=q;}
pipeline(poly s) {p=new ocfixed(s);}
mi get(int n) {return p->get(n);}
poly await(int n) {return p->await(n);}
void set(pipeline q) {p->copy(q.p);}
};
pipeline operator + (pipeline a,pipeline b){return new ocadd(a.p,b.p);}
pipeline operator - (pipeline a,pipeline b){return new ocminus(a.p,b.p);}
pipeline operator * (pipeline a,pipeline b){return new ocmul(a.p,b.p);}
pipeline operator * (pipeline a,mi b){return new ocscale(a.p,b);}
pipeline operator / (pipeline a,mi b){return new ocscale(a.p,inv(b));}
pipeline gcorner(pipeline a,vector<mi> b){return new occorner(a.p,b);}
pipeline gscale(pipeline a,mi b){return new ocscale(a.p,b);}
pipeline gshl(pipeline a,int b){return new ocshl(a.p,b);}
pipeline gshr(pipeline a,int b){return new ocshr(a.p,b);}
pipeline gamp(pipeline a,int b){return new ocamp(a.p,b);}
pipeline gde(pipeline a){return new ocde(a.p);}
pipeline gint(pipeline a){return new ocint(a.p);}
pipeline ginv(pipeline a){return new ocinv(a.p);}
pipeline gexp(pipeline a){return new ocexp(a.p);}
pipeline gln(pipeline a){return new ocln(a.p);}
pipeline gpow(pipeline a,string k){return new ocpow(a.p,k);}
pipeline gpow(pipeline a,ll k){return gpow(a,to_string(k));}
pipeline gquo(pipeline a,pipeline b){return new ocquo(a.p,b.p);}
pipeline gsqrt(pipeline a,mi f0=mi(1)){return new ocsqrt(a.p,f0);}
pipeline PSet(pipeline a){return new ocpset(a.p);}
pipeline MSet(pipeline a){return new ocmset(a.p);}
pipeline invPSet(pipeline a){return new ocinvpset(a.p);}
pipeline invMSet(pipeline a){return new ocinvmset(a.p);}
pipeline operator - (pipeline a){return new ocscale(a.p,mi(-1));}
}
using namespace onlineconv;
/*
int n,m,f[123456];
int main() {
scanf("%d%d",&n,&m); ++n;
for(int i=0;i<n;++i) scanf("%d",f+i);
pipeline p(vector<int>(f,f+n));
p=p-gexp(gint(ginv(gsqrt(p,mod_sqrt(f[0],MOD)))));
p=gcorner(gln(gcorner(p,{1})),{1});
gde(gexp(gln(p)*m)).await(n).print_len(n-1,'\n');
}
*/
int main() {
int N;
for (; ~scanf("%d", &N); ) {
pipeline f0(vector<mi>(N + 1, 0));
pipeline f1(vector<mi>(N + 1, 0));
f0.set(gshl((gexp(f1) - gexp(f0 * f1)) * ginv("1"_p - f0), 1));
f1.set(gshl((gexp(f1) - f0 * f0 * gexp(f0 * f1)) * ginv("1"_p - f0), 1));
const auto ans = (f0 + f1).await(N + 1);
// for(int n=0;n<=N;++n)cerr<<(fac[n]*ans[n])<<" ";cerr<<endl;
printf("%u\n", (fac[N] * ans[N]).w);
}
return 0;
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 3ms
memory: 92208kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 14ms
memory: 99776kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #3:
score: 0
Accepted
time: 12ms
memory: 100340kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #4:
score: 0
Accepted
time: 3ms
memory: 100300kb
input:
100
output:
413875584
result:
ok 1 number(s): "413875584"
Test #5:
score: 0
Accepted
time: 7ms
memory: 92584kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 7ms
memory: 92744kb
input:
2
output:
4
result:
ok 1 number(s): "4"
Test #7:
score: 0
Accepted
time: 4ms
memory: 100868kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #8:
score: 0
Accepted
time: 10ms
memory: 100420kb
input:
4
output:
236
result:
ok 1 number(s): "236"
Test #9:
score: 0
Accepted
time: 7ms
memory: 99436kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #10:
score: 0
Accepted
time: 16ms
memory: 100008kb
input:
6
output:
55182
result:
ok 1 number(s): "55182"
Test #11:
score: 0
Accepted
time: 8ms
memory: 99896kb
input:
7
output:
1165220
result:
ok 1 number(s): "1165220"
Test #12:
score: 0
Accepted
time: 4ms
memory: 100336kb
input:
8
output:
29013896
result:
ok 1 number(s): "29013896"
Test #13:
score: 0
Accepted
time: 4ms
memory: 100580kb
input:
9
output:
832517514
result:
ok 1 number(s): "832517514"
Test #14:
score: 0
Accepted
time: 7ms
memory: 101132kb
input:
10
output:
96547079
result:
ok 1 number(s): "96547079"
Test #15:
score: 0
Accepted
time: 8ms
