QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#298613 | #7900. Gifts from Knowledge | ucup-team087# | AC ✓ | 29ms | 42340kb | C++20 | 19.9kb | 2024-01-06 13:32:35 | 2024-01-06 13:32:35 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
};
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 6 "main.cpp"
using mint = modint107;
void solve() {
LL(H, W);
VEC(string, G, H);
vc<tuple<int, int, int>> edge;
FOR(j, W) {
int k = W - 1 - j;
if (j > k) continue;
vc<int> A, B;
FOR(i, H) {
if (G[i][j] == '1') A.eb(i);
if (j < k && G[i][k] == '1') B.eb(i);
}
if (len(A) + len(B) >= 3) return print(0);
if (len(A) + len(B) <= 1) continue;
if (j == k) return print(0);
vc<int> X;
for (auto& x: A) X.eb(x);
for (auto& x: B) X.eb(x);
if (X[0] == X[1]) continue;
int a = X[0], b = X[1];
if (G[a][j] == G[b][j]) {
edge.eb(a, b, 1);
} else {
edge.eb(a, b, 0);
}
}
int N = H;
UnionFind uf(2 * N);
for (auto& [a, b, k]: edge) {
if (k == 0) {
uf.merge(2 * a + 0, 2 * b + 0);
uf.merge(2 * a + 1, 2 * b + 1);
} else {
uf.merge(2 * a + 0, 2 * b + 1);
uf.merge(2 * a + 1, 2 * b + 0);
}
}
FOR(v, N) {
if (uf[2 * v + 0] == uf[2 * v + 1]) { return print(0); }
}
ll n = uf.n_comp;
n /= 2;
mint ANS = mint(2).pow(n);
print(ANS);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 3492kb
input:
3 3 5 01100 10001 00010 2 1 1 1 2 3 001 001
output:
4 0 2
result:
ok 3 number(s): "4 0 2"
Test #2:
score: 0
Accepted
time: 7ms
memory: 3764kb
input:
15613 10 10 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 15 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 1 5 00000 5 9 000000000 000000000 0000...
output:
1024 32768 2 32 32768 128 32 16 16 2 16384 16384 128 128 32768 8192 128 64 16384 2 4 2 4096 16 4096 1024 32768 32768 16384 8 128 2 16 4096 8192 32768 8192 8192 16 16384 16384 256 128 8 256 8 4096 512 2 4 32 32 2 64 512 1024 32768 32768 2 64 16384 16 8192 16 256 16 64 8192 8192 64 1024 2 32768 2 4 51...
result:
ok 15613 numbers
Test #3:
score: 0
Accepted
time: 8ms
memory: 3812kb
input:
15759 9 6 000000 000000 000000 000000 000000 000000 000000 000000 000000 5 15 010000000000000 000000000000000 000000000000000 000100000000000 000100000000000 14 12 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000...
output:
512 16 16384 512 1024 4096 32768 4 2 512 512 512 512 8 2 256 16 4096 512 64 16 4096 512 32 32768 8192 32 2048 128 16 4096 64 32768 256 32 16384 8 512 32 2048 8 16 1024 2048 128 64 32 8 512 8 8192 256 8192 32768 2 8 512 512 256 32 2 2048 8192 8 64 8 2 16384 32768 32768 1024 4096 16384 16384 128 256 4...
result:
ok 15759 numbers
Test #4:
score: 0
Accepted
time: 10ms
memory: 3724kb
input:
15734 3 6 000101 010000 001110 5 7 0010010 1000000 0101000 0000000 0000000 10 9 000000000 100000000 000000000 000000000 000010000 000000001 000000000 000000000 000000000 000000000 5 14 10000000000000 00001001000000 00000100000000 00000000000000 00000100000000 5 14 00000000000000 00010000000100 00000...
output:
0 16 512 16 32 4096 0 256 0 0 0 0 4096 8 1024 128 8192 0 128 0 2 0 0 32 64 0 0 0 4096 64 8 8 32 128 64 4096 2 512 16384 4 2 0 0 32 0 4096 8 0 8192 256 256 64 0 32 0 32 0 256 4 16384 1024 4 0 16 256 0 2048 64 8 0 0 32768 2048 512 2048 2 0 8192 0 2 2048 16 512 256 1024 0 0 2 32 512 16384 0 32 1024 102...
