QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#303993#8010. Hierarchies of Judgesucup-team1453#AC ✓5117ms35864kbC++1412.0kb2024-01-13 10:58:302024-01-13 10:58:30

Judging History

你现在查看的是最新测评结果

  • [2024-01-13 10:58:30]
  • 评测
  • 测评结果:AC
  • 用时:5117ms
  • 内存:35864kb
  • [2024-01-13 10:58:30]
  • 提交

answer

#include<bits/stdc++.h>
#define L(i, j, k) for(int i = (j); i <= (k); ++i)
#define R(i, j, k) for(int i = (j); i >= (k); --i)
#define ll long long
#define sz(a) ((int) (a).size())
#define vi vector < int >
#define me(a, x) memset(a, x, sizeof(a))
#define ull unsigned long long
#define ld __float128
#define pb emplace_back
using namespace std;
const int mod = 998244353, _G = 3, N = (1 << 21), inv2 = (mod + 1) / 2;
#define add(a, b) (a + b >= mod ? a + b - mod : a + b)
#define dec(a, b) (a < b ? a - b + mod : a - b)
int qpow(int x, int y = mod - 2) {
	int res = 1;
	for(; y; x = (ll) x * x % mod, y >>= 1) if(y & 1) res = (ll) res * x % mod;
	return res;
}
int fac[N + 1], ifac[N + 1], inv[N + 1];
void init(int x) {
	fac[0] = ifac[0] = inv[1] = 1;
	L(i, 2, x) inv[i] = (ll) inv[mod % i] * (mod - mod / i) % mod;
	L(i, 1, x) fac[i] = (ll) fac[i - 1] * i % mod, ifac[i] = (ll) ifac[i - 1] * inv[i] % mod;
}
int C(int x, int y) {
	return y < 0 || x < y ? 0 : (ll) fac[x] * ifac[y] % mod * ifac[x - y] % mod;
}
inline int sgn(int x) {
	return (x & 1) ? mod - 1 : 1;
}
int rt[N], Lim;
void Pinit(int x) {
	for(Lim = 1; Lim <= x; Lim <<= 1) ;
	for(int i = 1; i < Lim; i <<= 1) {
		int sG = qpow (_G, (mod - 1) / (i << 1));
		rt[i] = 1;
		L(j, i + 1, i * 2 - 1) rt[j] = (ll) rt[j - 1] * sG % mod;
	}
}
struct poly {
	vector<int> a;
	int size() { return sz(a); }
	int & operator [] (int x) { return a[x]; }
	int v(int x) { return x < 0 || x >= sz(a) ? 0 : a[x]; }
	void clear() { vector<int> ().swap(a); }
	void rs(int x = 0) { a.resize(x); }
	poly (int n = 0) { rs(n); }
	poly (vector<int> o) { a = o; }
	poly (const poly &o) { a = o.a; }
	poly Rs(int x = 0) { vi res = a; res.resize(x); return res; }
	inline void dif() {
		int n = sz(a);
		for (int l = n >> 1; l >= 1; l >>= 1) 
			for(int j = 0; j < n; j += l << 1) 
				for(int k = 0, *w = rt + l; k < l; k++, w++) {
					int x = a[j + k], y = a[j + k + l];
					a[j + k] = add(x, y);
					a[j + k + l] = (ll) * w * dec(x, y) % mod;
				}
	}
	void dit () {
		int n = sz(a);
		for(int i = 2; i <= n; i <<= 1) 
			for(int j = 0, l = (i >> 1); j < n; j += i) 
				for(int k = 0, *w = rt + l; k < l; k++, w++) {
					int pa = a[j + k], pb = (ll) a[j + k + l] * *w % mod;
					a[j + k] = add(pa, pb), a[j + k + l] = dec(pa, pb);
				}
		reverse(a.begin() + 1, a.end());
