QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#290237 | #7862. Land Trade | ucup-team987 | AC ✓ | 1700ms | 25536kb | C++20 | 19.1kb | 2023-12-24 16:29:59 | 2023-12-24 16:29:59 |
Judging History
answer
/**
* date : 2023-12-24 17:29:39
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
using namespace std;
using Real = long double;
using Point = complex<Real>;
using Points = vector<Point>;
constexpr Real EPS = 1e-9;
constexpr Real pi = 3.141592653589793238462643383279L;
istream &operator>>(istream &is, Point &p) {
Real a, b;
is >> a >> b;
p = Point(a, b);
return is;
}
ostream &operator<<(ostream &os, Point &p) {
return os << real(p) << " " << imag(p);
}
bool equals(Real a, Real b) { return fabs(b - a) < EPS; }
int sign(Real a) { return equals(a, 0) ? 0 : a > 0 ? 1 : -1; }
Point operator*(const Point &p, const Real &d) {
return Point(real(p) * d, imag(p) * d);
}
Point operator/(const Point &p, const Real &d) {
return Point(real(p) / d, imag(p) / d);
}
namespace std {
bool operator<(const Point &a, const Point &b) {
return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();
}
} // namespace std
Real cross(const Point &a, const Point &b) {
return real(a) * imag(b) - imag(a) * real(b);
}
Real dot(const Point &a, const Point &b) {
return real(a) * real(b) + imag(a) * imag(b);
}
// ccw 点の進行方向
int ccw(const Point &a, Point b, Point c) {
b = b - a, c = c - a;
if (cross(b, c) > EPS) return +1; // 反時計回り
if (cross(b, c) < -EPS) return -1; // 時計回り
if (dot(b, c) < 0) return +2; // c-a-bの順で一直線
if (norm(b) < norm(c)) return -2; // a-b-cの順で一直線
return 0; // a-c-bの順で一直線
}
// a-bベクトルとb-cベクトルのなす角度のうち小さい方を返す
// (ベクトル同士のなす角、すなわち幾何でいうところの「外角」であることに注意!)
// rem. 凸包に対して反時計回りにこの関数を適用すると、
// 凸包の大きさにかかわらず和が360度になる(いわゆる外角の和)(AGC021-B)
Real get_angle(const Point &a, const Point &b, const Point &c) {
const Point v(b - a), w(c - b);
Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());
if (alpha > beta) swap(alpha, beta);
Real theta = (beta - alpha);
return min(theta, 2 * acos(-1) - theta);
}
// 反時計回りである自己交差のない多角形のclass
using Polygon = vector<Point>;
// 凸包
Polygon convex_hull(vector<Point> ps) {
int n = (int)ps.size(), k = 0;
if (n <= 2) return ps;
sort(ps.begin(), ps.end());
vector<Point> ch(2 * n);
// 反時計周りに凸包を構築していく
for (int i = 0; i < n; ch[k++] = ps[i++]) {
// 条件分岐内はwhile(k >= 2 && ccw(ch[k-2],ch[k-1],ps[i]) != 1)と等価
while (k >= 2 && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
}
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) {
while (k >= t && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
}
ch.resize(k - 1);
return ch;
}
// 多角形の面積
Real area(const Polygon &p) {
Real A = 0;
for (int i = 0; i < (int)p.size(); ++i) {
