QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#298263 | #6302. Map | nameless_story | AC ✓ | 1ms | 4032kb | C++20 | 13.7kb | 2024-01-05 21:51:26 | 2024-01-05 21:51:27 |
Judging History
answer
//这回只花了114514min就打完了。
//真好。记得多手造几组。ACM拍什么拍。
#include "bits/stdc++.h"
using namespace std;
template<typename T1,typename T2> istream &operator>>(istream &cin,pair<T1,T2> &a) { return cin>>a.first>>a.second; }
template<typename T1> istream &operator>>(istream &cin,vector<T1> &a) { for (auto &x:a) cin>>x; return cin; }
template<typename T1> istream &operator>>(istream &cin,valarray<T1> &a) { for (auto &x:a) cin>>x; return cin; }
template<typename T1,typename T2> ostream &operator<<(ostream &cout,const pair<T1,T2> &a) { return cout<<a.first<<' '<<a.second; }
template<typename T1,typename T2> ostream &operator<<(ostream &cout,const vector<pair<T1,T2>> &a) { for (auto &x:a) cout<<x<<'\n'; return cout; }
template<typename T1> ostream &operator<<(ostream &cout,const vector<T1> &a) { int n=a.size(); if (!n) return cout; cout<<a[0]; for (int i=1; i<n; i++) cout<<' '<<a[i]; return cout; }
template<typename T1,typename T2> bool cmin(T1 &x,const T2 &y) { if (y<x) { x=y; return 1; } return 0; }
template<typename T1,typename T2> bool cmax(T1 &x,const T2 &y) { if (x<y) { x=y; return 1; } return 0; }
template<typename T1> vector<T1> range(T1 l,T1 r,T1 step=1) { assert(step>0); int n=(r-l+step-1)/step,i; vector<T1> res(n); for (i=0; i<n; i++) res[i]=l+step*i; return res; }
template<typename T1> basic_string<T1> operator*(const basic_string<T1> &s,int m) { auto r=s; m*=s.size(); r.resize(m); for (int i=s.size(); i<m; i++) r[i]=r[i-s.size()]; return r; }
#if !defined(ONLINE_JUDGE)&&defined(LOCAL)
#include "my_header\debug.h"
#else
#define dbg(...) ;
#define dbgn(...) ;
#endif
typedef unsigned int ui;
typedef long long ll;
#define all(x) (x).begin(),(x).end()
// template<typename T1,typename T2> void inc(T1 &x,const T2 &y) { if ((x+=y)>=p) x-=p; }
// template<typename T1,typename T2> void dec(T1 &x,const T2 &y) { if ((x+=p-y)>=p) x-=p; }
const int N=1e6+5;
namespace geometry//不要用 int!
{
#define tmpl template<typename T>
typedef long long ll;
typedef long double db;
const db eps=1e-6;
#define all(x) (x).begin(),(x).end()
inline int sgn(const ll &x)
{
if (x<0) return -1;
return x>0;
}
inline int sgn(const db &x)
{
if (fabs(x)<eps) return 0;
return x>0?1:-1;
}
tmpl struct point//* 为叉乘,& 为点乘,只允许使用 double 和 ll
{
T x,y;
point() { }
point(T a,T b):x(a),y(b) { }
operator point<ll>() const { return point<ll>(x,y); }
operator point<db>() const { return point<db>(x,y); }
point<T> operator+(const point<T> &o) const { return point(x+o.x,y+o.y); }