memory: 100264kb
input:
11
output:
296100513
result:
ok 1 number(s): "296100513"
Test #16:
score: 0
Accepted
time: 3ms
memory: 100332kb
input:
12
output:
672446962
result:
ok 1 number(s): "672446962"
Test #17:
score: 0
Accepted
time: 3ms
memory: 100928kb
input:
13
output:
986909297
result:
ok 1 number(s): "986909297"
Test #18:
score: 0
Accepted
time: 4ms
memory: 100728kb
input:
14
output:
306542229
result:
ok 1 number(s): "306542229"
Test #19:
score: 0
Accepted
time: 16ms
memory: 100564kb
input:
15
output:
8548107
result:
ok 1 number(s): "8548107"
Test #20:
score: 0
Accepted
time: 12ms
memory: 99668kb
input:
16
output:
773960239
result:
ok 1 number(s): "773960239"
Test #21:
score: 0
Accepted
time: 8ms
memory: 100152kb
input:
17
output:
611627547
result:
ok 1 number(s): "611627547"
Test #22:
score: 0
Accepted
time: 4ms
memory: 99920kb
input:
18
output:
91793980
result:
ok 1 number(s): "91793980"
Test #23:
score: 0
Accepted
time: 12ms
memory: 101312kb
input:
19
output:
689202618
result:
ok 1 number(s): "689202618"
Test #24:
score: 0
Accepted
time: 12ms
memory: 101060kb
input:
20
output:
605957782
result:
ok 1 number(s): "605957782"
Test #25:
score: 0
Accepted
time: 72ms
memory: 105520kb
input:
10000
output:
713782215
result:
ok 1 number(s): "713782215"
Test #26:
score: 0
Accepted
time: 133ms
memory: 112168kb
input:
20000
output:
337916836
result:
ok 1 number(s): "337916836"
Test #27:
score: 0
Accepted
time: 186ms
memory: 116956kb
input:
30000
output:
580803285
result:
ok 1 number(s): "580803285"
Test #28:
score: 0
Accepted
time: 262ms
memory: 122616kb
input:
40000
output:
732660392
result:
ok 1 number(s): "732660392"
Test #29:
score: 0
Accepted
time: 365ms
memory: 128252kb
input:
50000
output:
660835595
result:
ok 1 number(s): "660835595"
Test #30:
score: 0
Accepted
time: 412ms
memory: 130860kb
input:
60000
output:
323452070
result:
ok 1 number(s): "323452070"
Test #31:
score: 0
Accepted
time: 525ms
memory: 152840kb
input:
70000
output:
307315915
result:
ok 1 number(s): "307315915"
Test #32:
score: 0
Accepted
time: 581ms
memory: 146152kb
input:
80000
output:
951757567
result:
ok 1 number(s): "951757567"
Test #33:
score: 0
Accepted
time: 651ms
memory: 146812kb
input:
90000
output:
426123208
result:
ok 1 number(s): "426123208"
Test #34:
score: 0
Accepted
time: 730ms
memory: 156384kb
input:
100000
output:
827418228
result:
ok 1 number(s): "827418228"
Test #35:
score: 0
Accepted
time: 785ms
memory: 165580kb
input:
110000
output:
541614559
result:
ok 1 number(s): "541614559"
Test #36:
score: 0
Accepted
time: 860ms
memory: 161636kb
input:
120000
output:
184688986
result:
ok 1 number(s): "184688986"
Test #37:
score: 0
Accepted
time: 895ms
memory: 163348kb
input:
130000
output:
898089371
result:
ok 1 number(s): "898089371"
Test #38:
score: 0
Accepted
time: 1122ms
memory: 199012kb
input:
140000
output:
949540221
result:
ok 1 number(s): "949540221"
Test #39:
score: 0
Accepted
time: 1209ms
memory: 191496kb
input:
150000
output:
767689851
result:
ok 1 number(s): "767689851"
Test #40:
score: 0
Accepted
time: 1216ms
memory: 193148kb
input:
160000
output:
553494563
result:
ok 1 number(s): "553494563"
Test #41:
score: 0
Accepted
time: 1279ms
memory: 194072kb
input:
170000
output:
270711750
result:
ok 1 number(s): "270711750"
Test #42:
score: 0
Accepted
time: 1359ms
memory: 201332kb
input:
180000
output:
108155689
result:
ok 1 number(s): "108155689"
Test #43:
score: 0
Accepted
time: 1391ms
memory: 196764kb
input:
190000
output:
327542856
result:
ok 1 number(s): "327542856"
Test #44:
score: 0
Accepted
time: 1640ms
memory: 213744kb
input:
200000
output:
236144151
result:
ok 1 number(s): "236144151"
Test #45:
score: 0
Accepted
time: 1639ms
memory: 221784kb
input:
198798
output:
16935264
result:
ok 1 number(s): "16935264"
Extra Test:
score: 0
Extra Test Passed