A += cross(p[i], p[(i + 1) % p.size()]);
}
return A * 0.5;
}
struct Circle {
Point p;
Real r;
Circle() = default;
Circle(Point _p, Real _r) : p(_p), r(_r) {}
};
using Circles = vector<Circle>;
int intersect(Circle c1, Circle c2) {
if (c1.r < c2.r) swap(c1, c2);
Real d = abs(c1.p - c2.p);
if (c1.r + c2.r < d) return 4;
if (equals(c1.r + c2.r, d)) return 3;
if (c1.r - c2.r < d) return 2;
if (equals(c1.r - c2.r, d)) return 1;
return 0;
}
pair<Point, Point> crosspoint(const Circle &c1, const Circle &c2) {
Real d = abs(c1.p - c2.p);
Real x = (c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d);
if (abs(x) > 1) x = (x > 0 ? 1.0 : -1.0);
Real a = acos(x);
Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());
Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);
Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);
return {p1, p2};
}
struct Line {
Point a, b;
Line() = default;
Line(const Point &_a, const Point &_b) : a(_a), b(_b) {}
Line(const Real &A, const Real &B, const Real &C) { // Ax+By=C
if (equals(A, 0)) {
assert(!equals(B, 0));
a = Point(0, C / B);
b = Point(1, C / B);
} else if (equals(B, 0)) {
a = Point(C / A, 0);
b = Point(C / A, 1);
} else if (equals(C, 0)) {
a = Point(0, C / B);
b = Point(1, (C - A) / B);
} else {
a = Point(0, C / B);
b = Point(C / A, 0);
}
}
friend ostream &operator<<(ostream &os, const Line &l) {
return os << l.a << " to " << l.b;
}
friend istream &operator>>(istream &is, Line &l) { return is >> l.a >> l.b; }
friend bool operator==(const Line &a, const Line &b) {
return equals(a.a.real(), b.a.real()) && equals(a.a.imag(), b.a.imag()) &&
equals(a.b.real(), b.b.real()) && equals(a.b.imag(), b.b.imag());
}
friend bool operator<(const Line &a, const Line &b) {
if (!equals(a.a.real(), b.a.real())) return a.a.real() < b.a.real();
if (!equals(a.a.imag(), b.a.imag())) return a.a.imag() < b.a.imag();
if (!equals(a.b.real(), b.b.real())) return a.b.real() < b.b.real();
if (!equals(a.b.imag(), b.b.imag())) return a.b.imag() < b.b.imag();
return false;
}
};
using Lines = vector<Line>;
bool is_parallel(const Line &a, const Line &b) {
return equals(cross(a.b - a.a, b.b - b.a), 0.0);
}
Point cross_point_ll(const Line &l, const Line &m) {
Real A = cross(l.b - l.a, m.b - m.a);
Real B = cross(l.b - l.a, l.b - m.a);
if (equals(abs(A), 0) && equals(abs(B), 0)) return m.a;
return m.a + (m.b - m.a) * B / A;
}
bool is_intersect_ll(const Line &l, const Line &m) {
Real A = cross(l.b - l.a, m.b - m.a);
Real B = cross(l.b - l.a, l.b - m.a);
if (equals(abs(A), 0) && equals(abs(B), 0)) return true;
return !is_parallel(l, m);
}
using namespace Nyaan;
struct Parser {
int i = 0;
string S;
int buf = 0;
int root = -1;
vvi g;
vvi A;
// 1 &, 2 |, 3 ^, 4 !