point<T> operator-(const point<T> &o) const { return point(x-o.x,y-o.y); }
point<T> operator*(const T &k) const { return point(x*k,y*k); }
point<T> operator/(const T &k) const { return point(x/k,y/k); }
T operator*(const point<T> &o) const { return x*o.y-y*o.x; }
T operator&(const point<T> &o) const { return x*o.x+y*o.y; }
void operator+=(const point<T> &o) { x+=o.x; y+=o.y; }
void operator-=(const point<T> &o) { x-=o.x; y-=o.y; }
void operator*=(const T &k) { x*=k; y*=k; }
void operator/=(const T &k) { x/=k; y/=k; }
bool operator==(const point<T> &o) const { return x==o.x&&y==o.y; }
bool operator!=(const point<T> &o) const { return x!=o.x||y!=o.y; }
db len() const { return sqrt(len2()); }//模长
T len2() const { return x*x+y*y; }
};
const point<db> npos=point<db>(514e194,9810e191),apos=point<db>(145e174,999e180);
const int DS[4]={1,2,4,3};
tmpl int quad(const point<T> &o)//坐标轴归右上象限,返回值 [1,4]
{
return DS[(sgn(o.y)<0)*2+(sgn(o.x)<0)];
}
tmpl bool angle_cmp(const point<T> &a,const point<T> &b)
{
int c=quad(a),d=quad(b);
if (c!=d) return c<d;
return a*b>0;
}
tmpl db dis(const point<T> &a,const point<T> &b) { return (a-b).len(); }
tmpl T dis2(const point<T> &a,const point<T> &b) { return (a-b).len2(); }
tmpl point<T> operator*(const T &k,const point<T> &o) { return point<T>(k*o.x,k*o.y); }
tmpl bool operator<(const point<T> &a,const point<T> &b)
{
int s=sgn(a*b);
return s>0||s==0&&sgn(a.len2()-b.len2())<0;
}
istream &operator>>(istream &cin,point<ll> &o) { return cin>>o.x>>o.y; }
istream &operator>>(istream &cin,point<db> &o)
{
string s;
cin>>s;
o.x=stod(s);
cin>>s;
o.y=stod(s);
return cin;
}
tmpl ostream &operator<<(ostream &cout,const point<T> &o)
{
if ((point<db>)o==apos) return cout<<"all position";
if ((point<db>)o==npos) return cout<<"no position";
return cout<<'('<<o.x<<','<<o.y<<')';
}
tmpl struct line
{
point<T> o,d;
line() { }
line(const point<T> &a,const point<T> &b,int twopoint);
bool operator!=(const line<T> &m) { return !(*this==m); }
};
template<> line<ll>::line(const point<ll> &a,const point<ll> &b,int twopoint)
{
o=a;
d=twopoint?b-a:b;
ll tmp=gcd(d.x,d.y);
assert(tmp);
if (d.x<0||d.x==0&&d.y<0) tmp=-tmp;
d.x/=tmp; d.y/=tmp;
}
template<> line<db>::line(const point<db> &a,const point<db> &b,int twopoint)
{
o=a;
d=twopoint?b-a:b;
int s=sgn(d.x);
if (s<0||!s&&d.y<0) d.x=-d.x,d.y=-d.y;
}
tmpl line<T> rotate_90(const line<T> &m) { return line(m.o,point(m.d.y,-m.d.x),0); }
tmpl line<db> rotate(const line<T> &m,db angle)
{
return {(point<db>)m.o,{m.d.x*cos(angle)-m.d.y*sin(angle),m.d.x*sin(angle)+m.d.y*cos(angle)},0};
}
tmpl db get_angle(const line<T> &m,const line<T> &n) { return asin((m.d*n.d)/(m.d.len()*n.d.len())); }
tmpl bool operator<(const line<T> &m,const line<T> &n)
