QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#298036 | #7906. Almost Convex | ucup-team180# | AC ✓ | 59ms | 4012kb | C++20 | 41.5kb | 2024-01-05 16:19:48 | 2024-01-05 16:19:48 |
Judging History
answer
#pragma region Macros
#ifdef noimi
#include "my_template.hpp"
#else
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <immintrin.h>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>
#ifdef noimi
#define oj_local(a, b) b
#else
#define oj_local(a, b) a
#endif
#define LOCAL if(oj_local(0, 1))
#define OJ if(oj_local(1, 0))
using namespace std;
using ll = long long;
using ull = unsigned long long int;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using ld = long double;
template <typename T> using vc = vector<T>;
template <typename T> using vvc = vector<vc<T>>;
template <typename T> using vvvc = vector<vvc<T>>;
using vi = vc<int>;
using vl = vc<ll>;
using vpi = vc<pii>;
using vpl = vc<pll>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <typename T> int si(const T &x) { return x.size(); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }
vi iota(int n) {
vi a(n);
return iota(a.begin(), a.end(), 0), a;
}
template <typename T> vi iota(const vector<T> &a, bool greater = false) {
vi res(a.size());
iota(res.begin(), res.end(), 0);
sort(res.begin(), res.end(), [&](int i, int j) {
if(greater) return a[i] > a[j];
return a[i] < a[j];
});
return res;
}
// macros
#define overload5(a, b, c, d, e, name, ...) name
#define overload4(a, b, c, d, name, ...) name
#define endl '\n'
#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)
#define REP1(i, n) for(ll i = 0; i < (n); ++i)
#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)
#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)
#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)
#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)
#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))
#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)
#define fore0(a) rep(a.size())
#define fore1(i, a) for(auto &&i : a)
#define fore2(a, b, v) for(auto &&[a, b] : v)
#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)
#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)
#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)
#define setbits(j, n) for(ll iiiii = (n), j = lowbit(iiiii); iiiii; iiiii ^= 1 << j, j = lowbit(iiiii))
#define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(all(v)));)
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define drop(s) cout << #s << endl, exit(0)
#define si(c) (int)(c).size()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
#define rng(v, l, r) v.begin() + (l), v.begin() + (r)
#define all(c) begin(c), end(c)
#define rall(c) rbegin(c), rend(c)
#define SORT(v) sort(all(v))
#define REV(v) reverse(all(v))
#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())
template <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
namespace yesno_impl {
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
const string firstsecond[2] = {"second", "first"};
const string FirstSecond[2] = {"Second", "First"};
const string possiblestr[2] = {"impossible", "possible"};
const string Possiblestr[2] = {"Impossible", "Possible"};
void YES(bool t = 1) { cout << YESNO[t] << endl; }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { cout << YesNo[t] << endl; }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { cout << yesno[t] << endl; }
void no(bool t = 1) { yes(!t); }
void first(bool t = 1) { cout << firstsecond[t] << endl; }
void First(bool t = 1) { cout << FirstSecond[t] << endl; }
void possible(bool t = 1) { cout << possiblestr[t] << endl; }
void Possible(bool t = 1) { cout << Possiblestr[t] << endl; }
}; // namespace yesno_impl
using namespace yesno_impl;
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define INTd(...) \
int __VA_ARGS__; \
IN2(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define LLd(...) \
ll __VA_ARGS__; \
IN2(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
IN(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
IN(name)
#define VECd(type, name, size) \
vector<type> name(size); \
IN2(name)
#define VEC2(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i])
#define VEC2d(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])
#define VEC3d(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);
#define VEC4d(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i], name4[i]);
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN(name)
#define VVd(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN2(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
void IN2() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
scan(head);
IN(tail...);
}
template <class Head, class... Tail> void IN2(Head &head, Tail &...tail) {
scan(head);
--head;
IN2(tail...);
}
template <int p = -1> void pat() {}
template <int p = -1, class Head, class... Tail> void pat(Head &h, Tail &...tail) {
h += p;
pat<p>(tail...);
}
template <typename T, typename S> T ceil(T x, S y) {
assert(y);
return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}
template <typename T, typename S> T floor(T x, S y) {
assert(y);
return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <typename T, typename S, typename U> U bigmul(const T &x, const S &y, const U &lim) { // clamp(x * y, -lim, lim)
if(x < 0 and y < 0) return bigmul(-x, -y, lim);
if(x < 0) return -bigmul(-x, y, lim);
if(y < 0) return -bigmul(x, -y, lim);
return y == 0 or x <= lim / y ? x * y : lim;
}
template <class T> T POW(T x, int n) {
T res = 1;
for(; n; n >>= 1, x *= x)
if(n & 1) res *= x;
return res;
}
template <class T, class S> T POW(T x, S n, const ll &mod) {
T res = 1;
x %= mod;
for(; n; n >>= 1, x = x * x % mod)
if(n & 1) res = res * x % mod;
return res;
}
vector<pll> factor(ll x) {
vector<pll> ans;
for(ll i = 2; i * i <= x; i++)
if(x % i == 0) {
ans.push_back({i, 1});
while((x /= i) % i == 0) ans.back().second++;
}
if(x != 1) ans.push_back({x, 1});
return ans;
}
template <class T> vector<T> divisor(T x) {
vector<T> ans;
for(T i = 1; i * i <= x; i++)
if(x % i == 0) {
ans.pb(i);
if(i * i != x) ans.pb(x / i);
}
return ans;
}
template <typename T> void zip(vector<T> &x) {
vector<T> y = x;
UNIQUE(y);
for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class S> void fold_in(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto e : a) v.emplace_back(e);
fold_in(v, tail...);
}
template <class S> void renumber(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto &&e : a) e = lb(v, e);
renumber(v, tail...);
}
template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {
vector<S> v;
fold_in(v, head, args...);
sort(all(v)), v.erase(unique(all(v)), v.end());
renumber(v, head, args...);
return v;
}
template <typename S> void rearrange(const vector<S> &id) {}
template <typename S, typename T> void rearrange_exec(const vector<S> &id, vector<T> &v) {
vector<T> w(v.size());
rep(i, si(id)) w[i] = v[id[i]];
v.swap(w);
}
// 並び替える順番, 並び替える vector 達
