QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#289478 | #7862. Land Trade | ucup-team987# | WA | 0ms | 3868kb | C++20 | 22.7kb | 2023-12-23 17:54:00 | 2023-12-23 17:54:02 |
Judging History
answer
/**
* date : 2023-12-23 18:53:52
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
using namespace std;
using Real = double;
using Point = complex<Real>;
using Points = vector<Point>;
constexpr Real EPS = 1e-9;
constexpr Real pi = 3.141592653589793238462643383279L;
istream &operator>>(istream &is, Point &p) {
Real a, b;
is >> a >> b;
p = Point(a, b);
return is;
}
ostream &operator<<(ostream &os, Point &p) {
return os << real(p) << " " << imag(p);
}
bool equals(Real a, Real b) { return fabs(b - a) < EPS; }
int sign(Real a) { return equals(a, 0) ? 0 : a > 0 ? 1 : -1; }
Point operator*(const Point &p, const Real &d) {
return Point(real(p) * d, imag(p) * d);
}
Point operator/(const Point &p, const Real &d) {
return Point(real(p) / d, imag(p) / d);
}
namespace std {
bool operator<(const Point &a, const Point &b) {
return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();
}
} // namespace std
Real cross(const Point &a, const Point &b) {
return real(a) * imag(b) - imag(a) * real(b);
}
Real dot(const Point &a, const Point &b) {
return real(a) * real(b) + imag(a) * imag(b);
}
// ccw 点の進行方向
int ccw(const Point &a, Point b, Point c) {
b = b - a, c = c - a;
if (cross(b, c) > EPS) return +1; // 反時計回り
if (cross(b, c) < -EPS) return -1; // 時計回り
if (dot(b, c) < 0) return +2; // c-a-bの順で一直線
if (norm(b) < norm(c)) return -2; // a-b-cの順で一直線
return 0; // a-c-bの順で一直線
}
// a-bベクトルとb-cベクトルのなす角度のうち小さい方を返す
// (ベクトル同士のなす角、すなわち幾何でいうところの「外角」であることに注意!)
// rem. 凸包に対して反時計回りにこの関数を適用すると、
// 凸包の大きさにかかわらず和が360度になる(いわゆる外角の和)(AGC021-B)
Real get_angle(const Point &a, const Point &b, const Point &c) {
const Point v(b - a), w(c - b);
Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());
if (alpha > beta) swap(alpha, beta);
Real theta = (beta - alpha);
return min(theta, 2 * acos(-1) - theta);
}
// 反時計回りである自己交差のない多角形のclass
using Polygon = vector<Point>;
// 凸包
Polygon convex_hull(vector<Point> ps) {
int n = (int)ps.size(), k = 0;
if (n <= 2) return ps;
sort(ps.begin(), ps.end());
vector<Point> ch(2 * n);
// 反時計周りに凸包を構築していく
for (int i = 0; i < n; ch[k++] = ps[i++]) {
// 条件分岐内はwhile(k >= 2 && ccw(ch[k-2],ch[k-1],ps[i]) != 1)と等価
while (k >= 2 && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
}
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) {
while (k >= t && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
}
ch.resize(k - 1);
return ch;
}
// 多角形の面積
Real area(const Polygon &p) {
Real A = 0;
for (int i = 0; i < (int)p.size(); ++i) {
A += cross(p[i], p[(i + 1) % p.size()]);
}
return A * 0.5;
}
struct Circle {
Point p;
Real r;
Circle() = default;
Circle(Point _p, Real _r) : p(_p), r(_r) {}
};
using Circles = vector<Circle>;
int intersect(Circle c1, Circle c2) {
if (c1.r < c2.r) swap(c1, c2);
Real d = abs(c1.p - c2.p);
if (c1.r + c2.r < d) return 4;
if (equals(c1.r + c2.r, d)) return 3;
if (c1.r - c2.r < d) return 2;
if (equals(c1.r - c2.r, d)) return 1;
return 0;
}
pair<Point, Point> crosspoint(const Circle &c1, const Circle &c2) {
Real d = abs(c1.p - c2.p);
Real x = (c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d);
if (abs(x) > 1) x = (x > 0 ? 1.0 : -1.0);
Real a = acos(x);
Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());
Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);
Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);
return {p1, p2};
}
struct Line {
Point a, b;
Real aa, bb, cc;
Line() = default;