{
int s=sgn(m.d*n.d);
return s?s>0:m.d*m.o<n.d*n.o;
}
bool operator==(const line<ll> &m,const line<ll> &n) { return m.d==n.d&&(m.o-n.o)*m.d==0; }
bool operator==(const line<db> &m,const line<db> &n) { return fabs(m.d*n.d)<eps&&fabs((n.o-m.o)*m.d)<eps; }
tmpl ostream &operator<<(ostream &cout,const line<T> &o) { return cout<<'('<<o.d.x<<" k + "<<o.o.x<<" , "<<o.d.y<<" k + "<<o.o.y<<")"; }
tmpl point<db> intersect(const line<T> &m,const line<T> &n)
{
if (!sgn(m.d*n.d))
{
if (!sgn(m.d*(n.o-m.o))) return apos;
return npos;
}
return (point<db>)m.o+(n.o-m.o)*n.d/(db)(m.d*n.d)*(point<db>)m.d;
}
tmpl db dis(const line<T> &m,const point<T> &o) { return abs(m.d*(o-m.o)/m.d.len()); }
tmpl db dis(const point<T> &o,const line<T> &m) { return abs(m.d*(o-m.o)/m.d.len()); }
struct circle
{
point<db> o;
db r;
circle() { }
circle(const point<db> &O,const db &R=0):o(point<db>((db)O.x,(db)O.y)),r(R) { }//圆心半径构造
circle(const point<db> &a,const point<db> &b)//直径构造
{
o=(a+b)*0.5;
r=dis(b,o);
}
circle(const point<db> &a,const point<db> &b,const point<db> &c)//三点构造外接圆(非最小圆)
{
auto A=(b+c)*0.5,B=(a+c)*0.5;
o=intersect(rotate_90(line(A,c,1)),rotate_90(line(B,c,1)));
r=dis(o,c);
}
circle(vector<point<db>> a)
{
int n=a.size(),i,j,k;
mt19937 rnd(75643);
shuffle(all(a),rnd);
*this=circle(a[0]);
for (i=1; i<n; i++) if (!cover(a[i]))
{
*this=circle(a[i]);
for (j=0; j<i; j++) if (!cover(a[j]))
{
*this=circle(a[i],a[j]);
for (k=0; k<j; k++) if (!cover(a[k])) *this=circle(a[i],a[j],a[k]);
}
}
}
circle(const vector<point<ll>> &b)
{
vector<point<db>> a(b.size());
int n=a.size(),i,j,k;
for (i=0; i<a.size(); i++) a[i]=(point<db>)b[i];
*this=circle(a);
}
tmpl bool cover(const point<T> &a) { return sgn(dis((point<db>)a,o)-r)<=0; }
};
tmpl struct segment
{
point<T> a,b;
segment() { }
segment(point<T> o,point<T> p)
{
int s=sgn(o.x-p.x);
if (s>0||!s&&o.y>p.y) swap(o,p);
a=o; b=p;
}
};
tmpl bool intersect(const segment<T> &m,const segment<T> &n)
{
auto a=n.b-n.a,b=m.b-m.a;
auto d=n.a-m.a;
if (sgn(n.b.x-m.a.x)<0||sgn(m.b.x-n.a.x)<0) return 0;
if (sgn(max(n.a.y,n.b.y)-min(m.a.y,m.b.y))<0||sgn(max(m.a.y,m.b.y)-min(n.a.y,n.b.y))<0) return 0;
return sgn(b*d)*sgn((n.b-m.a)*b)>=0&&sgn(a*d)*sgn((m.b-n.a)*a)<=0;
}
tmpl struct convex
{
vector<point<T>> p;
convex(vector<point<T>> a);
db peri()//周长
{
int i,n=p.size();
db C=(p[n-1]-p[0]).len();
for (i=1; i<n; i++) C+=(p[i-1]-p[i]).len();
return C;
}
db area() { return area2()*0.5; }//面积
T area2()//两倍面积
{
int i,n=p.size();
T S=p[n-1]*p[0];
for (i=1; i<n; i++) S+=p[i-1]*p[i];
return abs(S);
}
db diam() { return sqrt(diam2()); }
T diam2()//直径平方
{
T r=0;
int n=p.size(),i,j;
if (n<=2)
{
for (i=0; i<n; i++) for (j=i+1; j<n; j++) r=max(r,dis2(p[i],p[j]));