template <typename S, typename Head, typename... Tail> void rearrange(const vector<S> &id, Head &a, Tail &...tail) {
rearrange_exec(id, a);
rearrange(id, tail...);
}
template <typename T> vector<T> RUI(const vector<T> &v) {
vector<T> res(v.size() + 1);
for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];
return res;
}
template <typename T> void zeta_supersetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] += f[b | i];
}
template <typename T> void zeta_subsetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] += f[b];
}
template <typename T> void mobius_subset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] -= f[b | i];
}
template <typename T> void mobius_superset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] -= f[b];
}
// 反時計周りに 90 度回転
template <typename T> void rot(vector<vector<T>> &v) {
if(empty(v)) return;
int n = v.size(), m = v[0].size();
vector<vector<T>> res(m, vector<T>(n));
rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];
v.swap(res);
}
vector<int> counter(const vector<int> &v, int max_num = -1) {
if(max_num == -1) max_num = MAX(v);
vector<int> res(max_num + 1);
fore(e, v) res[e]++;
return res;
}
// x in [l, r)
template <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }
template <class T, class S> bool inc(const T &x, const pair<S, S> &p) { return p.first <= x and x < p.second; }
// 便利関数
constexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }
constexpr ll tri(ll n) { return n * (n + 1) / 2; }
// l + ... + r
constexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }
ll max(int x, ll y) { return max((ll)x, y); }
ll max(ll x, int y) { return max(x, (ll)y); }
int min(int x, ll y) { return min((ll)x, y); }
int min(ll x, int y) { return min(x, (ll)y); }
// bit 演算系
#define bit(i) (1LL << i) // (1 << i)
#define test(b, i) (b >> i & 1) // b の i bit 目が立っているか
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
constexpr ll mask(int n) { return (1LL << n) - 1; }
// int popcount(signed t) { return __builtin_popcount(t); }
// int popcount(ll t) { return __builtin_popcountll(t); }
int popcount(uint64_t t) { return __builtin_popcountll(t); }
static inline uint64_t popcount64(uint64_t x) {
uint64_t m1 = 0x5555555555555555ll;
uint64_t m2 = 0x3333333333333333ll;
uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
uint64_t h01 = 0x0101010101010101ll;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
return (x * h01) >> 56;
}
bool ispow2(int i) { return i && (i & -i) == i; }
ll rnd(ll l, ll r) { //[l, r)
#ifdef noimi
static mt19937_64 gen;
#else
static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif
return uniform_int_distribution<ll>(l, r - 1)(gen);
}
ll rnd(ll n) { return rnd(0, n); }
template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }
int in() {
int x;
cin >> x;
return x;
}
ll lin() {
unsigned long long x;
cin >> x;
return x;
}
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }
template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }
template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }
template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }
template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }
template <class T> vector<T> &operator++(vector<T> &v) {
fore(e, v) e++;
return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
auto res = v;
fore(e, v) e++;
return res;
}
template <class T> vector<T> &operator--(vector<T> &v) {
fore(e, v) e--;
return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
auto res = v;
fore(e, v) e--;
return res;
}
template <class T> void connect(vector<T> &l, const vector<T> &r) { fore(e, r) l.eb(e); }
template <class T> vector<T> operator+(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] += r[i];
return res;
}
template <class T> vector<T> operator-(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] -= r[i];
return res;
}
template <class T> vector<T> &operator+=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] += r[i];
return l;
}
template <class T> vector<T> &operator-=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] -= r[i];
return l;
}
template <class T> vector<T> &operator+=(vector<T> &v, const T &x) {
fore(e, v) e += x;
return v;
}
template <class T> vector<T> &operator-=(vector<T> &v, const T &x) {
fore(e, v) e -= x;
return v;
}
template <typename T> struct edge {
int from, to;
T cost;
int id;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}
constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
friend ostream operator<<(ostream &os, const edge &e) { return os << e.to; }
};
template <typename T> using Edges = vector<edge<T>>;
template <typename T = int> Edges<T> read_edges(int m, bool weighted = false) {
Edges<T> res;
res.reserve(m);
for(int i = 0; i < m; i++) {
int u, v, c = 0;
scan(u), scan(v), u--, v--;
if(weighted) scan(c);
res.eb(u, v, c, i);
}
return res;
}
using Tree = vector<vector<int>>;
using Graph = vector<vector<int>>;
template <class T> using Wgraph = vector<vector<edge<T>>>;
Graph getG(int n, int m = -1, bool directed = false, int margin = 1) {
Tree res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
cin >> a >> b;
a -= margin, b -= margin;
res[a].emplace_back(b);
if(!directed) res[b].emplace_back(a);
}
return res;
}
Graph getTreeFromPar(int n, int margin = 1) {
Graph res(n);
for(int i = 1; i < n; i++) {
int a;
cin >> a;
res[a - margin].emplace_back(i);
}
return res;
}
template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {
Wgraph<T> res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
T c;
scan(a), scan(b), scan(c);
a -= margin, b -= margin;
res[a].emplace_back(b, c);
if(!directed) res[b].emplace_back(a, c);
}
return res;
}
void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }
template <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }
#define TEST \
INT(testcases); \
while(testcases--)
i128 abs(const i128 &x) { return x > 0 ? x : -x; }
istream &operator>>(istream &is, i128 &v) {
string s;
is >> s;
v = 0;
for(int i = 0; i < (int)s.size(); i++) {
if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }
}
if(s[0] == '-') { v *= -1; }
return is;
}
ostream &operator<<(ostream &os, const i128 &v) {
if(v == 0) { return (os << "0"); }
i128 num = v;
if(v < 0) {
os << '-';
num = -num;
}
string s;
for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }
reverse(s.begin(), s.end());
return (os << s);
}
namespace aux {
template <typename T, unsigned N, unsigned L> struct tp {
static void output(std::ostream &os, const T &v) {
os << std::get<N>(v) << (&os == &cerr ? ", " : " ");
tp<T, N + 1, L>::output(os, v);
}
};
template <typename T, unsigned N> struct tp<T, N, N> {
static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }
};
} // namespace aux
template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {
if(&os == &cerr) { os << '('; }
aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);
if(&os == &cerr) { os << ')'; }
return os;
}
template <typename T, typename S, typename U> std::ostream &operator<<(std::ostream &os, const priority_queue<T, S, U> &_pq) {
auto pq = _pq;
vector<T> res;