vi B;
Parser(string _s) : S(_s) { root = formula(); }
int add_node() {
g.push_back({});
A.push_back({});
B.push_back(-1);
return buf++;
}
int formula() {
if (S[i] != '(') return atomic();
i++;
int p = add_node();
if (S[i] == '!') {
i++;
int c1 = formula();
assert(S[i] == ')');
i++;
g[p].push_back(c1);
B[p] = 4;
} else {
int c1 = formula();
char op = S[i];
i++;
int c2 = formula();
assert(S[i] == ')');
i++;
g[p].push_back(c1);
g[p].push_back(c2);
B[p] = op == '&' ? 1 : op == '|' ? 2 : 3;
}
return p;
}
int atomic() {
assert(S[i] == '[');
i++;
vi a;
rep(t, 3) {
int j = i;
while (S[j] == '-') j++;
while ('0' <= S[j] and S[j] <= '9') j++;
a.push_back(stoll(S.substr(i, j - i)));
i = j + 1;
}
int p = add_node();
A[p] = a;
return p;
}
};
Polygon convex_polygon_cut(const Polygon &U, const Line &l) {
Polygon ret;
for (int i = 0; i < U.size(); i++) {
const Point &now = U[i];
const Point &nxt = U[(i + 1) % U.size()];
auto cf = cross(l.a - now, l.b - now);
auto cs = cross(l.a - nxt, l.b - nxt);
if (sign(cf) >= 0) {
ret.emplace_back(now);
}
if (sign(cf) * sign(cs) < 0) {
ret.emplace_back(cross_point_ll(Line(now, nxt), l));
}
}
return ret;
}
void q() {
ini(xmin, xmax, ymin, ymax);
ins(S);
Parser parser{S};
trc(parser.g);
trc(parser.A);
trc(parser.B);
V<Line> ls;
each(v, parser.A) {
if (!v.empty()) ls.push_back(Line(v[0], v[1], -v[2]));
}
V<Polygon> ps;
{
Polygon p;
p.emplace_back(xmax, ymax);
p.emplace_back(xmin, ymax);
p.emplace_back(xmin, ymin);
p.emplace_back(xmax, ymin);
ps.emplace_back(p);
}
for(auto&l : ls) {
V<Polygon> nxt;
each(p, ps) {
rep(t, 2) {
Polygon np = convex_polygon_cut(p, l);
if(sz(np) >= 3) nxt.push_back(np);
swap(l.a, l.b);
}
}
ps = nxt;
trc(ps);
}
Real ans = 0;
each(p, ps) {
Point center;
each(x, p) center += x;
center /= sz(p);
Real x = center.real();
Real y = center.imag();
auto dfs = [&](auto rc, int c) -> bool {
if (parser.B[c] == -1) {
Real z = 0;
z += x * parser.A[c][0];
z += y * parser.A[c][1];
z += parser.A[c][2];
return z >= 0;
} else if (parser.B[c] <= 3) {
bool b1 = rc(rc, parser.g[c][0]);
bool b2 = rc(rc, parser.g[c][1]);
if (parser.B[c] == 1) return b1 & b2;
if (parser.B[c] == 2) return b1 | b2;
return b1 ^ b2;
}
bool b1 = rc(rc, parser.g[c][0]);
return !b1;
};
bool b = dfs(dfs, parser.root);
if (b) ans += area(p);
}
out(ans);
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3856kb
input:
0 1 0 1 ([-1,1,0]^[-1,-1,1])
output:
0.500000000000000
result:
ok found '0.5000000', expected '0.5000000', error '0.0000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
-5 10 -10 5 ((!([1,2,-3]&[10,3,-2]))^([-2,3,1]|[5,-2,7]))
output:
70.451693404634581
result:
ok found '70.4516934', expected '70.4516934', error '0.0000000'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3896kb
input:
0 1 -1 1 ([1,1,1]&[-1,-1,-1])
output:
0.000000000000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #4:
score: 0
Accepted
time: 0ms
memory: 4016kb
input:
0 1000 0 1000 (([1,-1,0]&[-1000,999,999])&([1,0,-998]&[0,1,-998]))
output:
0.000500000000017
result:
ok found '0.0005000', expected '0.0005000', error '0.0000000'
Test #5:
score: 0
Accepted
time: 1ms
memory: 4056kb
input:
-725 165 643 735 ((((!(([22,15,137]|(!([23,-5,-41]^(!([2,25,-515]&[-37,10,487])))))&(!(([25,24,47]^([-24,21,-114]^[19,-7,79]))^[4,20,241]))))^(!((!((!(([30,-1,474]^([14,17,155]^[-31,-6,-153]))|[-15,-15,108]))|(([-26,-11,421]&[-15,-3,-224])&[14,-3,458])))^[9,20,-404])))^(!((!((!(([14,-6,-464]^[-11,8,...