result:
ok 15734 numbers
Test #5:
score: 0
Accepted
time: 10ms
memory: 3744kb
input:
15616 14 3 000 000 000 000 100 000 000 000 000 000 001 001 001 000 15 5 00000 00000 00010 00000 00000 01000 00000 00000 00000 00001 00100 00000 00000 00000 10000 9 14 00000000000000 00000000000000 00100000010000 00001000100000 01010010000010 00000000000000 01000000000010 00100011000001 0000000000000...
output:
0 8192 0 64 0 512 0 8192 0 512 0 0 64 0 0 256 0 512 0 0 16 0 2048 0 256 0 1024 0 0 2 2 0 64 32 0 2 2 512 16 0 2 4 8192 0 0 1024 256 8 0 32 4 0 0 0 0 0 1024 4096 0 16384 32 0 2 4096 2 512 0 0 0 64 0 0 0 0 2 0 128 256 16 2 128 0 8 2 16384 0 0 2 0 0 0 128 0 0 0 0 0 2 4096 512 0 0 2 0 256 0 2 0 0 0 8 0 ...
result:
ok 15616 numbers
Test #6:
score: 0
Accepted
time: 10ms
memory: 3728kb
input:
15525 5 1 1 0 0 0 0 14 15 000000000000000 000001000010000 000000000000000 000000000000000 000110000000000 000000000000001 000000000000000 000010000010000 000000000000000 001010000000000 000101000000000 000000000000100 000000000000000 000100010001000 14 15 000000000000000 000000000000000 000000000010...
output:
32 0 0 0 0 0 0 2 2 16384 0 0 0 2 0 0 0 0 32 0 2048 0 0 256 4096 0 0 512 0 0 0 0 16 0 0 0 0 0 0 0 1024 0 0 0 0 0 0 0 0 0 128 0 0 0 512 0 0 0 0 2 8 0 0 0 16 1024 0 0 0 32 8192 0 0 0 0 0 4 0 0 0 128 4 0 0 2048 0 0 2 32768 0 0 4096 0 2 0 0 0 8 2 0 0 0 0 32 0 0 0 0 0 2 0 8192 4096 0 0 0 0 512 0 0 0 4 0 0...
result:
ok 15525 numbers
Test #7:
score: 0
Accepted
time: 8ms
memory: 3836kb
input:
15547 5 7 1001011 0011001 1101011 0011011 0101011 3 14 11110100111110 01110111011111 11011111110111 4 4 1100 1110 0110 0101 9 9 000000000 101000100 001100100 100001000 000000010 100100000 010110000 000100110 110100000 5 8 10000001 10101011 11101010 01011110 10100111 12 12 000000100000 000000000010 0...
output:
0 0 0 0 0 0 2 0 0 0 0 0 16 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ...
result:
ok 15547 numbers
Test #8:
score: 0
Accepted
time: 6ms
memory: 3836kb
input:
15626 8 11 10000010011 01100000010 00000100010 10000010000 00001000000 10100000100 00101010011 00000011000 11 12 101000001000 000010010100 010001100001 000110101010 100010100000 100010000100 001100100000 010000100111 000011011101 000110010000 000000000000 15 8 00001000 00000000 00000000 00100000 000...
output:
0 0 0 2 0 1024 0 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 16 0 32768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4096 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 15626 numbers
Test #9:
score: 0
Accepted
time: 9ms
memory: 3724kb
input:
15537 5 1 0 0 0 1 0 10 6 000000 000000 000010 000000 000000 000100 000000 100000 000000 000000 8 3 001 010 000 000 000 000 000 000 3 15 000000001000000 000010000000110 000000000000000 11 3 000 000 000 100 000 000 000 000 000 000 010 1 12 000000110100 3 7 0000010 0000001 0010000 8 1 0 0 0 0 1 0 0 0 1...
output:
32 1024 256 8 2048 2 8 256 2048 64 16384 32 8 4 2048 256 2048 8 32 128 16 32768 256 4096 256 64 2 128 8192 64 16 32768 64 8 1024 128 4096 32 4 16 4 2 8 128 2 1024 2048 1024 16384 256 128 1024 64 512 2048 1024 256 64 32 32 2048 4096 1024 32768 4 4096 256 1024 8 8192 64 16384 2048 2048 16384 8 8192 16...