while(!empty(pq)) res.emplace_back(pq.top()), pq.pop();
return os << res;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
if(&os == &cerr) { return os << "(" << p.first << ", " << p.second << ")"; }
return os << p.first << " " << p.second;
}
template <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {
bool f = true;
if(&os == &cerr) os << "[";
for(auto &y : x) {
if(&os == &cerr)
os << (f ? "" : ", ") << y;
else
os << (f ? "" : " ") << y;
f = false;
}
if(&os == &cerr) os << "]";
return os;
}
#define dump(...) static_cast<void>(0)
#define dbg(...) static_cast<void>(0)
void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
cout << head;
if(sizeof...(tail)) cout << ' ';
OUT(tail...);
}
template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;
template <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};
template <class T> void OUT2(const T &t, T INF = inf<T>, T res = -1) { OUT(t != INF ? t : res); }
template <class T> void OUT2(vector<T> &v, T INF = inf<T>, T res = -1) {
fore(e, v) if(e == INF) e = res;
OUT(v);
fore(e, v) if(e == res) e = INF;
}
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }
};
template <class S> vector<pair<S, int>> runLength(const vector<S> &v) {
vector<pair<S, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
vector<pair<char, int>> runLength(const string &v) {
vector<pair<char, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
struct string_converter {
char start = 0;
char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' : isdigit(c) ? '0' : 0); }
int convert(const char &c) {
if(!start) start = type(c);
return c - start;
}
int convert(const char &c, const string &chars) { return chars.find(c); }
template <typename T> auto convert(const T &v) {
vector<decltype(convert(v[0]))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e));
return ret;
}
template <typename T> auto convert(const T &v, const string &chars) {
vector<decltype(convert(v[0], chars))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e, chars));
return ret;
}
int operator()(const char &v, char s = 0) {
start = s;
return convert(v);
}
int operator()(const char &v, const string &chars) { return convert(v, chars); }
template <typename T> auto operator()(const T &v, char s = 0) {
start = s;
return convert(v);
}
template <typename T> auto operator()(const T &v, const string &chars) { return convert(v, chars); }
} toint;
template <class T, class F> T bin_search(T ok, T ng, const F &f) {
while((ok > ng ? ok - ng : ng - ok) > 1) {
T mid = ok + ng >> 1;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {
while(iter--) {
// T mid = (ok + ng) / 2;
T mid = sqrtl(ok * ng);
(f(mid) ? ok : ng) = mid;
}
return ok;
}
struct Setup_io {
Setup_io() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(11);
}
} setup_io;
#endif
#pragma endregion
namespace Geometry {
using T = ll;
constexpr T eps = 0;
bool eq(const T &x, const T &y) { return abs(x - y) <= eps; }
inline constexpr int type(T x, T y) {
if(x == 0 and y == 0) return 0;
if(y < 0 or (y == 0 and x > 0)) return -1;
return 1;
}
struct Point {
T x, y;
constexpr Point(T _x = 0, T _y = 0) : x(_x), y(_y) {}
constexpr Point operator+() const noexcept { return *this; }
constexpr Point operator-() const noexcept { return Point(-x, -y); }
constexpr Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
constexpr Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
constexpr Point &operator+=(const Point &p) { return x += p.x, y += p.y, *this; }
constexpr Point &operator-=(const Point &p) { return x -= p.x, y -= p.y, *this; }
constexpr T operator*(const Point &p) const { return x * p.x + y * p.y; }
constexpr Point &operator*=(const T &k) { return x *= k, y *= k, *this; }
constexpr Point operator*(const T &k) { return Point(x * k, y * k); }
constexpr bool operator==(const Point &r) const noexcept { return r.x == x and r.y == y; }
constexpr T cross(const Point &r) const { return x * r.y - y * r.x; }
constexpr bool operator<(const Point &r) const { return pair(x, y) < pair(r.x, r.y); }
// 1 : left, 0 : same, -1 : right
constexpr int toleft(const Point &r) const {
auto t = cross(r);
return t > eps ? 1 : t < -eps ? -1 : 0;
}
constexpr bool arg_cmp(const Point &r) const {
int L = type(x, y), R = type(r.x, r.y);
if(L != R) return L < R;
T X = x * r.y, Y = r.x * y;
if(X != Y) return X > Y;
return x < r.x;
}
};
bool arg_cmp(const Point &l, const Point &r) { return l.arg_cmp(r); }
ostream &operator<<(ostream &os, const Point &p) { return os << p.x << " " << p.y; }
istream &operator>>(istream &is, Point &p) {
is >> p.x >> p.y;
return is;
}
struct Line {
Point a, b;
Line() = default;
Line(Point a, Point b) : a(a), b(b) {}
// ax + by = c
Line(T A, T B, T C) {
if(A == 0) {
a = Point(0, C / B), b = Point(1, C / B);
} else if(B == 0) {
a = Point(C / A, 0), b = Point(C / A, 1);
} else {
a = Point(0, C / B), b = Point(C / A, 0);
}
}
// 1 : left, 0 : same, -1 : right
constexpr int toleft(const Point &r) const {
auto t = (b - a).cross(r - a);
return t > eps ? 1 : t < -eps ? -1 : 0;
}
friend std::ostream &operator<<(std::ostream &os, Line &ls) {
return os << "{"
<< "(" << ls.a.x << ", " << ls.a.y << "), (" << ls.b.x << ", " << ls.b.y << ")}";
}
};
istream &operator>>(istream &is, Line &p) { return is >> p.a >> p.b; }
struct Segment : Line {
Segment() = default;
Segment(Point a, Point b) : Line(a, b) {}
};
ostream &operator<<(ostream &os, Segment &p) { return os << p.a << " to " << p.b; }
istream &operator>>(istream &is, Segment &p) {
is >> p.a >> p.b;
return is;
}
struct Circle {
Point p;
T r;
Circle() = default;
Circle(Point p, T r) : p(p), r(r) {}
};
using pt = Point;
using Points = vector<pt>;
using Polygon = Points;
T cross(const pt &x, const pt &y) { return x.x * y.y - x.y * y.x; }
T dot(const pt &x, const pt &y) { return x.x * y.x + x.y * y.y; }
T abs2(const pt &x) { return dot(x, x); }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C
// 点の回転方向
int ccw(const Point &a, Point b, Point c) {
b = b - a, c = c - a;
if(cross(b, c) > 0) return +1; // "COUNTER_CLOCKWISE"
if(cross(b, c) < 0) return -1; // "CLOCKWISE"
if(dot(b, c) < 0) return +2; // "ONLINE_BACK"
if(abs2(b) < abs2(c)) return -2; // "ONLINE_FRONT"
return 0; // "ON_SEGMENT"
}
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
// 平行判定
bool parallel(const Line &a, const Line &b) { return (cross(a.b - a.a, b.b - b.a) == 0); }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
// 垂直判定
bool orthogonal(const Line &a, const Line &b) { return (dot(a.a - a.b, b.a - b.b) == 0); }
bool intersect(const Line &l, const Point &p) { return abs(ccw(l.a, l.b, p)) != 1; }
bool intersect(const Line &l, const Line &m) { return !parallel(l, m); }
bool intersect(const Segment &s, const Point &p) { return ccw(s.a, s.b, p) == 0; }
bool intersect(const Line &l, const Segment &s) { return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) <= 0; }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B
bool intersect(const Segment &s, const Segment &t) { return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0; }
