QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#290093#6344. The Best Problem of 2021ucup-team087#AC ✓139ms82048kbC++2027.9kb2023-12-24 13:09:052023-12-24 13:09:05

Judging History

你现在查看的是最新测评结果

  • [2023-12-24 13:09:05]
  • 评测
  • 测评结果:AC
  • 用时:139ms
  • 内存:82048kb
  • [2023-12-24 13:09:05]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n);
  if (n >= mod) return 0;
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if (dense) return C_dense<mint>(n, k);
  if (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"

template <int mod>
struct modint {
  static_assert(mod < (1 << 30));
  int val;
  constexpr modint(const ll val = 0) noexcept
      : val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
  bool operator<(const modint &other) const {
    return val < other.val;
  } // To use std::map
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += mod - p.val) >= mod) val -= mod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = (int)(1LL * val * p.val % mod);
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint(-val); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
#ifdef FASTIO
  void write() { fastio::printer.write(val); }
  void read() { fastio::scanner.read(val); }
#endif
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 998244353) return {23, 31};
    if (mod == 1045430273) return {20, 363};
    if (mod == 1051721729) return {20, 330};
    if (mod == 1053818881) return {20, 2789};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "library/nt/primetable.hpp"

template <typename T = long long>
vc<T> primetable(int LIM) {
  ++LIM;
  const int S = 32768;
  static int done = 2;
  static vc<T> primes = {2}, sieve(S + 1);

  if (done < LIM) {
    done = LIM;

    primes = {2}, sieve.assign(S + 1, 0);
    const int R = LIM / 2;
    primes.reserve(int(LIM / log(LIM) * 1.1));
    vc<pair<int, int>> cp;
    for (int i = 3; i <= S; i += 2) {
      if (!sieve[i]) {
        cp.eb(i, i * i / 2);
        for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
      }
    }
    for (int L = 1; L <= R; L += S) {
      array<bool, S> block{};
      for (auto& [p, idx]: cp)
        for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1;
      FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1);
    }
  }
  int k = LB(primes, LIM + 1);
  return {primes.begin(), primes.begin() + k};
}
#line 3 "library/mod/powertable.hpp"

// a^0, ..., a^N
template <typename mint>
vc<mint> powertable_1(mint a, ll N) {
  // table of a^i
  vc<mint> f(N + 1, 1);
  FOR(i, N) f[i + 1] = a * f[i];
  return f;
}

// 0^e, ..., N^e
template <typename mint>
vc<mint> powertable_2(ll e, ll N) {
  auto primes = primetable(N);
  vc<mint> f(N + 1, 1);
  f[0] = mint(0).pow(e);
  for (auto&& p: primes) {
    if (p > N) break;
    mint xp = mint(p).pow(e);
    ll pp = p;
    while (pp <= N) {
      ll i = pp;
      while (i <= N) {
        f[i] *= xp;
        i += pp;
      }
      pp *= p;
    }
  }
  return f;
}
#line 2 "library/linalg/xor/transpose.hpp"

// n x m 行列の transpose。O((n+m)log(n+m)) 時間。
// https://github.com/dsnet/matrix-transpose
template <typename UINT>
vc<UINT> transpose(int n, int m, vc<UINT>& A, bool keep_A = 1) {
  assert(max(n, m) <= numeric_limits<UINT>::digits);
  assert(len(A) == n);
  vc<UINT> tmp;
  if (keep_A) tmp = A;
  int LOG = 0;
  while ((1 << LOG) < max(n, m)) ++LOG;
  A.resize(1 << LOG);
  int width = 1 << LOG;
  UINT mask = 1;
  FOR(i, LOG) mask = mask | (mask << (1 << i));
  FOR(t, LOG) {
    width >>= 1;
    mask = mask ^ (mask >> width);
    FOR(i, 1 << t) {
      FOR(j, width) {
        UINT* x = &A[width * (2 * i + 0) + j];
        UINT* y = &A[width * (2 * i + 1) + j];
        *x = ((*y << width) & mask) ^ *x;
        *y = ((*x & mask) >> width) ^ *y;
        *x = ((*y << width) & mask) ^ *x;
      }
    }
  }
  A.resize(m);
  if (!keep_A) return A;
  swap(A, tmp);
  return tmp;
}
#line 2 "library/linalg/xor/vector_space.hpp"

template <typename UINT>
struct Vector_Space {
#define SP Vector_Space
  vc<UINT> dat;