return r;
}
p.push_back(p[0]);
for (i=0,j=1; i<n; i++)
{
while ((p[i+1]-p[i])*(p[j]-p[i])<=(p[i+1]-p[i])*(p[j+1]-p[i])) if (++j==n) j=0;
r=max({r,dis2(p[i],p[j]),dis2(p[i+1],p[j])});
}
p.pop_back();
return r;
}
bool cover(const point<T> &o) const//点是否在凸包内
{
if (o.x<p[0].x||o.x==p[0].x&&o.y<p[0].y) return 0;
if (o==p[0]) return 1;
if (p.size()==1) return 0;
ll tmp=(o-p[0])*(p.back()-p[0]);
if (tmp==0) return dis2(o,p[0])<=dis2(p.back(),p[0]);
if (tmp<0||p.size()==2) return 0;
int x=upper_bound(1+all(p),o,[&](const point<T> &a,const point<T> &b) { return (a-p[0])*(b-p[0])>0; })-p.begin()-1;
return (o-p[x])*(p[x+1]-p[x])<=0;
}
convex<T> operator+(const convex<T> &A) const
{
int n=p.size(),m=A.p.size(),i,j;
vector<point<T>> c;
if (min(n,m)<=2)
{
c.reserve(n*m);
for (i=0; i<n; i++) for (j=0; j<m; j++) c.push_back(p[i]+A.p[j]);
return convex<T>(c);
}
point<T> a[n],b[m];
for (i=0; i+1<n; i++) a[i]=p[i+1]-p[i];
a[n-1]=p[0]-p[n-1];
for (i=0; i+1<m; i++) b[i]=A.p[i+1]-A.p[i];
b[m-1]=A.p[0]-A.p[m-1];
c.reserve(n+m);
c.push_back(p[0]+A.p[0]);
for (i=j=0; i<n&&j<m;) c.push_back(c.back()+(a[i]*b[j]>0?a[i++]:b[j++]));
while (i<n-1) c.push_back(c.back()+a[i++]);
while (j<m-1) c.push_back(c.back()+b[j++]);
return convex<T>(c);
}
void operator+=(const convex &a) { *this=*this+a; }
};
tmpl convex<T>::convex(vector<point<T>> a)
{
int n=a.size(),i;
if (!n) return;
p=a;
for (i=1; i<n; i++) if (p[i].x<p[0].x||p[i].x==p[0].x&&p[i].y<p[0].y) swap(p[0],p[i]);
a.resize(0); a.reserve(n);
for (i=1; i<n; i++) if (p[i]!=p[0]) a.push_back(p[i]-p[0]);
sort(all(a));
for (i=0; i<a.size(); i++) a[i]+=p[0];
point<T> *st=p.data()-1;
int tp=1;
for (auto &v:a)
{
while (tp>1&&sgn((st[tp]-st[tp-1])*(v-st[tp-1]))<=0) --tp;
st[++tp]=v;
}
p.resize(tp);
}
template<> bool convex<db>::cover(const point<db> &o) const//点是否在凸包内
{
if (o.x<p[0].x||o.x==p[0].x&&o.y<p[0].y) return 0;
if (o==p[0]) return 1;
if (p.size()==1) return 0;
ll tmp=(o-p[0])*(p.back()-p[0]);
if (tmp==0) return dis2(o,p[0])<=dis2(p.back(),p[0]);
if (tmp<0||p.size()==2) return 0;
int x=upper_bound(1+all(p),o,[&](const point<db> &a,const point<db> &b) { return (a-p[0])*(b-p[0])>eps; })-p.begin()-1;
return (o-p[x])*(p[x+1]-p[x])<=0;
}
tmpl struct half_plane//默认左侧
{
point<T> o,d;
operator half_plane<ll>() const { return {(point<ll>)o,(point<ll>)d,0}; }
operator half_plane<db>() const { return {(point<db>)o,(point<db>)d,0}; }
half_plane() { }
half_plane(const point<T> &a,const point<T> &b,bool twopoint)
{
o=a;
d=twopoint?b-a:b;
}
bool operator<(const half_plane<T> &a) const
{
int p=quad(d),q=quad(a.d);
if (p!=q) return p<q;
p=sgn(d*a.d);
if (p) return p>0;
return sgn(d*(a.o-o))>0;
}
};