bool intersect(const Polygon &ps, const Polygon &qs) {
int pl = si(ps), ql = si(qs), i = 0, j = 0;
while((i < pl or j < ql) and (i < 2 * pl) and (j < 2 * ql)) {
auto ps0 = ps[(i + pl - 1) % pl], ps1 = ps[i % pl];
auto qs0 = qs[(j + ql - 1) % ql], qs1 = qs[j % ql];
if(intersect(Segment(ps0, ps1), Segment(qs0, qs1))) return true;
Point a = ps1 - ps0;
Point b = qs1 - qs0;
T v = cross(a, b);
T va = cross(qs1 - qs0, ps1 - qs0);
T vb = cross(ps1 - ps0, qs1 - ps0);
if(!v and va < 0 and vb < 0) return false;
if(!v and !va and !vb) {
i += 1;
} else if(v >= 0) {
if(vb > 0)
i += 1;
else
j += 1;
} else {
if(va > 0)
j += 1;
else
i += 1;
}
}
return false;
}
T norm(const Point &p) { return p.x * p.x + p.y * p.y; }
Point projection(const Segment &l, const Point &p) {
T t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
Point crosspoint(const Line &l, const Line &m) {
T A = cross(l.b - l.a, m.b - m.a);
T B = cross(l.b - l.a, l.b - m.a);
if(A == 0 and B == 0) return m.a;
return m.a + (m.b - m.a) * (B / A);
}
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C
Point crosspoint(const Segment &l, const Segment &m) { return crosspoint(Line(l), Line(m)); }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B
// 凸性判定
bool is_convex(const Points &p) {
int n = (int)p.size();
for(int i = 0; i < n; i++) {
if(ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1) return false;
}
return true;
}
Points convex_hull(Points p) {
int n = p.size(), k = 0;
if(n <= 2) return p;
sort(begin(p), end(p), [](pt x, pt y) { return (x.x != y.x ? x.x < y.x : x.y < y.y); });
Points ch(2 * n);
for(int i = 0; i < n; ch[k++] = p[i++]) {
while(k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) <= 0) --k;
}
for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {
while(k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) <= 0) --k;
}
ch.resize(k - 1);
return ch;
}
// 面積の 2 倍
T area2(const Points &p) {
T res = 0;
rep(i, si(p)) { res += cross(p[i], p[i == si(p) - 1 ? 0 : i + 1]); }
return res;
}
enum { _OUT, _ON, _IN };
int contains(const Polygon &Q, const Point &p) {
bool in = false;
for(int i = 0; i < Q.size(); i++) {
Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;
if(a.y > b.y) swap(a, b);
if(a.y <= 0 && 0 < b.y && cross(a, b) < 0) in = !in;
if(cross(a, b) == 0 && dot(a, b) <= 0) return _ON;
}
return in ? _IN : _OUT;
}
Polygon Minkowski_sum(const Polygon &P, const Polygon &Q) {
vector<Segment> e1(P.size()), e2(Q.size()), ed(P.size() + Q.size());
const auto cmp = [](const Segment &u, const Segment &v) { return (u.b - u.a).arg_cmp(v.b - v.a); };
rep(i, P.size()) e1[i] = {P[i], P[(i + 1) % P.size()]};
rep(i, Q.size()) e2[i] = {Q[i], Q[(i + 1) % Q.size()]};
rotate(begin(e1), min_element(all(e1), cmp), end(e1));
rotate(begin(e2), min_element(all(e2), cmp), end(e2));
merge(all(e1), all(e2), begin(ed), cmp);
const auto check = [](const Points &res, const Point &u) {
const auto back1 = res.back(), back2 = *prev(end(res), 2);
return eq(cross(back1 - back2, u - back2), eps) and dot(back1 - back2, u - back1) >= -eps;
};
auto u = e1[0].a + e2[0].a;
Points res{u};
res.reserve(P.size() + Q.size());
for(const auto &v : ed) {
u = u + v.b - v.a;
while(si(res) >= 2 and check(res, u)) res.pop_back();
res.eb(u);
}
if(res.size() and check(res, res[0])) res.pop_back();
return res;
}
// -1 : on, 0 : out, 1 : in
// O(log(n))
int is_in(const Polygon &p, const Point &a) {
if(p.size() == 1) return a == p[0] ? -1 : 0;
if(p.size() == 2) return intersect(Segment(p[0], p[1]), a);
if(a == p[0]) return -1;
if((p[1] - p[0]).toleft(a - p[0]) == -1 || (p.back() - p[0]).toleft(a - p[0]) == 1) return 0;
const auto cmp = [&](const Point &u, const Point &v) { return (u - p[0]).toleft(v - p[0]) == 1; };
const size_t i = lower_bound(p.begin() + 1, p.end(), a, cmp) - p.begin();
if(i == 1) return intersect(Segment(p[0], p[i]), a) ? -1 : 0;
if(i == p.size() - 1 && intersect(Segment(p[0], p[i]), a)) return -1;
if(intersect(Segment(p[i - 1], p[i]), a)) return -1;
return (p[i] - p[i - 1]).toleft(a - p[i - 1]) > 0;
}
Points halfplane_intersection(vector<Line> L, const T inf = 1e9) {
Point box[4] = {Point(inf, inf), Point(-inf, inf), Point(-inf, -inf), Point(inf, -inf)};
rep(i, 4) { L.emplace_back(box[i], box[(i + 1) % 4]); }
sort(all(L), [](const Line &l, const Line &r) { return (l.b - l.a).arg_cmp(r.b - r.a); });
deque<Line> dq;
int len = 0;
auto check = [](const Line &a, const Line &b, const Line &c) { return a.toleft(crosspoint(b, c)) == -1; };
rep(i, L.size()) {
while(dq.size() > 1 and check(L[i], *(end(dq) - 2), *(end(dq) - 1))) dq.pop_back();
while(dq.size() > 1 and check(L[i], dq[0], dq[1])) dq.pop_front();
// dump(L[i], si(dq));
if(dq.size() and eq(cross(L[i].b - L[i].a, dq.back().b - dq.back().a), 0)) {
if(dot(L[i].b - L[i].a, dq.back().b - dq.back().a) < eps) return {};
if(L[i].toleft(dq.back().a) == -1)
dq.pop_back();
else
continue;
}
dq.emplace_back(L[i]);
}
while(dq.size() > 2 and check(dq[0], *(end(dq) - 2), *(end(dq) - 1))) dq.pop_back();
while(dq.size() > 2 and check(dq.back(), dq[0], dq[1])) dq.pop_front();
if(si(dq) < 3) return {};
Polygon ret(dq.size());
rep(i, dq.size()) ret[i] = crosspoint(dq[i], dq[(i + 1) % dq.size()]);
return ret;
}
} // namespace Geometry
using namespace Geometry;
int main() {
INT(n);
Points P(n);
fore(e, P) cin >> e.x >> e.y;
auto C = convex_hull(P);
vi used(n);
rep(i, n) { fore(e, C) if(P[i].x == e.x and P[i].y == e.y) used[i] = true; }
Points Q;
rep(i, n) if(!used[i]) Q.eb(P[i]);
int ans = 1;
rep(i, si(C)) {
auto a = C[i], b = C[(i + 1) % si(C)];
vector<pair<Point, Point>> v;
fore(e, Q) { v.eb(e - a, b - e); }
sort(all(v), [&](pair<Point, Point> x, pair<Point, Point> y) {
if(int k = x.fi.toleft(y.fi); k == -1) {
return false;
} else if(k == 1) {
return true;
} else {
k = x.se.toleft(y.se);
if(k == -1) return true;
return false;
}
});
bool flag = true;
Point p;
dump(v);
fore(x, y, v) {
if(flag) {
ans++;
p = y;
flag = false;
} else {
// dump(p, y, p.toleft(y));
if(p.toleft(y) == 1) {
ans++;
p = y;
}
}
}
}
OUT(ans);
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3588kb
input:
7 1 4 4 0 2 3 3 1 3 5 0 0 2 4
output:
9
result:
ok 1 number(s): "9"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3664kb
input:
5 4 0 0 0 2 1 3 3 3 1
output:
5
result:
ok 1 number(s): "5"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3592kb
input:
3 0 0 3 0 0 3
output:
1
result:
ok 1 number(s): "1"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3832kb
input:
6 0 0 3 0 3 2 0 2 1 1 2 1
output:
7
result:
ok 1 number(s): "7"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
4 0 0 0 3 3 0 3 3
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 6ms
memory: 3744kb
input:
2000 86166 617851 383354 -277127 844986 386868 -577988 453392 -341125 -386775 -543914 -210860 -429613 606701 -343534 893727 841399 339305 446761 -327040 -218558 -907983 787284 361823 950395 287044 -351577 -843823 -198755 138512 -306560 -483261 -487474 -857400 885637 -240518 -297576 603522 -748283 33...