output:
47063.334852441476567
result:
ok found '47063.3348524', expected '47063.3348524', error '0.0000000'
Test #6:
score: 0
Accepted
time: 1ms
memory: 4028kb
input:
767 957 738 941 ((!(((!([3,-3,507]^[-30,-10,425]))^[-6,7,643])^((!((!([-11,0,450]^[21,17,-65]))&(!([17,0,64]^[-11,0,804]))))|[-31,10,-687])))&((!(([-34,12,-527]^(!([17,-14,-219]^(!([13,-27,-105]^(!([18,-47,-110]&(!([-9,-20,-455]^[-18,26,-228])))))))))^([-4,0,144]^[10,1,396])))^((!((!([35,0,-221]&[-5...
output:
36999.058655663222197
result:
ok found '36999.0586557', expected '36999.0586557', error '0.0000000'
Test #7:
score: 0
Accepted
time: 1630ms
memory: 24340kb
input:
-513 213 -733 114 (!((!((!((((!([2,16,-57]|[15,40,-272]))^((!(([0,26,315]|[5,-4,-336])^(!([-12,2,218]&([17,-16,-730]&[-7,3,-263])))))^[18,-7,29]))^[5,30,-126])^((!(((!((([8,9,406]^(!([-26,6,63]^[-38,-25,108])))^(([-9,20,220]^(!([-2,-27,213]^[29,16,-269])))|[-12,-4,-586]))^([30,0,-443]|(!((!([-17,0,3...
output:
295728.608103610678199
result:
ok found '295728.6081036', expected '295728.6081036', error '0.0000000'
Test #8:
score: 0
Accepted
time: 11ms
memory: 4176kb
input:
-517 -379 -789 477 (((!((!(([1,-12,191]^(!(((!([32,0,89]^[-35,6,33]))^[-3,6,-293])^[20,-39,77])))^(([16,15,-285]^[15,-7,430])^([20,3,-95]|(!((!(([-15,-27,339]^[-11,-13,221])^[33,28,596]))|([-17,21,402]^[22,16,90])))))))&(!((!((!([12,-1,-279]^[-30,-13,224]))^[-29,24,-33]))^([31,-19,288]^(!((!([-1,26,...
output:
107150.604879697176187
result:
ok found '107150.6048797', expected '107150.6048797', error '0.0000000'
Test #9:
score: 0
Accepted
time: 9ms
memory: 4772kb
input:
-477 275 -266 519 (!((!((!((!([-1,3,162]|[-32,16,269]))&(!(((((([-31,7,114]^([-12,7,-163]^[23,-10,159]))|(!(([0,-16,114]^[-33,15,-190])|(!([1,-22,308]^[-31,13,316])))))^((!([-12,29,-22]^(([23,15,-8]^[0,15,46])^[6,15,356])))^[22,13,-163]))^([18,17,487]^[28,23,143]))|(!(((!((!(([7,-45,-583]&([31,2,-22...
output:
335169.310517515866024
result:
ok found '335169.3105175', expected '335169.3105175', error '0.0000000'
Test #10:
score: 0
Accepted
time: 3ms
memory: 4044kb
input:
175 624 -835 683 (!(((!(([-32,30,-478]^[23,4,-120])^[28,33,413]))|(!((!((!((!([-15,-5,0]^(!((!(((!([0,-32,90]^[-9,-22,-7]))^[-10,-35,344])|(!([1,11,-235]|[-31,-6,-344]))))^(!((!([-15,0,-90]|[-17,-10,-153]))^[-1,6,-8]))))))^(!([8,-6,302]^[-2,4,91]))))|([13,28,-70]^[16,-11,-74])))^(((((!((!((([-5,8,45...