tmpl ostream &operator<<(ostream &cout,half_plane<T> &m) { return cout<<m.o<<" | "<<m.d; }
tmpl point<db> intersect(const half_plane<T> &m,const half_plane<T> &n)
{
if (!sgn(m.d*n.d))
{
if (!sgn(m.d*(n.o-m.o))) return apos;
return npos;
}
return (point<db>)m.o+(n.o-m.o)*n.d/(db)(m.d*n.d)*(point<db>)m.d;
}
const db inf=1e9;
tmpl convex<db> intersect(vector<half_plane<T>> a)
{
T I=inf;
a.push_back({{-I,-I},{I,-I},1});
a.push_back({{I,-I},{I,I},1});
a.push_back({{I,I},{-I,I},1});
a.push_back({{-I,I},{-I,-I},1});
sort(all(a));
int n=a.size(),i,h=0,t=-1;
half_plane<db> q[n];
point<db> p[n];
vector<point<db>> r;
for (i=0; i<n; i++) if (i==n-1||sgn(a[i].d*a[i+1].d))
{
auto x=(half_plane<db>)a[i];
while (h<t&&sgn((p[t-1]-x.o)*x.d)>=0) --t;
while (h<t&&sgn((p[h]-x.o)*x.d)>=0) ++h;
q[++t]=x;
if (h<t) p[t-1]=intersect(q[t-1],q[t]);
}
while (h<t&&sgn((p[t-1]-q[h].o)*q[h].d)>=0) --t;
if (h==t) return convex<db>(vector<point<db>>(0));
p[t]=intersect(q[h],q[t]);
return convex<db>(vector<point<db>>(p+h,p+t+1));
}
tmpl db dis(const point<db> &o,const segment<T> &l)
{
if ((l.b-l.a&o-l.a)<0||(l.a-l.b&o-l.b)<0) return min(dis(o,l.a),dis(o,l.b));
return dis(o,line(l.a,l.b,1));
}
tmpl db dis(const segment<T> &l,const point<db> &o)
{
if ((l.b-l.a&o-l.a)<0||(l.a-l.b&o-l.b)<0) return min(dis(o,l.a),dis(o,l.b));
return dis(o,line(l.a,l.b,1));
}
#undef tmpl
}
using geometry::point,geometry::line,geometry::circle,geometry::convex,geometry::half_plane;
using geometry::db,geometry::sgn,geometry::eps,geometry::segment;
using geometry::intersect,geometry::dis;
using Q=point<db>;
int main()
{
ios::sync_with_stdio(0); cin.tie(0);
cout<<fixed<<setprecision(15);
int T; cin>>T;
while (T--)
{
int n,m,i,j;
db k;
vector<Q> a(4),b(4);
Q s,t;
cin>>a>>b>>s>>t>>k>>n;
vector<Q> S(n+1),T(n+1);
S[0]=s; T[0]=t;
for (int i:{1,3})
{
a[i]-=a[0]; a[i]/=a[i].len2();
b[i]-=b[0];
}
db ans=1e18;
auto tran=[&](Q s)
{
s-=a[0];
return b[0]+(s&a[1])*b[1]+(s&a[3])*b[3];
};
for (i=1; i<=n; i++) S[i]=tran(S[i-1]),T[i]=tran(T[i-1]);
for (i=0; i<=n; i++) for (j=0; j<=i; j++) cmin(ans,dis(S[j],T[i-j])+i*k);
cout<<ans<<'\n';
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3808kb
input:
2 0 0 0 2 4 2 4 0 0 0 0 1 2 1 2 0 2 1 4 2 1 1 0 0 0 3 6 3 6 0 0 1 1 0 3 2 2 3 0 0 4 2 0 3
output:
1.000000000000000 1.227262335243029
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 1ms
memory: 3708kb
input:
100 -133 -128 -109 -134 -85 -38 -109 -32 -95 -37 -100 -35 -108 -55 -103 -57 -119 -130 -112 -44 2 73 5 -100 5 -8 1 -8 1 -100 1 -60 1 -14 3 -14 3 -60 3 -84 1 -20 2 53 -58 -78 -66 -78 -66 -34 -58 -34 -58 -34 -66 -34 -66 -78 -58 -78 -63 -50 -63 -37 4 54 52 -148 116 -148 116 -52 52 -52 53 -103 53 -71 101...