output:
718
result:
ok 1 number(s): "718"
Test #7:
score: 0
Accepted
time: 6ms
memory: 3932kb
input:
2000 571314 -128802 -57762 485216 -713276 485201 -385009 -844644 371507 403789 338703 -272265 -913641 438001 -792118 -481524 709494 213762 -913577 432978 -397111 709021 840950 328210 -843628 452653 -20721 126607 -107804 -338102 930109 -89787 -949115 -76479 -862141 455623 991761 94852 -635475 625573 ...
output:
658
result:
ok 1 number(s): "658"
Test #8:
score: 0
Accepted
time: 4ms
memory: 3840kb
input:
2000 -510540 -289561 -602648 -189950 -403224 944455 -369582 -41334 358122 -598933 -817147 470207 -440180 -735160 -705634 61719 319062 897001 -905089 -755682 -408371 -520115 -423336 548115 -590242 835990 208155 883477 -202087 142035 -71545 411206 570690 -673204 -228451 -903435 -732876 -570271 -246755...
output:
309
result:
ok 1 number(s): "309"
Test #9:
score: 0
Accepted
time: 4ms
memory: 4004kb
input:
2000 -532115 566389 138405 49337 398814 -97324 116833 113216 381728 877609 222402 641022 109920 952381 -113880 395181 13780 -572931 -676608 605202 -74328 -503839 -207767 926500 -663270 -146303 197877 280349 275865 -663892 -630214 3286 973786 304855 -493735 841584 394901 -505975 757960 204724 -373328...
output:
239
result:
ok 1 number(s): "239"
Test #10:
score: 0
Accepted
time: 4ms
memory: 3980kb
input:
2000 512636 509804 -661126 -592269 755566 -721837 -878213 441853 -236050 -89069 -181220 155656 203391 691764 940154 260513 747075 373881 620423 840991 -409624 335472 270937 -710659 -751290 -673585 250341 -193243 -250535 618887 -739996 543936 -547741 -213681 -82920 -364319 -611672 737719 930798 46731...
output:
1025
result:
ok 1 number(s): "1025"
Test #11:
score: 0
Accepted
time: 3ms
memory: 4004kb
input:
2000 943353 817289 237151 899722 682851 -464873 854225 205354 834550 257948 -260874 298196 -224572 -269157 -667301 881130 -45920 -696359 -634337 792620 -408527 -947513 582880 172669 921645 839423 833813 721080 -836662 -287230 -55783 -408594 108996 -122012 365647 -789544 313812 833502 970009 -737736 ...
output:
218
result:
ok 1 number(s): "218"
Test #12:
score: 0
Accepted
time: 1ms
memory: 3820kb
input:
2000 619248 227987 -252490 -553032 148050 -479727 -333707 -591482 -40488 -503144 561909 255624 -402541 -798967 -245811 -610006 -146584 -517935 226433 -92580 -81939 -828480 72540 -845547 502613 220323 66708 -573015 601886 258752 406443 257854 232970 -671600 -37023 -683767 602339 456757 -440096 -71899...
output:
7
result:
ok 1 number(s): "7"
Test #13:
score: 0
Accepted
time: 2ms
memory: 3928kb
input:
2000 -602451 2956 85982 141739 -185932 -208897 -716095 58215 -468047 155612 -791626 -3105 75700 -484098 609608 -304849 689485 -106857 533177 -285261 -659400 -241162 -369302 165482 406663 265940 -353843 -788313 805885 -75440 -571955 -60471 351360 -81373 -510926 -59456 591713 179588 534794 -118 201630...
output:
66
result:
ok 1 number(s): "66"
Test #14:
score: 0
Accepted
time: 2ms
memory: 3760kb
input:
2000 41203 -675424 -158994 366628 -133859 -595680 435466 687630 687811 -35017 314337 133049 -384711 444777 54850 -760922 526166 282618 572292 94793 -324003 621393 -30308 242225 612969 -231837 -56628 -892609 -492077 58749 29597 -349591 198510 219502 380955 -59845 839171 -40068 88185 -820614 -572977 -...
output:
43
result:
ok 1 number(s): "43"
Test #15:
score: 0
Accepted
time: 2ms
memory: 3764kb
input:
2000 -814040 46114 -324077 -522697 388552 -604274 -252898 43028 -757069 141507 413462 -649779 -281915 -316285 -498931 -573214 -408766 670792 -271435 -393170 87187 731739 89312 -853584 -768680 -307261 -185324 234729 -70493 -354866 16452 164338 -650791 -518077 851196 -259322 -85395 -509349 241593 5074...