result:
ok 15537 numbers
Test #10:
score: 0
Accepted
time: 7ms
memory: 3800kb
input:
15581 4 4 0010 0001 0000 0000 9 14 00000000000000 00000000010000 00000000000000 10000001000000 00000100000010 00010000000000 00000000000000 00000000001000 00000000000100 6 11 00000000000 00000001000 01001000100 00000000000 00000000000 00000100001 14 13 0000000010001 0000000000000 0000000000000 00100...
output:
16 256 64 16384 16 32 32 64 16384 16384 2 16384 8 8192 8192 4096 128 32768 2 32 128 2048 32 32768 4096 2048 128 8 32768 256 256 16 256 4096 4 32768 4 16384 4 4 128 8192 4096 8192 2 8192 4096 2048 16384 1024 512 64 512 4096 2048 1024 2048 1024 8 16 16 1024 8 32 2 2048 1024 1024 16384 16384 64 512 512...
result:
ok 15581 numbers
Test #11:
score: 0
Accepted
time: 10ms
memory: 3756kb
input:
15614 12 9 000000001 000000100 000000000 000000000 000000000 000000000 000000010 010010000 000000000 000100000 000000100 000000001 5 5 01010 00000 10100 00000 00001 15 6 000000 000000 000000 000000 011001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 2 7 1100000 0110001 13 5 ...
output:
512 16 32768 0 4096 0 16384 2 8 8192 32 4 1024 0 16 8 4 64 0 2 2 2 1024 128 128 128 2 32 1024 32 1024 16 64 64 128 1024 512 0 4096 2 32 1024 4096 256 4 2 4096 2 32 64 2 2 0 0 128 16 16 16 4096 1024 2048 16 256 16 16 64 0 1024 0 4096 2 2 16 4 4 8192 1024 512 0 256 2 8 128 128 64 16 128 4096 64 1024 2...
result:
ok 15614 numbers
Test #12:
score: 0
Accepted
time: 15ms
memory: 3756kb
input:
15569 11 3 000 000 000 000 000 000 100 000 000 010 000 2 11 00010000100 11000001101 7 13 0000000000010 0000000100000 1010010000000 0000001001000 0100000000100 1000100000000 0000100000000 12 6 000100 000001 000000 000000 000000 010000 000001 000000 000010 000100 000000 000000 9 6 000000 001000 000010...
output:
2048 0 4 512 64 16384 512 1024 4096 32 256 16 16384 0 512 8192 4096 4 128 4 8 512 1024 8 0 4096 4 4 128 2 4 64 4 512 128 64 16 0 4096 128 1024 0 4 2 0 16 64 256 1024 2048 256 0 4 8 8 16 256 512 256 0 2 2 2048 256 512 2048 4096 512 2048 16 0 1024 4 16 2 8192 1024 32 4 1024 256 32 4096 32 16 32 128 12...
result:
ok 15569 numbers
Test #13:
score: 0
Accepted
time: 11ms
memory: 3756kb
input:
15535 9 13 0000100000001 0000000000100 0000000000000 1000000100010 0000001000000 0001000000000 0000000000000 0000000000010 0001000000000 8 11 00000100100 00000000000 01000000000 10001000100 00010001000 10000000000 00000010000 01000000000 5 13 1000100000000 0001000010110 0000000100000 0001000100110 0...
output:
64 16 2 16384 2 8 8 8 2048 4096 0 256 0 4096 0 0 2 2 128 1024 16384 4 512 8 512 0 1024 2048 32 16 4 4096 0 8 2048 4 256 4 64 4 0 128 8192 4096 512 2 64 8 1024 8 8 16 32 1024 16 1024 1024 8192 4 16384 0 4 256 2 64 8192 2 2 16 8192 0 64 16 0 8 0 2 4096 64 0 32 128 2 2 2 8 0 32 16 16384 2048 64 1024 4 ...
result:
ok 15535 numbers
Test #14:
score: 0
Accepted
time: 16ms
memory: 3736kb
input:
15665 15 14 00000100100000 00000000001000 00000000000000 00001001000000 00000000000000 00000000000000 11000000000000 00000000000000 01000000000100 00000000000100 00000000000000 00000000000000 00000000000000 00000000010000 00000001001000 3 13 0010000010110 1101000100001 0001010000000 6 6 000100 00000...