// Line(const Point &_a, const Point &_b) : a(_a), b(_b) {}
Line(const Real &A, const Real &B, const Real &C) { // Ax+By=C
aa = A, bb = B, cc = C;
if (equals(A, 0)) {
assert(!equals(B, 0));
a = Point(0, C / B);
b = Point(1, C / B);
} else if (equals(B, 0)) {
a = Point(C / A, 0);
b = Point(C / A, 1);
} else if (equals(C, 0)) {
a = Point(0, C / B);
b = Point(1, (C - A) / B);
} else {
a = Point(0, C / B);
b = Point(C / A, 0);
}
}
friend ostream &operator<<(ostream &os, const Line &l) {
return os << l.a << " to " << l.b;
}
friend istream &operator>>(istream &is, Line &l) { return is >> l.a >> l.b; }
friend bool operator==(const Line &a, const Line &b) {
return equals(a.a.real(), b.a.real()) && equals(a.a.imag(), b.a.imag()) &&
equals(a.b.real(), b.b.real()) && equals(a.b.imag(), b.b.imag());
}
friend bool operator<(const Line &a, const Line &b) {
if (!equals(a.a.real(), b.a.real())) return a.a.real() < b.a.real();
if (!equals(a.a.imag(), b.a.imag())) return a.a.imag() < b.a.imag();
if (!equals(a.b.real(), b.b.real())) return a.b.real() < b.b.real();
if (!equals(a.b.imag(), b.b.imag())) return a.b.imag() < b.b.imag();
return false;
}
};
using Lines = vector<Line>;
bool is_parallel(const Line &a, const Line &b) {
return equals(cross(a.b - a.a, b.b - b.a), 0.0);
}
Point cross_point_ll(const Line &l, const Line &m) {
Real A = cross(l.b - l.a, m.b - m.a);
Real B = cross(l.b - l.a, l.b - m.a);
if (equals(abs(A), 0) && equals(abs(B), 0)) return m.a;
return m.a + (m.b - m.a) * B / A;
}
bool is_intersect_ll(const Line &l, const Line &m) {
Real A = cross(l.b - l.a, m.b - m.a);
Real B = cross(l.b - l.a, l.b - m.a);
if (equals(abs(A), 0) && equals(abs(B), 0)) return true;
return !is_parallel(l, m);
}
using namespace Nyaan;
struct Parser {
int i = 0;
string S;
int buf = 0;
int root = -1;
vvi g;
V<array<int, 3>> A;
// 1 &, 2 |, 3 ^, 4 !
vi B;
Parser(string _s) : S(_s) { root = formula(); }
int add_node() {
g.push_back({});
A.push_back({});
B.push_back(-1);
return buf++;
}
int formula() {
if (S[i] != '(') return atomic();
i++;
int p = add_node();
if (S[i] == '!') {
i++;
int c1 = formula();
assert(S[i] == ')');
i++;
g[p].push_back(c1);
B[p] = 4;
} else {
int c1 = formula();
char op = S[i];
i++;
int c2 = formula();
assert(S[i] == ')');
i++;
g[p].push_back(c1);
g[p].push_back(c2);
B[p] = op == '&' ? 1 : op == '|' ? 2 : 3;
}
return p;
}
int atomic() {
assert(S[i] == '[');
i++;
array<int, 3> a;
int aidx = 0;
rep(t, 3) {
int j = i;
while (S[j] == '-') j++;
while ('0' <= S[j] and S[j] <= '9') j++;
a[aidx] = stoll(S.substr(i, j - i));
aidx++;
i = j + 1;
}
int p = add_node();
A[p] = a;
return p;
}
};
// 代表元, 面積を持つ
struct PlaneSweep {
struct Data {
double area;
Point L, R;
};
vector<Line> ls;
double xmin, xmax, ymin, ymax;
vector<Data> res;
PlaneSweep(const vector<Line> &_ls, double _xmin, double _xmax, double _ymin,
double _ymax)
: ls(_ls), xmin(_xmin), xmax(_xmax), ymin(_ymin), ymax(_ymax) {
run();
}
// x = x0 のときの y 座標
double eval(const Line &l1, double x0) {
return (l1.cc - l1.aa * x0) / l1.bb;
// Line l2{1, 0, x0};
// return cross_point_ll(l1, l2).imag();
}
void run() {
// 縦線を取り除く
vector<double> xs{xmin, xmax};
Line lower{0, 1, ymin};
Line upper{0, 1, ymax};
{
vector<Line> ls2;
ls2.push_back(upper);
ls2.push_back(lower);
for (auto &l : ls) {
if (l.a.real() == l.b.real()) {
xs.push_back(l.a.real());
} else {
ls2.push_back(l);
}
}
sort(all(ls2));
ls2.erase(unique(all(ls2)), end(ls2));
ls = ls2;
sort(all(xs));
xs.erase(unique(all(xs)), end(xs));
}
// [lid, uid] 間が本質
auto comp = [&](const Line &l1, const Line &l2, double cur_x) {