output:
129
result:
ok 1 number(s): "129"
Test #16:
score: 0
Accepted
time: 3ms
memory: 3932kb
input:
2000 23103 -796677 -148322 67634 -525131 -446626 2672 584671 -712789 -69579 -91150 -429393 -375635 -487235 -680553 -370975 793181 -383683 -234131 -462420 -734705 -171834 322671 -355011 760005 224249 700248 -352775 416862 -125857 -497951 717254 677084 -451876 -220123 616240 525973 -144881 -300828 553...
output:
1466
result:
ok 1 number(s): "1466"
Test #17:
score: 0
Accepted
time: 7ms
memory: 3704kb
input:
2000 -185174 470373 -772343 -70370 -182314 851727 661615 -250979 -581175 527646 332025 141502 -659052 -506788 -378459 -553180 11233 162287 469975 -572356 679074 217029 -137967 727723 581696 140544 452574 -319370 120895 129820 772655 -330960 122860 823902 -786221 147543 -206152 -373647 -212943 4820 6...
output:
2801
result:
ok 1 number(s): "2801"
Test #18:
score: 0
Accepted
time: 9ms
memory: 3800kb
input:
2000 -718158 695879 655921 595312 -509080 -860718 540612 244159 -83221 -865654 -460513 -542465 102321 -775593 328552 799263 -284269 -725108 152140 549502 -108610 465054 -97837 -449762 -772869 -171472 293831 -711723 508617 -157976 170737 323070 544222 385453 -633043 -233165 -620164 -459706 507218 338...
output:
14445
result:
ok 1 number(s): "14445"
Test #19:
score: 0
Accepted
time: 19ms
memory: 3980kb
input:
2000 -587991 -165467 -530325 -5525 -574943 180654 -496535 -748102 -436469 -160646 110285 237070 -822862 -141480 -177189 327799 -424868 331309 -999274 38095 -745710 192605 -234174 -804258 586432 -176239 -626756 499109 -562606 826724 890245 455480 -32262 -298900 550800 516690 -588632 -368654 405331 -3...
output:
64358
result:
ok 1 number(s): "64358"
Test #20:
score: 0
Accepted
time: 45ms
memory: 3976kb
input:
2000 441575 -414673 651578 -449237 287355 -489950 606811 -30288 -733692 679481 -652568 89883 -360110 616801 190405 -368787 -352383 935855 118240 73038 -374899 -927065 -22183 -491455 -146229 638417 998825 -48442 -374469 243261 988830 149043 -778607 -291542 -277026 -167975 372912 -405043 535321 425727...
output:
233885
result:
ok 1 number(s): "233885"
Test #21:
score: 0
Accepted
time: 57ms
memory: 3812kb
input:
2000 -369265 -366669 -225059 -65255 750236 -107534 -252341 967638 533029 -79205 -482639 504243 -164616 -477455 -219649 975578 222020 297565 -548636 -836060 595498 -345235 -971961 -235140 179392 983777 747498 664263 -458850 -513884 -456639 186799 508542 -359953 630300 5257 -294961 -599723 999627 2729...
output:
430546
result:
ok 1 number(s): "430546"
Test #22:
score: 0
Accepted
time: 58ms
memory: 3796kb
input:
2000 -586906 -809654 -279647 960102 -279925 501031 -76716 526333 -277891 -599253 171606 -289251 565124 -825005 -125381 -163097 -71257 -202933 999551 29949 286017 -698748 257733 358898 6047 18648 283230 -959051 221238 -975219 686818 32684 368089 -929790 -689242 449329 -547431 836850 612952 -790120 -9...
output:
484966
result:
ok 1 number(s): "484966"
Test #23:
score: 0
Accepted
time: 59ms
memory: 3992kb
input:
2000 -360385 -932803 6402 -568575 477942 -878390 361387 -497256 -383874 -126116 -838786 214745 157834 -987465 955879 293759 -91170 -521309 262250 964999 883045 -469287 350745 823160 999731 -23179 -791215 8792 208002 153508 -553609 549966 -345358 591962 -613852 198594 81698 996657 803702 98789 201163...
output:
513300
result:
ok 1 number(s): "513300"
Test #24:
score: 0
Accepted
time: 57ms
memory: 3756kb
input:
2000 -996201 87077 834777 -550587 -316381 948632 750921 -473436 -170208 -985408 -98642 17818 735787 -677212 80294 -996771 -420703 594219 995302 -96813 997685 68003 -680287 396657 -986559 163401 313494 442433 -774277 632845 809816 -586683 -569560 692991 956486 -291775 992620 -121264 998004 -63141 -64...
output:
528222
result:
ok 1 number(s): "528222"
Test #25:
score: 0
Accepted
time: 53ms
memory: 3764kb
input:
2000 -876642 481141 513009 -76454 48555 998820 -665181 11267 -681766 -551841 -724328 30683 -594565 -308913 799027 -601295 390878 658489 300660 953731 -227699 973731 621281 283696 871533 490336 -363638 931539 592572 805516 330089 201429 -282723 -959201 -351348 316419 -5935 -999982 -413615 -910451 -14...
output:
527976
result:
ok 1 number(s): "527976"
Test #26:
score: 0
Accepted
time: 56ms
memory: 3924kb
input:
2000 -496177 868221 -142749 -989758 -999462 -32767 -496370 452632 -50957 -998700 549450 25036 -389116 607514 164685 -287576 546553 837424 -356561 934271 250395 -662914 752586 452605 -803752 594963 -978350 206954 983866 178904 -712386 -247430 494205 -869345 777893 628396 -91446 995809 -373660 927565 ...
output:
536419
result:
ok 1 number(s): "536419"
Test #27:
score: 0
Accepted
time: 56ms
memory: 3796kb
input:
2000 -20062 470240 889867 456219 84686 996407 -54908 580599 428693 -903450 -150993 -781447 -437742 -134074 -245186 -299633 216878 730546 -588614 808414 -945245 326360 -72396 -11572 -663429 748238 -538386 842697 463983 400770 716299 697792 161751 -986831 931604 -363474 -466293 884630 163252 -116392 4...
output:
541774
result:
ok 1 number(s): "541774"
Test #28:
score: 0
Accepted
time: 56ms
memory: 3832kb
input:
2000 125380 -992108 876963 480556 -954331 -298750 -872744 488177 -667627 744495 527592 -849497 -41014 -455304 13780 890561 -637070 -474060 858293 513158 -422631 -408446 792248 610198 272933 -962032 768663 -639653 957724 -287686 -655707 -72182 774032 633145 44910 -998991 767034 -220288 32566 -999469 ...
output:
554369
result:
ok 1 number(s): "554369"
Test #29:
score: 0
Accepted
time: 56ms
memory: 3812kb
input:
2000 877194 480134 721871 -692027 -657316 -753614 -141802 690188 -984203 -177038 499512 866306 60213 331650 667197 -744880 790745 -612145 526658 70820 -975342 -220697 -818975 126696 -206901 13958 -217847 783500 -498782 460388 214283 -976771 124783 992183 -826617 562763 -869768 -493460 -360542 721516...