output:
1024 0 32 2 256 256 4096 0 16384 16 64 16 256 2 2 0 256 2048 128 2 2048 2 8 2 2 4096 64 2 8 1024 0 128 512 64 512 64 128 4 256 16 128 16 2 4096 32 32 2 0 0 256 32 2 128 64 256 512 0 2 1024 0 0 512 4096 4 1024 0 8192 2 512 2048 64 0 0 64 0 32768 128 2 2048 512 16384 32 0 8 2 1024 2048 2 2048 4096 2 8...
result:
ok 15665 numbers
Test #15:
score: 0
Accepted
time: 4ms
memory: 4084kb
input:
68 835 480 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
0 0 0 0 0 524288 0 0 0 0 524288 0 0 0 0 0 0 0 0 262144 262144 0 262144 524288 1048576 131072 262144 262144 0 262144 0 0 524288 0 0 0 524288 0 0 65536 0 1048576 131072 524288 131072 0 131072 131072 0 0 131072 0 0 262144 0 65536 0 131072 0 0 0 0 262144 262144 0 0 524288 0
result:
ok 68 numbers
Test #16:
score: 0
Accepted
time: 4ms
memory: 3996kb
input:
45 249 416 0000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 262144 0 0 0 0 131072 0 0 262144 131072 262144 262144 0 0 0 0 0 0 0
result:
ok 45 numbers
Test #17:
score: 0
Accepted
time: 4ms
memory: 4412kb
input:
59 60 930 00000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 59 numbers
Test #18:
score: 0
Accepted
time: 2ms
memory: 4224kb
input:
58 902 434 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
716352531 0 0 373675883 16384 190350546 0 0 0 32768 16384 8192 32768 32768 306437691 0 8192 68717736 8192 16384 8192 2048 8192 4096 8192 16384 0 8192 4096 8192 32768 4096 32768 131072 32768 8192 639816142 16384 8192 32768 0 1024 16384 4096 8192 16384 8192 8192 32768 16384 8192 4096 16384 8192 8192 8...
result:
ok 58 numbers
Test #19:
score: 0
Accepted
time: 0ms
memory: 4480kb
input:
36 672 226 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000...
output:
336127736 0 671371099 4096 8192 2048 0 224303060 475920650 16384 4096 8192 16384 2048 2048 2048 8192 4096 4096 8192 16384 4096 8192 16384 0 0 8192 8192 4096 4096 16384 4096 8192 8192 8192 2048
result:
ok 36 numbers
Test #20:
score: 0
Accepted
time: 5ms
memory: 4208kb
input:
12 73 749 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000100000001000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000...
output:
0 653145782 310559811 835685553 16384 0 0 4096 884119779 1024 4096 1024
result:
ok 12 numbers
Test #21:
score: 0
Accepted
time: 8ms
memory: 7596kb
input:
1 50000 20 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 0000000000000000...
output:
188635342
result:
ok 1 number(s): "188635342"
Test #22:
score: 0
Accepted
time: 3ms
memory: 7612kb
input:
1 50000 20 10001101111001100111 01011100001110100001 11010000110111110001 00010000101101100011 01111010110011100001 00100101101100000100 10101111100110110001 11100111001010101100 10011110110001111001 10111101010001111110 10100000000101110110 11000101100011110011 01000001010101101100 1000111000111100...
output:
0
result:
ok 1 number(s): "0"
Test #23:
score: 0
Accepted
time: 8ms
memory: 7580kb
input:
1 50000 20 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 0000000000000000...
output:
773579423
result:
ok 1 number(s): "773579423"
Test #24:
score: 0
Accepted
time: 3ms
memory: 4436kb
input:
1 20 50000 0000000000010000000000000000000000000000000000010100000000000000010000000000000000000000000000000000000000000100000000000000000000000000000000001000000000000000000000000000010000000000000000000000000000000000000001000000000000000010000000000000000000000000000000000000010000000000000000000...
output:
0
result:
ok 1 number(s): "0"
Test #25:
score: 0
Accepted
time: 3ms
memory: 4456kb
input:
1 20 50000 0000000100000000000000000000000000000000000000000000000000000000000000000001000001000000000000000001000000000000000000000000000000000000000000000000000000000000000000000001000000000000100000000000000000000001000000010000000000000100000000000000000000000000000000000001000000000000000000000...