output:
411470.358504943457120
result:
ok found '411470.3585049', expected '411470.3585049', error '0.0000000'
Test #11:
score: 0
Accepted
time: 245ms
memory: 8444kb
input:
-1000 1000 -1000 1000 ([1,0,-1000]^([0,1,-1000]^([1,0,-980]^([0,1,-980]^([1,0,-960]^([0,1,-960]^([1,0,-940]^([0,1,-940]^([1,0,-920]^([0,1,-920]^([1,0,-900]^([0,1,-900]^([1,0,-880]^([0,1,-880]^([1,0,-860]^([0,1,-860]^([1,0,-840]^([0,1,-840]^([1,0,-820]^([0,1,-820]^([1,0,-800]^([0,1,-800]^([1,0,-780]^...
output:
2000000.000000000000000
result:
ok found '2000000.0000000', expected '2000000.0000000', error '0.0000000'
Test #12:
score: 0
Accepted
time: 254ms
memory: 9052kb
input:
-500 500 -500 500 ([2,-3,-1000]^([2,3,-1000]^([2,-3,-980]^([2,3,-980]^([2,-3,-960]^([2,3,-960]^([2,-3,-940]^([2,3,-940]^([2,-3,-920]^([2,3,-920]^([2,-3,-900]^([2,3,-900]^([2,-3,-880]^([2,3,-880]^([2,-3,-860]^([2,3,-860]^([2,-3,-840]^([2,3,-840]^([2,-3,-820]^([2,3,-820]^([2,-3,-800]^([2,3,-800]^([2,-...
output:
540000.000000000014893
result:
ok found '540000.0000000', expected '540000.0000000', error '0.0000000'
Test #13:
score: 0
Accepted
time: 29ms
memory: 4300kb
input:
-1000 1000 -1000 1000 ([-57,281,0]^([478,81,0]^([-362,995,0]^([-339,614,0]^([491,769,0]^([673,486,0]^([-637,374,0]^([-204,383,0]^([-509,859,0]^([-973,757,0]^([-707,648,0]^([-792,409,0]^([-944,621,0]^([446,21,0]^([-553,473,0]^([795,704,0]^([-821,992,0]^([89,47,0]^([771,332,0]^([-845,259,0]^([271,867,...
output:
1823923.897152950194709
result:
ok found '1823923.8971530', expected '1823923.8971530', error '0.0000000'
Test #14:
score: 0
Accepted
time: 0ms
memory: 3868kb
input:
-1000 1000 -1000 1000 (([-27,-20,-237]^((([31,17,247]^[-4,-23,-917])^(![8,21,-342]))^((([-17,2,-281]&[-26,-31,186])|[31,-21,-697])|[-18,8,-512])))&[-5,19,-104])
output:
420530.734540940509987
result:
ok found '420530.7345409', expected '420530.7345409', error '0.0000000'
Test #15:
score: 0
Accepted
time: 771ms
memory: 16560kb
input:
-1000 1000 -1000 1000 ((((!(((([31,17,247]^[-4,-23,-917])^(![8,21,-342]))^((([-17,2,-281]&[-26,-31,186])|[31,-21,-697])|[-18,8,-512]))^((!((!(!((([12,23,237]|[913,22,925])^[-14,11,-956])^[-9,-10,818])))|((([3,1,-213]^[-296,-13,171])&(!(!((!((!([-10,6,636]^[17,19,-546]))^([28,28,-698]|[-14,-4,-295]))...
output:
1479667.440785966162593
result:
ok found '1479667.4407860', expected '1479667.4407860', error '0.0000000'
Test #16:
score: 0
Accepted
time: 1700ms
memory: 25536kb
input:
-1000 1000 -1000 1000 (((((((((((([-15,-2,9]^[-168,-28,507])^[-31,-23,293])^[23,-1,-290])^(([26,-4,869]^(([24,2,522]^[-10,5,-918])^[-22,5,50]))^[16,-827,-276]))^(([-1,-24,-651]^([16,15,-332]^[-722,29,-330]))^([-19,-23,14]^[12,-18,289])))^(((([6,-29,803]^[8,-8,50])^((([9,-7,-112]^([23,-29,-827]^[-12,...