  Vector_Space() {}
  Vector_Space(vc<UINT> dat, bool is_reduced = false) : dat(dat) {
    if (!is_reduced) reduce();
  }

  int size() { return dat.size(); }

  bool add_element(UINT v) {
    for (auto&& e: dat) {
      if (e == 0 || v == 0) break;
      chmin(v, v ^ e);
    }
    if (v) {
      dat.eb(v);
      return true;
    }
    return false;
  }

  bool contain(UINT v) {
    for (auto&& w: dat) {
      if (v == 0) break;
      chmin(v, v ^ w);
    }
    return v == 0;
  }

  UINT get_max(UINT xor_val = 0) {
    UINT res = xor_val;
    for (auto&& x: dat) chmax(res, res ^ x);
    return res;
  }

  UINT get_min(UINT xor_val) {
    UINT res = xor_val;
    for (auto&& x: dat) chmin(res, res ^ x);
    return res;
  }

  static SP merge(SP x, SP y) {
    if (len(x) < len(y)) swap(x, y);
    for (auto v: y.dat) { x.add_element(v); }
    return x;
  }

  static SP intersection(SP& x, SP& y, int max_dim) {
    SP xx = x.orthogonal_space(max_dim);
    SP yy = y.orthogonal_space(max_dim);
    xx = merge(xx, yy);
    return xx.orthogonal_space(max_dim);
  }

  SP orthogonal_space(int max_dim) {
    normalize();
    int m = max_dim;
    // pivot[k] == k となるように行の順番を変える
    vc<u64> tmp(m);
    FOR(i, len(dat)) tmp[topbit(dat[i])] = dat[i];
    tmp = transpose(m, m, tmp, 0);
    SP res;
    FOR(j, m) {
      if (tmp[j] >> j & 1) continue;
      res.add_element(tmp[j] | UINT(1) << j);
    }
    return res;
  }

  void normalize(bool dec = true) {
    int n = len(dat);
    // 三角化
    FOR(j, n) FOR(i, j) chmin(dat[i], dat[i] ^ dat[j]);
    sort(all(dat));
    if (dec) reverse(all(dat));
  }

private:
  void reduce() {
    SP y;
    for (auto&& e: dat) y.add_element(e);
    (*this) = y;
  }
#undef SP
};
#line 7 "main.cpp"

using BS = bitset<2000>;
using mint = modint998;

void out(BS b, int n) {
  string x;
  FOR(i, n) x += (b[i] ? '1' : '0');
  print(x);
}

void solve() {
  LL(N, M);
  auto get = [&]() -> BS {
    BS x;
    STR(S);
    FOR(i, M) x[i] = (S[i] == '1');
    return x;
  };

  vc<BS> dat(N);

  FOR(i, N) dat[i] = get();
  BS Y = get();

  // dat を基本変形
  int rk = 0;
  FOR(j, M) {
    if (rk == N) break;
    FOR(i, rk, N) if (dat[i][j]) {
      if (i != rk) { swap(dat[rk], dat[i]); }
      break;
    }
    if (!dat[rk][j]) continue;
    FOR(i, N) if (i != rk) {
      if (dat[i][j]) { dat[i] ^= dat[rk]; }
    }
    ++rk;
  }
  if (rk != N) return print(0);

  BS X;
  BS now;
  FOR(i, N) {
    // Y >= dat[i] xor now なら使う
    BS now1 = dat[i] ^ now;
    bool ok = 1;
    FOR(j, M) if (Y[j] != now1[j]) {
      if (Y[j]) break;
      ok = 0;
      break;
    }
    if (ok) {
      X[i] = 1;
      now = now1;
    }
  }
  if (!X[0]) return print(0);

  // out(X, N);

  vc<mint> POW = powertable_1<mint>(2, N * N + 100);
  vc<mint> POW2 = {2};
  FOR(i, N + 10) POW2.eb(POW2.back() * POW2.back());