		for(int i = 0, iv = qpow(n); i < n; i++) a[i] = (ll) a[i] * iv % mod;
	} 
	friend poly operator * (poly aa, poly bb) {
		if(!sz(aa) || !sz(bb)) return {};
		int lim, all = sz(aa) + sz(bb) - 1;
		for(lim = 1; lim < all; lim <<= 1);
		aa.rs(lim), bb.rs(lim), aa.dif(), bb.dif();
		L(i, 0, lim - 1) aa[i] = (ll) aa[i] * bb[i] % mod;
		aa.dit(), aa.a.resize(all);
		return aa;
	}
	poly Inv() {
		poly res, f, g;
		res.rs(1), res[0] = qpow(a[0]);
		for(int m = 1, pn; m < sz(a); m <<= 1) {
			pn = m << 1, f = res, g.rs(pn), f.rs(pn);
			for(int i = 0; i < pn; i++) g[i] = (*this).v(i);
			f.dif(), g.dif();
			for(int i = 0; i < pn; i++) g[i] = (ll) f[i] * g[i] % mod;
			g.dit();
			for(int i = 0; i < m; i++) g[i] = 0;
			g.dif();
			for(int i = 0; i < pn; i++) g[i] = (ll) f[i] * g[i] % mod;
			g.dit(), res.rs(pn);
			for(int i = m; i < min(pn, sz(a)); i++) res[i] = (mod - g[i]) % mod;
		} 
		return res.rs(sz(a)), res;
	}
	poly Shift (int x) {
		poly zm (sz(a) + x);
		L(i, max(-x, 0), sz(a) - 1) zm[i + x] = a[i];
		return zm; 
	}
	friend poly operator * (poly aa, int bb) {
		poly res(sz(aa));
		L(i, 0, sz(aa) - 1) res[i] = (ll) aa[i] * bb % mod;
		return res;
	}
	friend poly operator + (poly aa, poly bb) {
		vector<int> res(max(sz(aa), sz(bb)));
		L(i, 0, sz(res) - 1) res[i] = add(aa.v(i), bb.v(i));
		return poly(res);
	}
	friend poly operator - (poly aa, poly bb) {
		vector<int> res(max(sz(aa), sz(bb)));
		L(i, 0, sz(res) - 1) res[i] = dec(aa.v(i), bb.v(i));
		return poly(res);
	}
	poly & operator += (poly o) {
		rs(max(sz(a), sz(o)));
		L(i, 0, sz(a) - 1) (a[i] += o.v(i)) %= mod;
		return (*this);
	}
	poly & operator -= (poly o) {
		rs(max(sz(a), sz(o)));
		L(i, 0, sz(a) - 1) (a[i] += mod - o.v(i)) %= mod;
		return (*this);
	}
	poly & operator *= (poly o) {
		return (*this) = (*this) * o;
	}
	poly Integ() {
		if(!sz(a)) return poly();
		poly res(sz(a) + 1);
		L(i, 1, sz(a)) res[i] = (ll) a[i - 1] * inv[i] % mod;
		return res;
	}
	poly Deriv() {
		if(!sz(a)) return poly();
		poly res(sz(a) - 1); 
		L(i, 1, sz(a) - 1) res[i - 1] = (ll) a[i] * i % mod;
		return res;
	}
	poly Ln() {
		poly g = ((*this).Inv() * (*this).Deriv()).Integ();
		return g.rs(sz(a)), g;
	}
	poly Exp() {
		poly res(1), f; 
		res[0] = 1;
		for(int m = 1, pn; m < sz(a); m <<= 1) {
			pn = min(m << 1, sz(a)), f.rs(pn), res.rs(pn);
			for(int i = 0; i < pn; i++) f[i] = (*this).v(i);
			f -= res.Ln(), (f[0] += 1) %= mod, res *= f, res.rs(pn); 
		}
		return res.rs(sz(a)), res;
	}
	poly pow(int x, int rx = -1) { // x : the power % mod; rx : the power % (mod - 1)
		if(rx == -1) rx = x;
		int cnt = 0;
		while (a[cnt] == 0 && cnt < sz(a)) cnt += 1;
		
