QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#290091 | #6190. Graph Problem | ucup-team087# | AC ✓ | 1546ms | 8356kb | C++20 | 21.4kb | 2023-12-24 13:07:16 | 2023-12-24 13:07:17 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n);
if (n >= mod) return 0;
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static const int mod = mint::get_mod();
assert(-1 <= n && n < mod);
static vector<mint> dat = {1, 1};
if (n == -1) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if (dense) return C_dense<mint>(n, k);
if (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d] (1-x) ^ {-n} の計算
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static_assert(mod < (1 << 30));
int val;
constexpr modint(const ll val = 0) noexcept
: val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {}
bool operator<(const modint &other) const {
return val < other.val;
} // To use std::map
modint &operator+=(const modint &p) {
if ((val += p.val) >= mod) val -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += mod - p.val) >= mod) val -= mod;
return *this;
}
modint &operator*=(const modint &p) {
val = (int)(1LL * val * p.val % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-val); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
#ifdef FASTIO
void write() { fastio::printer.write(val); }
void read() { fastio::scanner.read(val); }
#endif
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 1 "library/linalg/mat_inv.hpp"
// (det, invA) をかえす
template <typename T>
pair<T, vc<vc<T>>> mat_inv(vc<vc<T>> A) {
T det = 1;
int N = len(A);
vv(T, B, N, N);
FOR(n, N) B[n][n] = 1;
FOR(i, N) {
FOR(k, i, N) if (A[k][i] != 0) {
if (k != i) {
swap(A[i], A[k]), swap(B[i], B[k]);
det = -det;
}
break;
}
if (A[i][i] == 0) return {T(0), {}};
T c = T(1) / A[i][i];
det *= A[i][i];
FOR(j, i, N) A[i][j] *= c;
FOR(j, N) B[i][j] *= c;
FOR(k, N) if (i != k) {
T c = A[k][i];
FOR(j, i, N) A[k][j] -= A[i][j] * c;
FOR(j, N) B[k][j] -= B[i][j] * c;
}
}
return {det, B};
}
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 7 "main.cpp"
using mint = modint998;
void solve() {
LL(N, M);
vv(mint, A, N, N);
FOR(M) {
LL(a, b);
--a, --b;
A[a][b] = RNG(mint::get_mod());
}
/*
A : adj mat
B = inv(I - A)
*/
vv(mint, B, N, N);
FOR(i, N) B[i][i] = mint(1);
FOR(i, N) FOR(j, N) B[i][j] -= A[i][j];
B = mat_inv<mint>(B).se;
LL(Q);
ll cnt = 0;
FOR(Q) {
INT(K);
vc<int> P;
FOR(K) {
INT(x);
x = (x + cnt - 1) % N;
P.eb(x);
}
/*
U:(N,K), i=P[k]
V:(K,N), A[P[k]][j] → A の行ベクトルを並べたものの = tU A
BU → B の列ベクトルを並べたもの
VBU = tU AB U
(I-A)B = I
B - AB = I
AB = B - I
tU AB U = tU B U - I
I + VBU = tU B U → B の P 部分
*/
vv(mint, C, K, K);
FOR(i, K) FOR(j, K) C[i][j] = B[P[i]][P[j]];
C = mat_inv(C).se;
auto query = [&](int s, int t) -> int {
// BU C VB の (s,t)
// BU C tU AB
// BU C tU B - BU C tU
mint x = 0;
FOR(i, K) FOR(j, K) {
// (BU)[s,i] = B[s][P[i]]
// tU B[j,t] = B[P[j]][t]
x += B[s][P[i]] * C[i][j] * B[P[j]][t];
// I[P[j]][t] は 0 なので、BU C tU 側はなし
}
return (x == B[s][t] ? 0 : 1);
};
string ANS;
INT(K2);
FOR(K2) {
INT(s, t);
--s, --t;
s = (s + cnt) % N;
t = (t + cnt) % N;
int ans = query(s, t);
ANS += '0' + ans;
cnt += ans;
}
print(ANS);
}
}
signed main() {
solve();
return 0;
}
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3720kb
input:
5 4 1 2 2 3 3 4 4 5 2 1 4 2 1 5 1 3 3 5 3 4 1 1 2
output:
01 1
result:
ok 2 lines
Test #2:
score: 0
Accepted
time: 3ms
memory: 3848kb
input:
100 4870 1 4 1 9 2 1 2 6 2 8 4 5 4 10 5 2 5 3 5 7 6 2 6 4 6 8 7 1 7 2 7 8 7 10 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 9 8 13 8 16 8 17 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 18 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 11 10 15 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10 11 12 11 18 11 20 12 1 12 2 12 3 12 4 1...