  /*
  1**0***0**0*
  0001***0**0*
  00000001**0*
  00000000001*
  右下隅が (N-1,N=1) になるように基底を配置
  */

  /*
  そのマスを埋めた時点で
  いま見ている行の基底を選ぶかどうか:
  ・不採用
  ・採用
  ・未定だが将来不採用になるもの
  ・未定だが将来採用になるもの

  不採用 / 採用のとき:選ぶと決めたものの xor が small であることは確定済
  未定のとき:xor はここまで X と同じ

  状態 → 答への寄与
  */

  using ARR = array<mint, 4>;
  vv(ARR, dp, N, N);

  dp[N - 1][N - 1][0] = 1;
  dp[N - 1][N - 1][1] = 1;
  dp[N - 1][N - 1][2] = 0; // 不採用にならなかった
  dp[N - 1][N - 1][3] = 1;

  FOR_R(i, N) FOR_R(j, i + 1) {
    if (j == N - 1) continue;
    dp[i][j] = {mint(0), mint(0), mint(0), mint(0)};

    if (!X[j + 1]) {
      // asterisk を 0 でとる
      dp[i][j][0] += dp[i][j + 1][0];
      dp[i][j][1] += dp[i][j + 1][1];
      dp[i][j][2] += dp[i][j + 1][2];
      dp[i][j][3] += dp[i][j + 1][3];
      // asterisk を 1 でとる
      // 未定 → 不採用が確定
      dp[i][j][0] += dp[i][j + 1][0];
      dp[i][j][1] += dp[i][j + 1][1];
      dp[i][j][2] += dp[i][j + 1][0];
      dp[i][j][3] += mint(0);
      if (i + 1 < N) {
        // add new basis
        // すでに small になっているならば、採用確定
        // いま持っている基底の右側を埋める / 採用した係数をかける
        dp[i][j][0] += dp[i + 1][j + 1][1] * POW[i - j] * POW2[N - 2 - i];
        dp[i][j][1] += dp[i + 1][j + 1][1] * POW[i - j] * POW2[N - 2 - i];
        // いま持っている基底の採用が未定のとき
        // いまの基底が将来的に不採用なら、次の基底は確定採用
        // 次の基底の右側は埋めてしまう
        dp[i][j][2] += dp[i + 1][j + 1][2] * POW[i - j] * POW2[N - 2 - i];
        // いまの基底が将来的に採用なら、次の基底は不採用確定
        // 次の基底の右側は埋めてしまう
        dp[i][j][3] += dp[i + 1][j + 1][3] * POW[i - j];
      }
    }
    if (X[j + 1]) {
      // asterisk を 0 でとる
      // 未定 → 採用が確定
      dp[i][j][0] += dp[i][j + 1][0];
      dp[i][j][1] += dp[i][j + 1][1];
      dp[i][j][2] += mint(0);
      dp[i][j][3] += dp[i][j + 1][1];
      // asterisk を 1 でとる
      dp[i][j][0] += dp[i][j + 1][0];
      dp[i][j][1] += dp[i][j + 1][1];
      dp[i][j][2] += dp[i][j + 1][2];
      dp[i][j][3] += dp[i][j + 1][3];
      if (i + 1 < N) {
        // add new basis
        // すでに small になっているならば、採用確定
        // いま持っている基底の右側を埋める / 採用した係数をかける
        dp[i][j][0] += dp[i + 1][j + 1][1] * POW[i - j] * POW2[N - 2 - i];
        dp[i][j][1] += dp[i + 1][j + 1][1] * POW[i - j] * POW2[N - 2 - i];
        // いま持っている基底の採用が未定のとき
        // この基底は採用確定、この基底の右側は埋めてしまう
        // 次の基底の採用判断は保留
        dp[i][j][3] += dp[i + 1][j + 1][2] * POW[i - j];
        dp[i][j][3] += dp[i + 1][j + 1][3] * POW[i - j] * POW2[N - 2 - i];
      }
    }
  }

  vc<mint> F(N + 1);
  F[0] = mint(1);
  FOR(i, N) FOR(j, i + 1) {
    int dim = N - i;
    mint x = 0;
    if (j == 0) {
      x = dp[i][j][2] + dp[i][j][3] * POW2[N - 1 - i];
    } else {
      x += dp[i][j][1] * POW2[N - 1 - i];
    }
    F[dim] += x;
  }

  mint ANS = 0;
  FOR(i, N + 1) {
    mint cf = POW[(N - i) * (N - i - 1) / 2];
    if ((N - i) % 2 == 1) cf = -cf;
    ANS += cf * F[i];
  }
  print(ANS);
}

signed main() {
  solve();
  return 0;
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3864kb

input:

4 4
0001
0010
0100
1000
1101

output:

7364

result:

ok 1 number(s): "7364"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3504kb

input:

3 2
00
00
00
11

output:

0

result:

ok 1 number(s): "0"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3704kb

input:

2 3
110
101
101

output:

1

result:

ok 1 number(s): "1"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

3 10
1111100110
0011110100
0101100001
1110000001

output:

38

result:

ok 1 number(s): "38"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3624kb

input:

7 13
1000101001000
1000000010000
1010101011111
1001100100111
1111111101100
0101010101110
1101100010100
1000010011001

output:

744450298

result:

ok 1 number(s): "744450298"

Test #6:

score: 0
Accepted
time: 1ms
memory: 3748kb

input:

100 100
1111010111010001011111110010101001001101000000000000011000001100101000100011100011000000110000001010
1001001110111010100100010111100010111110101100101000010111001011111010111100111000000011101010100111
000011010111000100110100010010011101001111100110111000100101010001101100101011000111101101...

output:

19562313

result:

ok 1 number(s): "19562313"

Test #7:

score: 0
Accepted
time: 7ms
memory: 6500kb

input:

400 500
1011011011010010111110101001010011000100001111000111111111001111100010101011110011010010011100100100111111000111001110111100101010000000100100011011011001011100100000000100001100001010100010111000110011000100101001010110110100110101000011011011011100111110010100101000011001100000001100001000...

output:

681985268

result:

ok 1 number(s): "681985268"

Test #8:

score: 0
Accepted
time: 41ms
memory: 23124kb

input:

999 1997
011101110101100100111101100000000100001110010001010100011010111010101101011100001000010001110100110111101101010111010011101111011001011100110110101011111011000111101011011000010101100101001110000111010101111100000100100101110000111001010101110110000001111111100110110011110100101000011100011...

output:

435150194

result:

ok 1 number(s): "435150194"

Test #9:

score: 0
Accepted
time: 115ms
memory: 74264kb

input:

1901 2000
10000111000111010000000000100110001100110010011001101110001011000001011000010111101110111001111000010110110100010100010101011111011101100111010101010001010010111010001011000001011010100011000101101010001110111100000101110110011001101111101111000100001010011101011110001100110001100000111110...

output:

9254020

result:

ok 1 number(s): "9254020"

Test #10:

score: 0
Accepted
time: 127ms
memory: 80584kb

input:

1984 2000
11111101001011101001011011010011000001100000101000001001111000100010011011000110110110100000001100000000001111101001111010111110000000010000000111111001010111101101110000111110010111001011011111010010110001011100110101000110000100010100100101010111101100000011110010010100101011101001110110...

output:

870006511

result:

ok 1 number(s): "870006511"

Test #11:

score: 0
Accepted
time: 51ms
memory: 3728kb

input:

2000 2000
00010001100000101100000110010101010101110010001000000100010010110010001100110000001110100111010110100110101010101111011100001110100011001000010001000011100111010100110101000111010010010111001001101100100000101001111111001111101001000101001011101001010010010101011110111001101101101001001000...

output:

0

result:

ok 1 number(s): "0"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

11 11
10000000000
01000000000
00100000000
00010000000
00001000000
00000100000
00000010000
00000001000
00000000100
00000000010
00000000001
10111110000

output:

312889397

result:

ok 1 number(s): "312889397"

Test #13:

score: 0
Accepted
time: 1ms
memory: 3820kb

input:

100 100
1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

554554135

result:

ok 1 number(s): "554554135"

Test #14:

score: 0
Accepted
time: 22ms
memory: 23068kb

input:

1000 1000
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

944188930

result:

ok 1 number(s): "944188930"

Test #15:

score: 0
Accepted
time: 94ms
memory: 81792kb

input:

1999 1999
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

753324940

result:

ok 1 number(s): "753324940"

Test #16:

score: 0
Accepted
time: 95ms
memory: 81872kb

input:

2000 2000
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

489943678

result:

ok 1 number(s): "489943678"

Test #17:

score: 0
Accepted
time: 96ms
memory: 82048kb

input:

2000 2000
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

458543942

result:

ok 1 number(s): "458543942"

Test #18:

score: 0
Accepted
time: 0ms
memory: 3656kb

input:

37 100
0000000000100000010101011000010111111000000000000000000000000000000000001110100110101000000010110000
0111100011011110101011110100101001011000000000110010001010110100000000010000100000111011000000100000
0001110011110000001100011000010011001000000000000000000000000000000000000000000000000000010...

output:

807297668

result:

ok 1 number(s): "807297668"

Test #19:

score: 0
Accepted
time: 1ms
memory: 3740kb

input:

71 93
100010100111111001011100000000011001101101010001011001110001101110010000001000001000000000011
110100111110010001000110000101111010111111000111011010100001010000010110011000000100000000000
110010010110000000010001010100000011000100000010011100100000100100101100010100001100000010000
000101010010...

output:

50935767

result:

ok 1 number(s): "50935767"

Test #20:

score: 0
Accepted
time: 1ms
memory: 3724kb

input:

101 114
010101111101011101100001000100001001000100011100111111110010001111101001100100000110100101010110000000000000001000
101010000011100100000001100000110000111001111011000010010101001011110110100101011101111111111110111010000000000000
11011100100101010100101100000101100000010100000010010110101010...

output:

0

result:

ok 1 number(s): "0"

Test #21:

score: 0
Accepted
time: 1ms
memory: 3704kb

input:

17 2000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010010101111100001010111000001111010110101100011000011011111110001011001011010111110111110000110011101111011010110101011010100110001111110110110101000101110100110011001000010000001010...

output:

526829746

result:

ok 1 number(s): "526829746"

Test #22:

score: 0
Accepted
time: 1ms
memory: 3880kb

input:

30 1999
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

708057099

result:

ok 1 number(s): "708057099"

Test #23:

score: 0
Accepted
time: 1ms
memory: 3740kb

input:

54 2000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

0

result:

ok 1 number(s): "0"

Test #24:

score: 0
Accepted
time: 19ms
memory: 15664kb

input:

791 1999
101011000010100101111110010001001001000000000001111100001000101100011110001010010011111110111010100011111010001110000001100010000011001110110011011011110110101100010010110111011000101111010100101110110010100011100100011001100000000001000001010100000000100111011000101111100100001000011010001...

output:

64451741

result:

ok 1 number(s): "64451741"

Test #25:

score: 0
Accepted
time: 28ms
memory: 20876kb

input:

944 2000
110101011100010000001010011011000001001001101001001011101110100000001000000010101011111001101010110100011101110100110010110000011100011111000001011110100111011101110010100100110111001110110001101010011101100010100100000010110101000101111000101110011000111000111111101110001101101110111110001...

output:

996119909

result:

ok 1 number(s): "996119909"

Test #26:

score: 0
Accepted
time: 40ms
memory: 27456kb

input:

1102 1999
10001010010010110101001000110000010000000110101001010111100100000110001111111100111001000111000111110100101101010110111110110001111011110101111001101100101110001011100001100000000000111111111000111010000111100010011010100001001011110111011110100001000100111000100001000010111001111011110001...

output:

855516290

result:

ok 1 number(s): "855516290"

Test #27:

score: 0
Accepted
time: 48ms
memory: 3652kb

input:

1931 2000
01101111100011101110100101000110011110000111000001010001011111010110011001111110110010111000100010111101001100001100001100010101000011001000110001011101111001000111101011011100011110010100001111111000101111000110000000000010110101110001000001011111001000001001100110101100100010101010010000...

output:

0

result:

ok 1 number(s): "0"

Test #28:

score: 0
Accepted
time: 116ms
memory: 77644kb

input:

1944 1999
10000110101111110110111101101000111110100010000011101101000011101100110000110001110000100000100101011111100100111000100110011111110111011100100000111000101110011100101011000011101101010001111110110100101101001011010011111111011111001101010000101011110010010110110101110000000111010100111101...