		poly res = (*this);
		L(i, cnt, sz(a) - 1) res[i - cnt] = res[i];
		L(i, sz(a) - cnt, sz(a) - 1) res[i] = 0;
		int c = res[0], w = qpow (res[0]);
		L(i, 0, sz(res) - 1) res[i] = (ll) res[i] * w % mod;
		res = res.Ln();
		L(i, 0, sz(res) - 1) res[i] = (ll) res[i] * x % mod;
		res = res.Exp();
		c = qpow (c, rx);
		L(i, 0, sz(res) - 1) res[i] = (ll) res[i] * c % mod;
		
		if((ll) cnt * x > sz(a)) L(i, 0, sz(a) - 1) res[i] = 0;
		else if(cnt) {
			R(i, sz(a) - cnt * x - 1, 0) res[i + cnt * x] = res[i];
			L(i, 0, cnt * x - 1) res[i] = 0; 
		}
		return res;
	}
	poly sqrt(int rt = 1) {
		poly res(1), f; 
		res[0] = rt;
		for(int m = 1, pn; m < sz(a); m <<= 1) {
			pn = min(m << 1, sz(a)), f.rs(pn);
			for(int i = 0; i < pn; i++) f[i] = (*this).v(i);
			f += res * res, f.rs(pn), res.rs(pn), res = f * res.Inv(), res.rs(pn);
			for(int i = 0; i < pn; i++) res[i] = (ll) res[i] * inv2 % mod;
		} 
		return res;
	}
	void Rev() {
		reverse(a.begin(), a.end());
	}
} ;

int n;
poly f0, f1;
int dp0[N], dp1[N], dp2[N], dp3[N], dp4[N], dp5[N];
int mul[N];

poly Mult(poly aa, poly bb, int len) {
	int lim, all = len;
	for(lim = 1; lim < all; lim <<= 1);
	aa.rs(lim), bb.rs(lim), aa.dif(), bb.dif();
	L(i, 0, lim - 1) aa[i] = (ll) aa[i] * bb[i] % mod;
	aa.dit(), aa.a.resize(all);
	return aa;
} 
void dc(int l, int r) {
	if(l == r) {
		if(l == 0)return;
		int i = l;
//		L(j, 0, i - 1) {
//			(f0[i] += (ll)(dp1[j] + mod - dp2[j]) * dp3[i - j - 1] % mod) %= mod;
//		}
		
//		L(j, 0, i - 1) {
//			(f1[i] += (ll)(dp1[j] + mod - dp5[j]) * dp3[i - j - 1] % mod) %= mod;
//		}
		
//		L(j, 1, i - 1) {
//			(dp0[i] += (ll)f0[j] * f1[i - j] % mod) %= mod;
//		}

		L(j, i, i) {
			(dp3[i] += (ll)f0[j] * dp3[i - j] % mod) %= mod;
		}
		
		L(j, i, i) {
			(dp1[i] += (ll)dp1[i - j] * f1[j] % mod * j % mod) %= mod;
		}
		L(j, i, i) {
			(dp2[i] += (ll)dp2[i - j] * dp0[j] % mod * j % mod) %= mod;
		}
		dp2[i] = (ll)dp2[i] * inv[i] % mod;
		dp1[i] = (ll)dp1[i] * inv[i] % mod;
		
		L(j, i, i) {
			(dp4[i] += (ll)dp2[i - j] * f0[j] % mod) %= mod;
		}
		L(j, i, i) {
			(dp5[i] += (ll)dp4[i - j] * f0[j] % mod) %= mod;
		}
		return;
	}
	int mid = (l + r) >> 1;
	dc(l, mid);
	
	{ // f0
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = dp3[i];
		L(i, 0, min(r - l, mid)) gm[i] = (dp1[i] + mod - dp2[i]) % mod;
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (f0[i] += lp[i - l - 1]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = (dp1[i] + mod - dp2[i]) % mod;
			L(i, 0, min(r - l, mid)) gm[i] = dp3[i];
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (f0[i] += lp[i - l - 1]) %= mod;
		}
	}
	