output:
1011000010 1010110101 0001010000 0000101001 1000010000 0111001101 0011001101 1100010010 0001100010 0010110101 0011001111 0001000101 1101010010 0100001100 1000100001 0100000000 1110100000 0101111010 0111001001 1110000000 1011000011 0110000000 0000000100 0001011000 1000111000 1111000010 1000110000 011...
result:
ok 100 lines
Test #3:
score: 0
Accepted
time: 3ms
memory: 4200kb
input:
100 4839 1 2 1 7 1 12 1 13 1 15 1 17 1 21 1 22 1 24 2 1 2 4 2 5 2 7 2 12 2 16 2 19 2 22 2 24 3 7 3 8 3 13 3 20 3 22 4 8 4 12 4 14 4 19 5 2 5 3 5 4 5 6 5 7 5 10 5 13 5 14 5 19 5 24 6 3 6 7 6 8 6 10 6 12 6 13 6 15 6 17 6 19 6 21 6 23 6 24 7 2 7 6 7 8 7 9 7 10 7 12 7 13 7 16 7 23 8 1 8 9 8 11 8 12 8 13...
output:
1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111100111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 111...
result:
ok 100 lines
Test #4:
score: 0
Accepted
time: 3ms
memory: 3896kb
input:
100 4650 1 7 1 12 1 20 1 22 2 7 2 9 2 10 2 11 2 14 2 18 2 20 3 1 3 4 3 8 3 12 3 14 3 16 3 17 3 20 3 21 3 22 4 1 4 6 4 8 4 11 4 12 4 13 4 16 4 21 5 2 5 4 5 9 5 16 5 19 5 21 6 7 6 9 6 10 6 21 7 2 7 8 7 9 7 19 7 20 7 22 8 5 8 7 8 11 8 12 8 14 8 21 9 1 9 5 9 6 9 7 9 8 9 12 9 17 9 21 9 22 10 4 10 9 10 12...
output:
1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 111...
result:
ok 100 lines
Test #5:
score: 0
Accepted
time: 3ms
memory: 3960kb
input:
100 4945 1 2 1 3 1 5 1 7 1 8 1 9 1 10 1 13 1 15 2 1 2 3 2 4 2 9 2 11 2 12 2 15 3 1 3 10 3 12 3 16 4 1 4 5 4 10 4 12 4 13 4 15 4 16 5 6 5 11 5 16 5 17 6 2 6 10 6 11 6 14 7 1 7 2 7 3 7 4 7 5 7 6 7 8 7 9 7 10 7 11 7 16 7 21 7 22 7 23 7 24 7 25 7 27 7 28 7 30 7 31 7 32 7 35 7 38 7 39 8 1 8 2 8 3 8 4 8 5...
output:
1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1110101101 1111111111 1111111111 1111111111 1111111111 1100011011 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 111...
result:
ok 100 lines
Test #6:
score: 0
Accepted
time: 458ms
memory: 8268kb
input:
500 124582 1 12 1 14 2 4 2 7 2 9 2 13 2 14 2 18 3 1 3 4 3 7 3 14 3 17 4 1 4 3 4 6 4 12 4 15 4 18 5 3 6 1 6 3 6 8 6 10 6 11 6 13 6 15 6 17 6 18 7 3 7 4 7 5 7 8 7 9 7 17 8 2 8 6 9 10 9 13 9 17 10 2 10 5 10 17 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10 11 17 11 18 11 19 11 26 12 1 12 2 12 3 12 ...
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
result:
ok 100000 lines
Test #7:
score: 0
Accepted
time: 455ms
memory: 8236kb
input:
500 125402 1 3 1 7 1 10 1 13 1 16 1 21 1 23 1 25 1 28 1 36 1 37 2 3 2 4 2 6 2 7 2 9 2 11 2 16 2 17 2 19 2 20 2 24 2 26 2 28 2 30 2 37 3 2 3 18 3 19 3 21 3 25 3 26 3 32 4 7 4 9 4 10 4 11 4 12 4 14 4 15 4 18 4 19 4 24 4 33 4 35 4 36 5 1 5 4 5 10 5 11 5 17 5 19 5 20 5 21 5 23 5 24 5 31 5 32 5 36 5 38 5...