output:
9.500657499741558 12.229731078922158 13.000000000000000 17.488532900375079 13.341664064126334 7.615773105863908 23.409399821439250 7.280109889280518 21.280037734083885 59.776022092579124 4.123105625617661 79.649231006959508 65.069193939989759 14.142135623730950 41.824615503479754 16.056245184896988 ...
result:
ok 100 numbers
Test #3:
score: 0
Accepted
time: 1ms
memory: 3744kb
input:
100 -173 -113 -120 -113 -120 -115 -173 -115 -173 -115 -120 -115 -120 -113 -173 -113 -162 -114 -152 -114 99 57 6 23 -75 4 -56 -77 25 -58 0 -58 -51 -69 -62 -18 -11 -7 -22 -56 -42 -25 19 27 -98 -115 -150 -147 -158 -134 -106 -102 -150 -147 -98 -115 -106 -102 -158 -134 -103 -111 -136 -134 25 50 136 -92 1...
output:
10.000000000000000 25.483637975584368 40.224370722237533 18.384776310850236 9.219544457292887 18.027756377319946 43.114063026280356 52.887044352349006 45.541190146942800 55.000999975001250 37.000000000000000 12.041594578792295 24.331050121192879 18.110770276274833 7.563262753279504 2.236067977499790...
result:
ok 100 numbers
Test #4:
score: 0
Accepted
time: 1ms
memory: 3784kb
input:
100 -12 -206 72 -188 135 -482 51 -500 19 -301 23 -301 23 -315 19 -315 88 -368 28 -248 14 87 -221 -566 -467 -566 -467 -565 -221 -565 -221 -566 -467 -566 -467 -565 -221 -565 -297 -566 -289 -566 274 18 -264 759 -339 609 -129 504 -54 654 -208 580 -208 655 -103 655 -103 580 -196 664 -211 596 8 64 -111 -3...
output:
34.246950475544243 8.000000000000000 45.926952286842947 135.118466539551876 131.973482184869245 40.349665953953499 15.321347728712508 77.772275035020517 66.738813035899371 8.000266654815868 116.806446031673097 12.588290015615974 170.785630266285701 131.962750429094417 8.738089975160307 17.4642491965...
result:
ok 100 numbers
Test #5:
score: 0
Accepted
time: 1ms
memory: 3904kb
input:
100 -235 -704 133 -704 133 -720 -235 -720 -224 -712 -40 -712 -40 -704 -224 -704 15 -711 76 -718 4 74 -467 574 -475 596 -123 724 -115 702 -274 662 -270 652 -430 588 -434 598 -458 588 -241 657 15 31 380 -3 532 -343 787 -229 635 111 503 -71 639 -163 708 -61 572 31 533 -189 613 -137 3 58 -460 -7 -488 -7...
output:
31.350081433008751 51.967632320937980 21.468697928146776 38.837932076467767 84.248187428308027 77.929455278476058 47.000000000000000 74.115493725912497 86.467104880421689 35.114099732158875 3.605551275463989 97.416631023660431 24.606056965764579 56.773359432723913 6.998534619414935 13.45362404707371...