	{ // f1
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = dp3[i];
		L(i, 0, min(r - l, mid)) gm[i] = (dp1[i] + mod - dp5[i]) % mod;
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (f1[i] += lp[i - l - 1]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = (dp1[i] + mod - dp5[i]) % mod;
			L(i, 0, min(r - l, mid)) gm[i] = dp3[i];
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (f1[i] += lp[i - l - 1]) %= mod;
		}
	}
	
	{ // dp0
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = f0[i];
		L(i, 0, min(r - l, mid)) gm[i] = f1[i];
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (dp0[i] += lp[i - l]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = f1[i];
			L(i, 0, min(r - l, mid)) gm[i] = f0[i];
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (dp0[i] += lp[i - l]) %= mod;
		}
	}
	
	{ // dp3
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = f0[i];
		L(i, 0, min(r - l, mid)) gm[i] = dp3[i];
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (dp3[i] += lp[i - l]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = dp3[i];
			L(i, 0, min(r - l, mid)) gm[i] = f0[i];
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (dp3[i] += lp[i - l]) %= mod;
		}
	}
	
	{ // dp1
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = (ll) f1[i] * i % mod;
		L(i, 0, min(r - l, mid)) gm[i] = dp1[i];
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (dp1[i] += lp[i - l]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = dp1[i];
			L(i, 0, min(r - l, mid)) gm[i] = (ll) f1[i] * i % mod;
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (dp1[i] += lp[i - l]) %= mod;
		}
	}
	
	{ // dp2
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = (ll) dp0[i] * i % mod;
		L(i, 0, min(r - l, mid)) gm[i] = dp2[i];
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (dp2[i] += lp[i - l]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = dp2[i];
			L(i, 0, min(r - l, mid)) gm[i] = (ll) dp0[i] * i % mod;
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (dp2[i] += lp[i - l]) %= mod;
		}
	}
	
	{ // dp4
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = dp2[i];
		L(i, 0, min(r - l, mid)) gm[i] = f0[i];
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (dp4[i] += lp[i - l]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = f0[i];
			L(i, 0, min(r - l, mid)) gm[i] = dp2[i];
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (dp4[i] += lp[i - l]) %= mod;
		}
	}
	
	{ // dp5
		poly lp(mid - l + 1), gm(r - l + 1);
		L(i, l, mid) lp[i - l] = dp4[i];
		L(i, 0, min(r - l, mid)) gm[i] = f0[i];
		lp = Mult(lp, gm, r - l + 2);
		L(i, mid + 1, r) (dp5[i] += lp[i - l]) %= mod;
		if(l != 0) {
			poly lp(mid - l + 1), gm(r - l + 1);
			L(i, l, mid) lp[i - l] = f0[i];
			L(i, 0, min(r - l, mid)) gm[i] = dp4[i];
			lp = Mult(lp, gm, r - l + 2);
			L(i, mid + 1, r) (dp5[i] += lp[i - l]) %= mod;
		}
	}
	dc(mid + 1, r);
}
int main() {
	ios :: sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
	cin >> n;
	init(n * 2 + 4);
	Pinit(n * 2 + 4);
	f0.rs(n + 1), f1.rs(n + 1);
	dp1[0] = dp2[0] = dp3[0] = 1;
	dc(0, n);
//	L(i, 1, n) {
//		L(j, 0, i - 1) {
//			(f0[i] += (ll)(dp1[j] + mod - dp2[j]) * dp3[i - j - 1] % mod) %= mod;
//		}
//		L(j, 0, i - 1) {
//			(f1[i] += (ll)(dp1[j] + mod - dp5[j]) * dp3[i - j - 1] % mod) %= mod;
//		}
//		
//		L(j, 1, i - 1) {
//			(dp0[i] += (ll)f0[j] * f1[i - j] % mod) %= mod;
//		}
//		L(j, 1, i) {
//			(dp3[i] += (ll)f0[j] * dp3[i - j] % mod) %= mod;
//		}
//		
//		L(j, 1, i) {
//			(dp1[i] += (ll)dp1[i - j] * f1[j] % mod * j % mod) %= mod;
//		}
//		L(j, 1, i) {
//			(dp2[i] += (ll)dp2[i - j] * dp0[j] % mod * j % mod) %= mod;
//		}
//		dp2[i] = (ll)dp2[i] * inv[i] % mod;
//		dp1[i] = (ll)dp1[i] * inv[i] % mod;
//		
//		L(j, 1, i) {
//			(dp4[i] += (ll)dp2[i - j] * f0[j] % mod) %= mod;
//		}
//		L(j, 1, i) {
//			(dp5[i] += (ll)dp4[i - j] * f0[j] % mod) %= mod;
//		}
//	}
	cout << (ll) (f0[n] + f1[n]) * fac[n] % mod << '\n';
	return 0;
} 