double y1 = eval(l1, cur_x);
double y2 = eval(l2, cur_x);
if (!equals(y1, y2)) return y1 < y2;
y1 = eval(l1, cur_x + xmax);
y2 = eval(l2, cur_x + xmax);
return y1 < y2;
};
double cur_x = xmin;
V<Data> dat;
auto reset = [&](double x) {
sort(all(ls),
[&](const Line &l1, const Line &l2) { return comp(l1, l2, x); });
dat.clear();
rep(i, sz(ls) - 1) {
double yl = eval(ls[i + 0], x);
double yu = eval(ls[i + 1], x);
Data d;
d.area = 0;
yl = eval(ls[i + 0], x + EPS);
yu = eval(ls[i + 1], x + EPS);
d.L = Point{xmin + EPS, (yl + yu) / 2};
dat.push_back(d);
}
};
reset(xmin);
reverse(all(xs));
xs.pop_back();
while (cur_x != xmax) {
trc(cur_x, ls);
rep(i, sz(ls) - 1) cerr << dat[i].area << " \n"[i + 1 == sz(dat)];
int pos = -1;
double nxt_x = xs.back();
rep(i, sz(ls) - 1) {
double x = cross_point_ll(ls[i], ls[i + 1]).real();
if (dat[i].area == 0 and sign(x - cur_x) <= 0) continue;
if (sign(x - cur_x) >= 0 and amin(nxt_x, x)) pos = i;
}
trc(pos, nxt_x);
// x in [cur_x, nxt_x] 間の分の面積を追加する
rep(i, sz(ls) - 1) {
double diff1 = eval(ls[i + 1], cur_x) - eval(ls[i], cur_x);
double diff2 = eval(ls[i + 1], nxt_x) - eval(ls[i], nxt_x);
double s = (diff1 + diff2) * (nxt_x - cur_x) / 2;
trc(s);
dat[i].area += s;
}
// cur_x 更新
cur_x = nxt_x;
// 縦線が入る -> 全部リセット
if (pos == -1) {
rep(i, sz(ls) - 1) {
double yl = eval(ls[i + 0], cur_x);
double yu = eval(ls[i + 1], cur_x);
dat[i].R = Point{cur_x, (yl + yu) / 2};
Point M = (dat[i].L + dat[i].R) / 2;
if (sign(M.imag() - ymin) < 0) continue;
if (sign(ymax - M.imag()) < 0) continue;
res.push_back(dat[i]);
}
reset(cur_x);
} else {
// そうでない場合 -> i のみリセット
int i = pos;
{
double yl = eval(ls[i + 0], cur_x - EPS);
double yu = eval(ls[i + 1], cur_x - EPS);
dat[i].R = Point{cur_x - EPS, (yl + yu) / 2};
}
double yl = eval(ls[i + 0], cur_x);
// double yu = eval(ls[i + 1], cur_x);
Point M = (dat[i].L + dat[i].R) / 2;
if (sign(M.imag() - ymin) >= 0 and sign(ymax - M.imag()) >= 0) {
res.push_back(dat[i]);
}
dat[i].area = 0;
dat[i].L = {cur_x, yl};
dat[i].R = {0, 0};
if (eval(ls[i], cur_x + xmax) > eval(ls[i + 1], cur_x + xmax)) {
swap(ls[i], ls[i + 1]);
}
}
}
return;
}
};
void q() {
ini(xmin, xmax, ymin, ymax);
ins(S);
Parser parser{S};
trc(parser.g);
trc(parser.A);
trc(parser.B);
V<Line> ls;
rep(i, sz(parser.B)) {
if (parser.B[i] != -1) continue;
auto &v = parser.A[i];
ls.push_back(Line(v[0], v[1], -v[2]));
}
PlaneSweep ps(ls, xmin, xmax, ymin, ymax);
each(d, ps.res) { trc(d.area, (d.L + d.R) / 2); }
double ans = 0;
using bs=bitset<1000>;
{
int i = 0;
int ie = 100;
V<double> xs(ie - i), ys(ie - i);
reg(j, i, ie) {
xs[j - i] = ((ps.res[j].L + ps.res[j].R) / 2).real();
ys[j - i] = ((ps.res[j].L + ps.res[j].R) / 2).imag();
}
auto dfs = [&](auto rc, int c) -> bs {
if (parser.B[c] == -1) {
bs res;
res.reset();
reg(j, i, ie) {
double z = 0;
double x = xs[j - i];
double y = ys[j - i];
z += x * parser.A[c][0];
z += y * parser.A[c][1];
z += parser.A[c][2];
if (z >= 0) res |= 1uLL << (j - i);
}
return res;
} else if (parser.B[c] <= 3) {
bs b1 = rc(rc, parser.g[c][0]);
bs b2 = rc(rc, parser.g[c][1]);
if (parser.B[c] == 1) return b1 &= b2;
if (parser.B[c] == 2) return b1 |= b2;
return b1 ^= b2;
}
bs b1 = rc(rc, parser.g[c][0]);
return ~b1;
};
bs b = dfs(dfs, parser.root);
reg(j, i, ie) {
if (b[j]) ans += ps.res[j].area;
}
}
out(ans);
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
详细
Test #1:
score: 0
Wrong Answer
time: 0ms
memory: 3868kb
input:
0 1 0 1 ([-1,1,0]^[-1,-1,1])
output:
0.000000000000000
result:
wrong answer 1st numbers differ - expected: '0.5000000', found: '0.0000000', error = '0.5000000'