output:
556266
result:
ok 1 number(s): "556266"
Test #30:
score: 0
Accepted
time: 51ms
memory: 3812kb
input:
2000 -928276 -371891 693025 -720912 340453 -741801 -315399 948959 -999987 -5058 957766 -287546 -11785 -999930 -480620 876928 -591790 -806091 430900 -490816 232828 972517 709950 -704252 -784773 619782 -40706 -999171 972505 232879 57240 360935 837945 25369 -349605 -537128 -50451 -998726 357173 300683 ...
output:
578226
result:
ok 1 number(s): "578226"
Test #31:
score: 0
Accepted
time: 53ms
memory: 3692kb
input:
2000 588463 808523 -653251 -757141 -216959 -976180 620816 -783955 -917704 397264 642866 765978 -965972 -258645 -662131 -749387 919793 -392403 81500 -385642 -860281 -509819 -976258 216610 -881856 -471517 781371 -274463 -769776 638313 996471 -83936 -149837 -988710 88728 -996055 621852 -125590 193779 4...
output:
599788
result:
ok 1 number(s): "599788"
Test #32:
score: 0
Accepted
time: 52ms
memory: 3820kb
input:
2000 -713963 -700183 149576 -48137 -904609 -426240 603724 -34474 -350076 178901 -692350 211723 -777299 -629130 -996510 -83463 343004 -939333 696533 554432 -288734 -640484 798029 602618 -327795 -944748 523003 852330 -49570 998770 263409 254892 -314451 619311 -368911 444305 -289455 -406382 -63806 -648...
output:
607941
result:
ok 1 number(s): "607941"
Test #33:
score: 0
Accepted
time: 52ms
memory: 3768kb
input:
2000 -979883 199570 812775 582577 -257939 966161 -874515 -484998 293436 -242001 749548 -288423 -671752 740775 -12769 999918 295251 955419 175054 -13528 -334691 -942327 539352 -842079 705797 -49973 348168 771901 859906 510451 121051 -572684 909626 -415426 -255421 -545286 962040 272906 -813562 581477 ...
output:
605021
result:
ok 1 number(s): "605021"
Test #34:
score: 0
Accepted
time: 51ms
memory: 3696kb
input:
2000 748836 662754 853522 521056 501246 608578 -266167 963926 347098 937828 996632 -82002 300258 -953857 570683 -821169 -399685 -531914 -52991 -536271 -268825 -738298 -440252 449420 936398 350939 -183686 982984 -792809 -609469 -36070 -98167 -769325 638857 957390 288796 -272995 -796868 434336 -294938...
output:
609148
result:
ok 1 number(s): "609148"
Test #35:
score: 0
Accepted
time: 49ms
memory: 4012kb
input:
2000 -75848 997119 -878795 -477199 718319 -695713 -750620 -660733 791233 -261340 734828 678253 -298982 223462 -243124 618205 333026 -942917 -431834 -311408 102455 -779863 839939 542679 -888198 459459 -6972 999975 -989074 147415 619268 -785179 913472 -406900 857133 515094 -490437 715504 187406 842078...
output:
612907
result:
ok 1 number(s): "612907"
Test #36:
score: 0
Accepted
time: 49ms
memory: 3696kb
input:
2000 710449 252021 -605745 -795658 965777 259370 528796 -506543 7488 -999971 130196 134654 205176 -978725 360847 -549034 940307 340325 -878187 -478317 195786 -980646 -965779 -259362 -40526 404237 926277 -376843 659148 752012 799019 -601305 609935 184334 400162 64645 123163 -992386 440739 80681 61275...
output:
613033
result:
ok 1 number(s): "613033"
Test #37:
score: 0
Accepted
time: 45ms
memory: 3812kb
input:
2000 -280012 -148903 382702 395900 551170 834392 138094 -142893 747764 -321810 814783 -579764 855100 -518462 518036 855358 -308932 768160 -746881 -664957 -550707 -834698 -203567 979060 -94882 211708 954151 299324 995262 -97226 995211 97743 -361441 932394 -879179 -476490 492429 -870352 222424 -974949...
output:
613525
result:
ok 1 number(s): "613525"
Test #38:
score: 0
Accepted
time: 49ms
memory: 4004kb
input:
2000 -31467 999504 -691705 722179 330770 -943711 -868142 496314 534209 -845352 -948997 315285 708054 706157 50035 -880465 -926659 375902 883484 -468460 -569126 -321856 -203339 709769 -569574 -821939 -753190 -657801 997229 -74388 -559117 829088 797882 -602812 -145490 822289 -951880 306469 648629 -418...
output:
609202
result:
ok 1 number(s): "609202"
Test #39:
score: 0
Accepted
time: 48ms
memory: 4008kb
input:
2000 -33027 -231537 645986 -17185 894873 -446319 369601 -929190 -858847 512231 759587 -650405 821506 -570199 64855 -997894 770842 637025 532744 -331176 148586 -77740 -903364 -428872 -999964 -8474 -967232 253890 4771 -999988 -238462 -243104 -936126 351663 987061 160340 508004 131675 -413865 910337 18...
output:
610683
result:
ok 1 number(s): "610683"
Test #40:
score: 0
Accepted
time: 42ms
memory: 3820kb
input:
2000 315983 611022 -710308 -71198 -574424 -609685 286803 957989 -365263 930904 605616 -39979 261643 965164 -34821 -681407 971328 237742 -428673 903459 -348540 -413287 -716611 446376 -389197 -921154 -214771 -976664 469821 -882761 -288792 -516000 451431 892305 665222 46114 -712000 702178 -11820 237318...
output:
606866
result:
ok 1 number(s): "606866"
Test #41:
score: 0
Accepted
time: 44ms
memory: 3820kb
input:
2000 827570 -561361 106486 -994314 531932 -846786 85020 -821614 -861275 508137 -944596 328233 -654160 -756355 -599581 330073 -953317 -301970 -337499 541540 867483 497465 674219 -738530 742712 438360 -431377 463380 -976458 -215705 -920911 389771 -603054 797699 -651789 758400 993338 115232 -653951 756...
output:
605654
result:
ok 1 number(s): "605654"
Test #42:
score: 0
Accepted
time: 44ms
memory: 4004kb
input:
2000 660227 -171320 -66161 -85351 683277 -730158 980572 196158 395353 118603 97015 448847 428573 -903506 927991 372602 615713 -506850 -694999 719010 411175 911556 463884 885895 159594 -724246 8242 747837 605323 -795979 878479 -50570 -395291 918555 476675 -879079 593695 804689 -941633 336639 -875114 ...