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 17988kb

input:

1

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 0
Accepted
time: 0ms
memory: 17920kb

input:

3

output:

24

result:

ok 1 number(s): "24"

Test #3:

score: 0
Accepted
time: 0ms
memory: 17984kb

input:

5

output:

3190

result:

ok 1 number(s): "3190"

Test #4:

score: 0
Accepted
time: 4ms
memory: 18180kb

input:

100

output:

413875584

result:

ok 1 number(s): "413875584"

Test #5:

score: 0
Accepted
time: 0ms
memory: 17924kb

input:

1

output:

1

result:

ok 1 number(s): "1"

Test #6:

score: 0
Accepted
time: 0ms
memory: 17860kb

input:

2

output:

4

result:

ok 1 number(s): "4"

Test #7:

score: 0
Accepted
time: 0ms
memory: 17924kb

input:

3

output:

24

result:

ok 1 number(s): "24"

Test #8:

score: 0
Accepted
time: 0ms
memory: 17992kb

input:

4

output:

236

result:

ok 1 number(s): "236"

Test #9:

score: 0
Accepted
time: 0ms
memory: 17936kb

input:

5

output:

3190

result:

ok 1 number(s): "3190"

Test #10:

score: 0
Accepted
time: 3ms
memory: 18196kb

input:

6

output:

55182

result:

ok 1 number(s): "55182"

Test #11:

score: 0
Accepted
time: 0ms
memory: 17988kb

input:

7

output:

1165220

result:

ok 1 number(s): "1165220"

Test #12:

score: 0
Accepted
time: 0ms
memory: 18000kb

input:

8

output:

29013896

result:

ok 1 number(s): "29013896"

Test #13:

score: 0
Accepted
time: 3ms
memory: 17924kb

input:

9

output:

832517514

result:

ok 1 number(s): "832517514"

Test #14:

score: 0
Accepted
time: 0ms
memory: 18204kb

input:

10

output:

96547079

result:

ok 1 number(s): "96547079"

Test #15:

score: 0
Accepted
time: 0ms
memory: 17988kb

input:

11

output:

296100513

result:

ok 1 number(s): "296100513"

Test #16:

score: 0
Accepted
time: 0ms
memory: 18168kb

input:

12

output:

672446962

result:

ok 1 number(s): "672446962"

Test #17:

score: 0
Accepted
time: 3ms
memory: 17928kb

input:

13

output:

986909297

result:

ok 1 number(s): "986909297"

Test #18:

score: 0
Accepted
time: 0ms
memory: 17932kb

input:

14

output:

306542229

result:

ok 1 number(s): "306542229"

Test #19:

score: 0
Accepted
time: 3ms
memory: 17948kb

input:

15

output:

8548107

result:

ok 1 number(s): "8548107"

Test #20:

score: 0
Accepted
time: 0ms
memory: 17992kb

input:

16

output:

773960239

result:

ok 1 number(s): "773960239"

Test #21:

score: 0
Accepted
time: 0ms
memory: 18216kb

input:

17

output:

611627547

result:

ok 1 number(s): "611627547"

Test #22:

score: 0
Accepted
time: 0ms
memory: 18000kb

input:

18

output:

91793980

result:

ok 1 number(s): "91793980"

Test #23:

score: 0
Accepted
time: 0ms
memory: 17988kb

input:

19

output:

689202618

result:

ok 1 number(s): "689202618"

Test #24:

score: 0
Accepted
time: 0ms
memory: 18128kb

input:

20

output:

605957782

result:

ok 1 number(s): "605957782"

Test #25:

score: 0
Accepted
time: 215ms
memory: 18460kb

input:

10000

output:

713782215

result:

ok 1 number(s): "713782215"

Test #26:

score: 0
Accepted
time: 449ms
memory: 18524kb

input:

20000

output:

337916836

result:

ok 1 number(s): "337916836"

Test #27:

score: 0
Accepted
time: 538ms
memory: 18812kb

input:

30000

output:

580803285

result:

ok 1 number(s): "580803285"

Test #28:

score: 0
Accepted
time: 984ms
memory: 19572kb

input:

40000

output:

732660392

result:

ok 1 number(s): "732660392"

Test #29:

score: 0
Accepted
time: 1057ms
memory: 19748kb

input:

50000

output:

660835595

result:

ok 1 number(s): "660835595"

Test #30:

score: 0
Accepted
time: 1163ms
memory: 20124kb

input:

60000

output:

323452070

result:

ok 1 number(s): "323452070"

Test #31:

score: 0
Accepted
time: 2108ms
memory: 21076kb

input:

70000

output:

307315915

result:

ok 1 number(s): "307315915"

Test #32:

score: 0
Accepted
time: 2177ms
memory: 29764kb

input:

80000

output:

951757567

result:

ok 1 number(s): "951757567"

Test #33:

score: 0
Accepted
time: 2247ms
memory: 30912kb

input:

90000

output:

426123208

result:

ok 1 number(s): "426123208"

Test #34:

score: 0
Accepted
time: 2317ms
memory: 22144kb

input:

100000

output:

827418228

result:

ok 1 number(s): "827418228"

Test #35:

score: 0
Accepted
time: 2439ms
memory: 30864kb

input:

110000

output:

541614559

result:

ok 1 number(s): "541614559"

Test #36:

score: 0
Accepted
time: 2520ms
memory: 22756kb

input:

120000

output:

184688986

result:

ok 1 number(s): "184688986"

Test #37:

score: 0
Accepted
time: 2787ms
memory: 23224kb

input:

130000

output:

898089371

result:

ok 1 number(s): "898089371"

Test #38:

score: 0
Accepted
time: 4642ms
memory: 26452kb

input:

140000

output:

949540221

result:

ok 1 number(s): "949540221"

Test #39:

score: 0
Accepted
time: 4730ms
memory: 33176kb

input:

150000

output:

767689851

result:

ok 1 number(s): "767689851"

Test #40:

score: 0
Accepted
time: 4757ms
memory: 33308kb

input:

160000

output:

553494563

result:

ok 1 number(s): "553494563"

Test #41:

score: 0
Accepted
time: 4865ms
memory: 27540kb

input:

170000

output:

270711750

result:

ok 1 number(s): "270711750"

Test #42:

score: 0
Accepted
time: 4918ms
memory: 28032kb

input:

180000

output:

108155689

result:

ok 1 number(s): "108155689"

Test #43:

score: 0
Accepted
time: 5054ms
memory: 35864kb

input:

190000

output:

327542856

result:

ok 1 number(s): "327542856"

Test #44:

score: 0
Accepted
time: 5117ms
memory: 28648kb

input:

200000

output:

236144151

result:

ok 1 number(s): "236144151"

Test #45:

score: 0
Accepted
time: 5085ms
memory: 34792kb

input:

198798

output:

16935264

result:

ok 1 number(s): "16935264"

Extra Test:

score: 0
Extra Test Passed