result:
ok 100 numbers
Test #6:
score: 0
Accepted
time: 1ms
memory: 3840kb
input:
100 -1201 2822 -1197 2814 -3437 1694 -3441 1702 -3119 1860 -3117 1856 -1997 2416 -1999 2420 -1419 2709 -2491 2174 48 76 -2515 285 -2547 306 -1308 2194 -1276 2173 -2255 683 -2260 686 -2083 981 -2078 978 -1572 1753 -1392 2015 121 28 -1216 1209 -1498 -1141 -1598 -1129 -1316 1221 -1494 -823 -1494 -447 -...
output:
264.055863532879047 290.425700450936407 258.282400313066252 743.737184763542665 341.052781838823300 400.566683662432774 172.040799340956913 27.770894609837870 294.825880152081154 508.065910688872964 501.781825099315449 666.805068966935793 180.069431053691065 193.610433603150634 1507.002986062071478 ...
result:
ok 100 numbers
Test #7:
score: 0
Accepted
time: 1ms
memory: 3912kb
input:
100 1411 -2755 603 -3563 623 -3583 1431 -2775 716 -3477 1120 -3073 1110 -3063 706 -3467 1210 -2959 1339 -2830 2319 39 4528 -3417 4286 -4055 1908 -3153 2150 -2515 2094 -2892 2094 -3090 2832 -3090 2832 -2892 2257 -2993 4389 -3736 17 22 -180 -1673 -2172 -3665 -2164 -3673 -172 -1681 -284 -1792 -2027 -35...
output:
182.433549546129261 96.880923053928568 530.330085889910643 44.011362169330774 64.313365366181941 7.392893666126124 34.567810207462374 148.850160742992533 350.338135916148604 329.225162779821198 68.864765108872990 32.824383174612819 244.695729427384981 685.968837711980812 141.362747995939058 1601.789...
result:
ok 100 numbers
Test #8:
score: 0
Accepted
time: 1ms
memory: 3956kb
input:
100 11928 -18111 8928 -17411 11056 -8291 14056 -8991 11043 -10811 10793 -10111 12921 -9351 13171 -10051 10491 -14092 11923 -12413 10 92 11869 -4371 3539 5429 1299 3525 9629 -6275 8302 -3064 3647 2571 4935 3635 9590 -2000 2384 2680 3466 2644 181 91 4001 -10187 4001 -10897 9 -10897 9 -10187 838 -10629...
output:
87.479657002630678 977.209322820567369 94.486325059360631 307.006514588860150 1245.629559700635878 532.000000000000000 369.048777263927539 19.554024317232545 1509.000000000000000 275.094267211329335 4242.193351514708150 465.656251408810373 3478.304242060182535 1754.356007200362967 1804.4669275859330...
result:
ok 100 numbers
Test #9:
score: 0
Accepted
time: 1ms
memory: 4032kb
input:
100 10303 -4099 19487 -8131 19703 -7639 10519 -3607 18394 -7495 18842 -7271 18854 -7295 18406 -7519 15852 -6248 15950 -6389 38 10 13132 -3411 17416 3393 15634 4515 11350 -2289 13143 -873 15411 3411 16533 2817 14265 -1467 16515 2577 16017 1561 198 94 -5480 10872 -6297 11294 -11361 1490 -10544 1068 -1...
output:
84.574886489291820 999.689277678129568 6231.529667746114486 550.947886095034877 182.544124658606006 5374.296791209060125 825.725781096656443 1653.207429169171740 2777.109648537486177 166.653023806101158 1747.004579272761952 651.111357603290468 242.210006732268284 34.266895846221599 286.7908645685911...
result:
ok 100 numbers
Test #10:
score: 0
Accepted
time: 1ms
memory: 3836kb
input:
100 0 -30 84 12 126 -72 42 -114 0 -30 84 12 126 -72 42 -114 91 -41 100 -55 96 93 168 110 148 150 48 100 68 60 48 100 68 60 168 110 148 150 61 96 102 90 8 2 -123 129 -60 174 -15 111 -78 66 -15 111 -78 66 -123 129 -60 174 -44 115 -104 132 27 3 27 42 15 54 -75 -36 -63 -48 -63 -48 -75 -36 15 54 27 42 -4...