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
result:
ok 100000 lines
Test #8:
score: 0
Accepted
time: 457ms
memory: 8228kb
input:
500 123930 1 6 1 11 1 13 1 16 1 22 1 25 1 26 1 34 1 38 1 41 1 42 1 43 1 44 1 46 1 48 1 49 1 51 1 53 1 56 2 6 2 9 2 13 2 15 2 24 2 31 2 33 2 36 2 37 2 43 2 44 2 50 2 53 2 56 3 2 3 4 3 5 3 16 3 18 3 19 3 25 3 31 3 32 3 40 3 43 3 44 3 47 3 48 3 50 3 51 3 53 4 1 4 2 4 3 4 5 4 6 4 8 4 14 4 18 4 20 4 26 4...
output:
0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 ...
result:
ok 100000 lines
Test #9:
score: 0
Accepted
time: 453ms
memory: 8188kb
input:
500 123484 1 5 1 8 1 10 1 11 1 12 1 20 1 23 1 26 1 27 1 28 1 29 1 31 1 33 1 41 2 4 2 7 2 10 2 18 2 20 2 34 2 35 2 39 2 41 2 42 2 44 2 46 2 52 3 4 3 5 3 6 3 7 3 9 3 14 3 17 3 19 3 23 3 25 3 26 3 32 3 36 3 38 3 39 3 40 3 44 3 46 3 48 3 51 4 1 4 7 4 11 4 12 4 14 4 16 4 17 4 19 4 21 4 23 4 24 4 25 4 29 ...
output:
0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 ...
result:
ok 100000 lines
Test #10:
score: 0
Accepted
time: 1330ms
memory: 8252kb
input:
500 3278 2 5 2 7 3 5 4 6 4 9 5 6 5 7 5 8 6 8 6 9 6 10 7 8 7 9 8 9 9 13 9 20 9 22 9 23 9 24 9 27 9 29 9 31 10 12 10 14 10 17 10 21 10 23 10 24 10 25 10 26 10 27 11 15 11 17 11 20 11 21 11 25 12 16 12 20 12 21 12 22 12 24 12 28 12 32 12 33 12 39 12 42 12 45 12 46 12 47 12 48 13 14 13 20 13 21 13 23 13...
output:
1011111110 1010010110 0011111011 0101110101 0101011111 1111100001 1111111101 1110000110 1111111011 1111101011 1100101011 1110110111 1100111011 1110100100 1010011111 1111110111 0110111111 1111011100 1110011111 1001101000 1110100111 0111110111 1110111110 1101110001 1111010111 0100100011 1111010011 111...
result:
ok 400000 lines
Test #11:
score: 0
Accepted
time: 1320ms
memory: 8284kb
input:
500 3720 1 3 1 8 1 9 1 11 1 12 1 13 1 18 1 24 1 25 2 4 2 6 2 9 2 10 2 12 2 13 2 18 2 23 2 24 3 8 3 15 3 18 3 19 3 22 3 25 3 26 4 10 4 15 4 17 4 19 5 7 5 9 5 10 5 12 5 13 5 14 5 21 6 8 6 9 6 13 6 16 6 24 7 9 7 11 7 13 7 14 7 15 7 16 7 18 7 26 8 10 8 15 8 18 8 19 8 21 8 22 9 14 9 15 9 16 9 20 9 21 9 2...
output:
1111111101 1111111100 1110111110 1111111110 1111111111 1111111110 1101111011 1111111111 1111110111 1111111101 1111111111 0001010100 1111111111 1111111111 0011110111 1111111101 1111111111 1111111111 1110111111 1111111111 1011110011 1011111111 1111101101 1111111110 1111111111 1111111110 1111001111 110...
result:
ok 400000 lines
Test #12:
score: 0
Accepted
time: 1315ms
memory: 8100kb
input:
500 4232 1 2 1 6 1 14 1 16 2 4 2 6 2 10 2 16 2 17 2 18 2 25 2 26 2 28 3 4 3 6 3 12 3 13 3 17 3 18 3 25 4 8 4 12 4 18 4 23 4 28 5 8 5 9 5 10 5 12 5 13 5 17 5 18 5 21 5 26 5 28 6 8 6 9 6 12 6 23 6 24 6 25 6 26 6 27 6 29 7 15 7 23 7 24 7 25 7 28 8 12 8 14 8 16 8 19 8 29 9 12 9 13 9 15 9 16 9 17 9 20 9 ...
output:
1111011011 1111111111 1111111111 0111111011 1111111011 1110111111 0111111110 1110110111 1110001110 1011111111 0111111111 1111111111 1011111110 1111111111 1011111111 1111111111 1111011111 1111111011 1110111111 0111111111 0111110111 1111101111 0111110111 0111111111 1111111111 1111110011 1111111111 111...