output:

52786402

result:

ok 1 number(s): "52786402"

Test #29:

score: 0
Accepted
time: 50ms
memory: 3652kb

input:

1977 2000
10011110110110110011001100011011011110111110001001101000101110100111011100011101001100100101110101010001100011001110111011101101100010000010100010001011011011001111011010111011100010101010101111101100001000111011100010111000000101111110100001111011111111111111110101101001101001111100011100...

output:

0

result:

ok 1 number(s): "0"

Test #30:

score: 0
Accepted
time: 115ms
memory: 81808kb

input:

2000 2000
01110010111000111001110000110111011110010010111001000001100101101011000001010111111010001100110000101001001000000000011001101101010001010011010000111011111101001110110010110101110101100100000011110100100010110001110010101001000110100100001001001111000111001011110110101100101011011011101010...

output:

3964016

result:

ok 1 number(s): "3964016"

Test #31:

score: 0
Accepted
time: 50ms
memory: 3608kb

input:

1994 1999
00001100011011001011110111100001111001010110101100010010111001011000100111011110000010100111100001101101100000101111101111001001011001000111111011010110001111001100110000100001101001011001001011100101000101010000110001101000100110110010011010000001000110001010101101111100010110001010101000...

output:

0

result:

ok 1 number(s): "0"

Test #32:

score: 0
Accepted
time: 50ms
memory: 3644kb

input:

1997 2000
01111000101001101011000100101111110000011100111100101100111100110000100101010001011110111100101000001001000110100110111101011101010100010110101011010010000100000110011111100000100011000110001110000111011010110001001001000001110101011011011000101111010000010101101111110100110011110100101000...

output:

0

result:

ok 1 number(s): "0"

Test #33:

score: 0
Accepted
time: 139ms
memory: 81872kb

input:

2000 2000
00110111110110101110100001011000000101001011010011111001100000001001101100111111100001100010111101001110101001101010111011111000000110101101101110100111110101111110010000001001010100111101011010100000010001110100100010010100101010100110011101011110111100111110101110111010010111010010100010...

output:

385756366

result:

ok 1 number(s): "385756366"

Test #34:

score: 0
Accepted
time: 122ms
memory: 81252kb

input:

1988 1999
10101010110010100000101100110010001110101111010010001011010100100010101111001010100110100101100100111101000001000110001011110000001110000000110000001111000100101100000000111011011011110111101000001110111111000110011011111011010000010011100010010110111010000011010001011100010001011001100000...

output:

534584509

result:

ok 1 number(s): "534584509"

Test #35:

score: 0
Accepted
time: 53ms
memory: 3864kb

input:

2000 2000
00100000011001010111100000100001011101010011001010100100100001100000000100010110000110010111010000100110010000010001110100010100111001000110111001011101101110111000000111000000111101011010000110010011110011010000010101000111100100100001101001100010101101011111001010001011101001100001011010...

output:

0

result:

ok 1 number(s): "0"

Test #36:

score: 0
Accepted
time: 47ms
memory: 3856kb

input:

1995 2000
10010000010101100111011100110001101101000100010011110100110111110000000111010000111101011000101000111000010010010111000010101110110100011100111010110110110100111101010100000110001010010001011001000100011110101100110111010110101010100100011010101100001010111111000100101110001101000000010010...

output:

0

result:

ok 1 number(s): "0"

Test #37:

score: 0
Accepted
time: 135ms
memory: 81860kb

input:

1999 1999
11011110110011001100010110011001000101010101001001010101111111000111100000001101101101101010001111010000011101100110100111011010011011001101010011001100011111010100001000100100100111010111001000000010101100100010001111100100101110100010010010101000000110101011101001110010111111011101000101...

output:

678369480

result:

ok 1 number(s): "678369480"

Test #38:

score: 0
Accepted
time: 51ms
memory: 3736kb

input:

1999 2000
11000110010001011100111010011110110100101101000010111101001010100000100100011101011000110000101011011111110101001101111010010010010001011110101001010000010100110110100110011110011101001100000001110100001100110111011001110000110110000101110011110010110100110011010111011001011010111000000110...

output:

0

result:

ok 1 number(s): "0"