output:
1945479.957439870418398
result:
ok found '1945479.9574399', expected '1945479.9574399', error '0.0000000'
Test #17:
score: 0
Accepted
time: 7ms
memory: 4048kb
input:
0 1000 0 1000 (((((((([85,-100,0]^[21,-100,0])^[55,-100,0])^([29,-100,0]^([47,-100,0]^([78,-100,0]^([13,-100,0]^([100,-11,0]^[86,-100,0]))))))^(([48,-100,0]^[35,-100,0])^((([39,-100,0]^[98,-100,0])^([9,-100,0]^[100,-14,0]))^[100,-79,0])))^([12,-100,0]^[100,-100,0]))^((([20,-100,0]^([100,-64,0]^([100...
output:
500000.000000000000114
result:
ok found '500000.0000000', expected '500000.0000000', error '0.0000000'
Test #18:
score: 0
Accepted
time: 231ms
memory: 9224kb
input:
0 100 0 100 (((([-85,1,0]^((([-21,1,0]^([-55,1,0]^(([-29,1,0]^[-47,1,0])^([-78,1,0]^[-13,1,0]))))^(([11,1,-100]^[-86,1,0])^[-48,1,0]))^([-35,1,0]^((((([-39,1,0]^([-98,1,0]^[-9,1,0]))^((([14,1,-100]^[79,1,-100])^[-12,1,0])^[100,1,-100]))^((([-20,1,0]^[64,1,-100])^(([60,1,-100]^([-1,1,0]^[41,1,-100]))...
output:
4987.314854974314136
result:
ok found '4987.3148550', expected '4987.3148550', error '0.0000000'
Test #19:
score: 0
Accepted
time: 918ms
memory: 15260kb
input:
-500 1000 -500 1000 ((((((([2,-1,37]^[2,-1,1])^(([2,1,-55]^(([2,1,-29]^[2,1,-47])^[2,1,-78]))^([2,1,-13]^[0,1,-11])))^(((([2,1,-86]^([2,1,-48]^[2,-1,100]))^[2,-1,95])^[2,1,-98])^([2,1,-9]^([0,1,-14]^[0,1,-79]))))^([2,-1,88]^[0,1,-100]))^(([2,1,-20]^(([0,1,-64]^([2,-1,85]^[2,1,-1]))^(([2,-1,65]^([0,1...
output:
145000.000000000000000
result:
ok found '145000.0000000', expected '145000.0000000', error '0.0000000'
Test #20:
score: 0
Accepted
time: 0ms
memory: 4568kb
input:
0 1000 0 1000 (!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!...
output:
623640.000000000000000
result:
ok found '623640.0000000', expected '623640.0000000', error '0.0000000'
Test #21:
score: 0
Accepted
time: 248ms
memory: 8716kb
input:
-300 300 -300 300 ((([-199,200,0]&[299,-300,0])&([-1,-300,300]&[1,200,-200]))&([-1,-215,215]^((((([-1,-279,279]^[-1,-245,245])^(((((([-1,-271,271]^[-1,-253,253])^([-1,-222,222]^([-1,-287,287]^[289,-290,0])))^([-1,-214,214]^[-1,-252,252]))^(([-1,-265,265]^[-1,-261,261])^([-1,-202,202]^((([-1,-291,291...
output:
0.000001388916858
result:
ok found '0.0000014', expected '0.0000014', error '0.0000000'
Test #22:
score: 0
Accepted
time: 0ms
memory: 3932kb
input:
0 1000 0 1000 (([-998,999,0]&[999,-1000,0])&[-1,-1,3])
output:
0.000001127253662
result:
ok found '0.0000011', expected '0.0000011', error '0.0000000'
Extra Test:
score: 0
Extra Test Passed