result:
ok 400000 lines
Test #13:
score: 0
Accepted
time: 1336ms
memory: 8212kb
input:
500 6443 1 5 1 9 1 12 1 15 1 18 1 20 1 21 1 22 1 24 1 26 1 27 1 30 1 34 1 35 1 37 1 40 1 42 1 45 1 47 1 48 1 49 1 55 1 58 1 64 1 67 1 68 1 71 1 72 2 3 2 6 2 8 2 9 2 16 2 17 2 19 2 23 2 26 2 29 2 31 2 35 2 36 2 37 2 38 2 41 2 45 2 47 2 52 2 53 2 57 2 69 2 70 2 73 2 76 2 77 3 6 3 12 3 14 3 15 3 20 3 2...
output:
1001111111 0101111010 1111011111 1111111010 1111101111 0111111111 0110111111 1110111111 1111101101 1011111111 1111111111 1111111101 1110111110 1101111111 1011111111 1011111111 1111111111 1111110110 1111110101 1011111011 1111101110 1111111010 0011101101 1011111101 1111101111 1111100110 1101101000 111...
result:
ok 400000 lines
Test #14:
score: 0
Accepted
time: 1521ms
memory: 8356kb
input:
500 123824 2 4 2 6 3 1 3 10 4 2 4 6 4 7 4 8 5 2 5 3 5 4 5 7 5 8 5 11 6 7 7 3 7 5 7 6 7 8 7 11 8 2 8 4 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 12 9 14 9 17 9 21 9 23 9 24 9 25 9 26 9 27 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 13 10 15 10 18 10 19 10 23 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 10 11 15...
output:
0111110011 0110111111 1011001110 0101001011 0111110111 0011011000 1011110010 1000001101 1111000111 0101101111 1000001010 1010101010 0100000100 1011101110 1100011000 0000111110 0010100011 0110010101 1000111111 1101000001 0111110010 0011110100 0011101010 1001001111 0001010011 1010110110 0110111110 000...
result:
ok 400000 lines
Test #15:
score: 0
Accepted
time: 1521ms
memory: 8220kb
input:
500 124816 1 3 1 8 1 9 1 11 1 12 1 13 1 18 1 24 1 25 2 3 2 5 2 8 2 9 2 11 2 12 2 17 2 22 2 23 3 5 3 12 3 15 3 16 3 19 3 22 3 23 4 3 4 9 4 11 4 13 4 22 4 24 4 25 5 1 5 2 5 3 5 11 5 18 5 19 5 23 5 26 6 9 6 13 6 15 6 17 6 18 6 19 6 20 6 22 7 4 7 6 7 12 7 15 7 16 7 18 7 19 8 2 8 3 8 4 8 9 8 10 8 11 8 16...
output:
1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 111...
result:
ok 400000 lines
Test #16:
score: 0
Accepted
time: 1546ms
memory: 8212kb
input:
500 124872 1 2 1 6 1 14 1 16 2 1 2 4 2 6 2 10 2 16 2 17 2 18 2 25 2 26 2 28 3 1 3 2 3 5 3 11 3 12 3 16 3 17 3 24 4 1 4 5 4 9 4 15 4 20 4 25 4 30 5 1 5 2 5 3 5 6 5 7 5 11 5 12 5 15 5 20 5 22 5 26 5 27 5 30 6 1 6 13 6 14 6 15 6 16 6 17 6 19 6 28 7 1 7 8 7 9 7 10 7 13 7 19 7 21 7 23 7 26 8 1 8 7 8 12 8...
output:
0001111111 1101111010 1110011011 1011001101 0110111111 0000111000 1101010111 0101001111 1001101011 1111111101 1111110011 0010011010 0001000001 0101101111 1111000101 1100100001 0011010101 1010010110 0011111011 0000011011 1100010000 1011011011 1111010001 0110111011 0111000111 0111111000 1111000111 011...
result:
ok 400000 lines
Test #17:
score: 0
Accepted
time: 1524ms
memory: 8088kb
input:
500 124293 1 5 1 9 1 12 1 15 1 18 1 20 1 21 1 22 1 24 1 26 1 27 1 30 1 34 1 35 1 37 1 40 1 42 1 45 1 47 1 48 1 49 1 55 1 58 1 64 1 67 1 68 1 71 1 72 2 1 2 5 2 7 2 8 2 15 2 16 2 18 2 22 2 25 2 28 2 30 2 34 2 35 2 36 2 37 2 40 2 44 2 46 2 51 2 52 2 56 2 68 2 69 2 72 2 75 2 76 3 2 3 9 3 11 3 12 3 17 3 ...
output:
1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 1111111101 1111111111 1111111111 1111111111 1111111111 1100100100 1111111111 1111111111 1111111111 111...
result:
ok 400000 lines