output:
16.643316977093238 41.436698710201323 39.206555615733703 11.180339887498948 49.729267036625424 26.925824035672520 50.931326312987373 10.294055820165389 117.885537705012823 8.602325267042627 48.466483264210536 21.095023109728986 24.038404810405297 16.000000000000000 48.548944375753424 26.061756859551...
result:
ok 100 numbers
Test #11:
score: 0
Accepted
time: 1ms
memory: 4028kb
input:
100 9725 6731 9725 11971 14965 11971 14965 6731 9725 6731 9725 11971 14965 11971 14965 6731 10293 11185 10445 9833 488 10 3833 -4831 6913 -4271 8443 -12686 5363 -13246 6913 -4271 3833 -4831 5363 -13246 8443 -12686 5209 -4960 7133 -6409 1 88 -5891 -6066 -8365 -6066 -8365 -8540 -5891 -8540 -8365 -6066...
output:
1360.517548582156290 2119.674780139698552 1638.601494195408552 144.699689011414257 1706.299211744528703 2671.668018298680761 1442.324859385013859 2909.931270666027260 5311.386353862802927 7894.844203655953083 2950.721437208195700 1405.197279587166840 8052.785977535973233 436.084854128184553 1910.190...
result:
ok 100 numbers
Test #12:
score: 0
Accepted
time: 1ms
memory: 3924kb
input:
100 1432065 -1359744 1432065 -1359796 610089 -1359796 610089 -1359744 610089 -1359744 610089 -1359796 1432065 -1359796 1432065 -1359744 1413145 -1359747 670086 -1359765 306 12 -630899 -570942 344981 -570942 344981 -567164 -630899 -567164 -630899 -567164 344981 -567164 344981 -570942 -630899 -570942 ...
output:
41383.003943812649979 344430.708764477038756 597464.947160122257515 57512.000021251275065 180112.504983949338978 254594.189465463647096 13301.834367630940076 246235.741341503873883 17086.953736696310257 168329.001188149393712 580568.278437601170310 120047.475965045275387 24722.575937794184476 252882...
result:
ok 100 numbers
Test #13:
score: 0
Accepted
time: 1ms
memory: 3904kb
input:
100 -240497 1168822 -365542 931192 504344 473443 629389 711073 226221 683190 167481 688085 185400 903113 244140 898218 -192129 1110656 34450 941656 2 25 1729381 25950 1512625 519672 1528369 526584 1745125 32862 1536820 492965 1580974 388601 1584302 390009 1540148 494373 1660204 207517 1601591 344571...
output:
33.523773639151383 126504.999518608850842 57518.293697332946682 318943.663702541675065 169769.250005668789626 1497.133893067348665 23459.324991965074714 853.347816095362503 28.351411845903801 7526.106524036450828 36705.816569039844751 575.015321675223630 4025.084882224933078 31458.023666467033797 31...
result:
ok 100 numbers
Test #14:
score: 0
Accepted
time: 1ms
memory: 3912kb
input:
100 -889209 606569 -191736 1436894 638589 739421 -58884 -90904 -58884 -90904 638589 739421 -191736 1436894 -889209 606569 -486300 891465 -464854 988546 79 18 -1226546 957048 -712144 1926170 -590407 1861553 -1104809 892431 -712144 1926170 -1226546 957048 -1104809 892431 -590407 1861553 -807239 146415...
output:
99421.584562910683879 404181.388824374247690 311311.528917577994662 271785.624537060458550 319158.191839094112879 77725.025543495047884 103690.241569289944856 33781.004277552199500 16708.608350188833127 262422.768227149071066 176381.843093329762382 159818.483940375307270 451836.634220813617361 29166...
result:
ok 100 numbers