output:
607199
result:
ok 1 number(s): "607199"
Test #43:
score: 0
Accepted
time: 43ms
memory: 4012kb
input:
2000 -404720 641654 376493 -278480 678653 734458 767939 -640522 -419247 -907872 -664244 69783 627003 -779016 -990939 -134306 346792 544624 136558 -725588 -595202 803575 -234031 -301953 -299941 -953957 -866081 499902 901591 -432588 200283 979738 -699910 714230 812341 -583182 357149 -381610 -957517 28...
output:
603919
result:
ok 1 number(s): "603919"
Test #44:
score: 0
Accepted
time: 43ms
memory: 3824kb
input:
2000 -599904 800071 -887152 -461476 703155 -711035 653695 756757 -230256 -973129 987562 157229 -610508 173456 -405774 110423 859552 -511046 -901289 433216 913048 407850 640724 -767771 999070 43110 209538 -620478 888118 459614 839191 543836 -676657 469821 525241 850953 -563829 -825890 -688034 -725678...
output:
598805
result:
ok 1 number(s): "598805"
Test #45:
score: 0
Accepted
time: 42ms
memory: 3760kb
input:
2000 956636 291284 -998398 -56572 -877970 -478715 -907198 -420702 512527 858670 -435307 900281 -445471 895295 247912 364785 -348233 -937407 -901447 -432888 -571179 820825 392021 -919956 574003 115097 -265057 -355995 912755 408506 -375400 926862 -993241 116070 695920 -718118 -284145 -958781 -472992 8...
output:
598251
result:
ok 1 number(s): "598251"
Test #46:
score: 0
Accepted
time: 41ms
memory: 3804kb
input:
2000 -764451 644681 531916 -198765 281641 -959519 -815218 -579153 -974347 225046 -949358 314195 28285 744344 69688 -997568 -775844 630924 973439 228945 621650 783294 -628873 -777507 29532 390971 778370 -93337 923334 -383997 -648844 -760921 -37277 -471652 975210 221278 535838 -634598 -843132 537705 1...
output:
588592
result:
ok 1 number(s): "588592"
Test #47:
score: 0
Accepted
time: 38ms
memory: 3808kb
input:
2000 113634 993522 296600 -955001 -983491 180954 969414 -245430 346546 -938032 -222652 -54964 -61422 998111 -183247 -983066 -700935 713224 -729527 683951 785401 -618986 734347 267059 -898291 439399 394552 918873 -999754 -22148 -999082 -42823 -261334 -965248 858996 -511981 388846 528044 398694 917083...
output:
580267
result:
ok 1 number(s): "580267"
Test #48:
score: 0
Accepted
time: 37ms
memory: 3824kb
input:
2000 -999844 17617 825619 -564226 -998793 49111 -342117 -939657 -964696 263365 348225 -937410 -534589 845111 972446 -233128 996396 84812 226108 974102 819673 -572831 787248 -616635 584981 -811046 -91377 -845586 399 -999999 -420017 -907516 -990854 134931 -8366 -653975 -971086 -238729 -910547 413403 7...
output:
574822
result:
ok 1 number(s): "574822"
Test #49:
score: 0
Accepted
time: 36ms
memory: 3992kb
input:
2000 -642241 766502 985145 -171722 960869 -277002 -770518 637417 -997009 -77276 389040 -921220 -625503 -780221 785285 619134 -869488 -493952 399502 -269138 605487 795854 -979953 -199227 -141150 -989988 -59731 -998214 -372142 -928175 430982 -902360 377383 926057 -253882 781247 -610587 -791948 -15523 ...
output:
569661
result:
ok 1 number(s): "569661"
Test #50:
score: 0
Accepted
time: 12ms
memory: 3712kb
input:
2000 -628838 -357590 978524 206130 -759844 650104 325497 945542 743026 669261 -626067 779768 809046 587744 785675 -618639 999954 9576 -917782 397082 594121 804375 479925 174875 362584 -392818 471020 -882122 -958352 -285587 203295 -979117 -101902 -994794 -307252 -951628 -522875 -852408 -999478 -32304...
output:
324930
result:
ok 1 number(s): "324930"
Test #51:
score: 0
Accepted
time: 6ms
memory: 3676kb
input:
2000 973483 228755 -923152 -384434 -974475 224492 -951197 308583 -301050 -953608 623065 782169 -4460 -999990 -347338 937739 -999141 41423 328894 -944366 -695142 -718871 840009 -542572 -226507 974009 472259 -881459 903505 428576 -559822 -828612 642699 766118 548513 -836141 764272 644893 178154 984002...
output:
180726
result:
ok 1 number(s): "180726"
Test #52:
score: 0
Accepted
time: 3ms
memory: 3792kb
input:
2000 -784353 -620314 995900 90455 -116566 -993182 881042 473036 177991 -984032 -999969 7783 655203 755452 -779179 626800 -181243 -983438 274776 -961507 609151 -793054 -1362 -843519 -566798 -823856 -530993 -847375 -951795 306733 62564 -998040 -959361 282180 -964809 -262948 185709 982604 -913941 40584...
output:
95123
result:
ok 1 number(s): "95123"
Test #53:
score: 0
Accepted
time: 2ms
memory: 3796kb
input:
2000 -378825 -925468 260691 -965422 854263 519839 -132682 -991158 -992506 122194 159239 987240 -986433 164163 -821638 -570008 936600 350399 -542405 840116 -116212 -993224 214672 976686 493136 -869952 -970476 241194 -744228 667925 -942833 333263 -884817 -465937 -941813 336134 714086 -700057 -931887 -...
output:
39222
result:
ok 1 number(s): "39222"
Test #54:
score: 0
Accepted
time: 2ms
memory: 3788kb
input:
2000 -982363 -186982 -654678 -755907 -468244 -883598 -999061 43307 -487654 873036 -996826 79600 -712944 -701220 -878254 -478193 -803280 595601 832745 -553656 -997294 73507 -969828 243790 449635 -893212 -180210 983627 582389 -812909 509250 860618 -845162 534508 -949329 314282 -976802 -214139 -414704 ...
output:
19811
result:
ok 1 number(s): "19811"
Test #55:
score: 0
Accepted
time: 2ms
memory: 3764kb
input:
2000 -944717 -327884 24164 -999707 988832 149033 545249 838273 54412 998518 996706 -81087 -632826 774293 971372 237560 -588936 -808179 -721351 -692569 909375 -415975 947390 320078 490265 -871573 770999 -636835 -877832 478968 -364048 -931380 995651 -93159 177569 -984108 945090 -326808 -107026 -994256...
output:
1
result:
ok 1 number(s): "1"
Extra Test:
score: 0
Extra Test Passed