output:
0
result:
ok 1 number(s): "0"
Test #26:
score: 0
Accepted
time: 3ms
memory: 5008kb
input:
1 20 50000 0001100000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000100000000000000000000001000000000000000000000000000000100000000000100100100000000000000000000000000010000000000...
output:
0
result:
ok 1 number(s): "0"
Test #27:
score: 0
Accepted
time: 8ms
memory: 18728kb
input:
1 500000 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0...
output:
0
result:
ok 1 number(s): "0"
Test #28:
score: 0
Accepted
time: 14ms
memory: 20996kb
input:
1 500000 2 10 11 11 00 01 01 10 10 01 11 00 10 00 10 10 00 11 01 00 01 01 11 00 11 01 11 00 11 00 01 10 01 10 11 10 01 10 00 10 00 01 10 10 00 00 10 00 10 10 10 10 00 00 01 00 01 01 00 10 01 01 10 00 10 01 11 10 11 00 10 00 00 11 10 10 00 10 01 11 00 00 00 11 00 10 10 00 10 01 01 01 00 10 01 10 11 1...
output:
0
result:
ok 1 number(s): "0"
Test #29:
score: 0
Accepted
time: 10ms
memory: 22800kb
input:
1 500000 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0...
output:
483815611
result:
ok 1 number(s): "483815611"
Test #30:
score: 0
Accepted
time: 4ms
memory: 5312kb
input:
1 2 500000 0110000100010010100001001000101011111100010010011111100000100001000000000010000001110000110110100110010011000010010000010100110011101100010100000000110111010001100000100010001110001110011001100001011010100000001001111100111110111010011000100010100100001001100000010000111010011110100000010...
output:
0
result:
ok 1 number(s): "0"
Test #31:
score: 0
Accepted
time: 4ms
memory: 5352kb
input:
1 2 500000 1000001111110110101010001010100100000100100010001100000101010011100001110010000101010011000101100110011111101001100000010000010000100110000100100011010100000000001001011010001100110011001001101001100111101100110111001110100100100000111001101100101111110001011101001110011110111111101011001...
output:
0
result:
ok 1 number(s): "0"
Test #32:
score: 0
Accepted
time: 19ms
memory: 6532kb
input:
1 2 500000 1000010001011001101010000000000000100010100000011010000011100110110101001000010110110101111101001100001110001111010100000111001011010000101010010110100111000000101100000100010000100001100011111000000111100111100010010111010001100100001011100101011111000011110011100011100110111100000010010...
output:
0
result:
ok 1 number(s): "0"
Test #33:
score: 0
Accepted
time: 16ms
memory: 42308kb
input:
1 1000000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
output:
235042059
result:
ok 1 number(s): "235042059"
Test #34:
score: 0
Accepted
time: 11ms
memory: 42340kb
input:
1 1000000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
output:
235042059
result:
ok 1 number(s): "235042059"
Test #35:
score: 0
Accepted
time: 29ms
memory: 5316kb
input:
1 1 1000000 111100111111100111011110110001111111111011111011011001111111101101101111101111110100101110111011111110101111111100111011110001111111101111011011111101110101111111111101101110011000111111110111101111111111111111101111110110101111101111111111111101111010111101011111101110111111010111000101...
output:
2
result:
ok 1 number(s): "2"
Test #36:
score: 0
Accepted
time: 27ms
memory: 5284kb
input:
1 1 1000000 110111111100110110011101111000101001110111111111101100110101111111000110111001111001111011111110101111110110111101111001111110110111010100111011001010110111111101010101111110111111111011010011010111111111100101111111011011111101011001110111111010110110100110010111111100111111111110110111...
output:
2
result:
ok 1 number(s): "2"
Test #37:
score: 0
Accepted
time: 20ms
memory: 3808kb
input:
100000 10 1 0 0 0 0 0 0 0 1 0 0 10 1 0 0 0 1 0 0 0 0 0 0 10 1 0 0 0 0 0 1 0 0 0 0 10 1 0 1 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0 0 0 1 0 10 1 0 0 0 0 0 0 0 0 0 1 10 1 0 0 0 0 1 0 0 0 0 0 10 1 0 0 0 0 0 0 0 1 0 0 10 1 0 0 0 0 0 1 0 0 0 0 10 1 0 0 0 0 0 0 0 0 1 0 10 1 0 0 1 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0 0...
output:
1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ...
result:
ok 100000 numbers
Extra Test:
score: 0
Extra Test Passed