QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#289458#7862. Land Tradeucup-team987#TL 1ms3892kbC++2022.7kb2023-12-23 17:48:092023-12-23 17:48:10

Judging History

你现在查看的是最新测评结果

  • [2023-12-23 17:48:10]
  • 评测
  • 测评结果:TL
  • 用时:1ms
  • 内存:3892kb
  • [2023-12-23 17:48:09]
  • 提交

answer

/**
 * date   : 2023-12-23 18:48:03
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(T &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//



using namespace std;

using Real = double;
using Point = complex<Real>;
using Points = vector<Point>;
constexpr Real EPS = 1e-9;
constexpr Real pi = 3.141592653589793238462643383279L;
istream &operator>>(istream &is, Point &p) {
  Real a, b;
  is >> a >> b;
  p = Point(a, b);
  return is;
}
ostream &operator<<(ostream &os, Point &p) {
  return os << real(p) << " " << imag(p);
}
bool equals(Real a, Real b) { return fabs(b - a) < EPS; }
int sign(Real a) { return equals(a, 0) ? 0 : a > 0 ? 1 : -1; }

Point operator*(const Point &p, const Real &d) {
  return Point(real(p) * d, imag(p) * d);
}
Point operator/(const Point &p, const Real &d) {
  return Point(real(p) / d, imag(p) / d);
}

namespace std {
bool operator<(const Point &a, const Point &b) {
  return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();
}
}  // namespace std

Real cross(const Point &a, const Point &b) {
  return real(a) * imag(b) - imag(a) * real(b);
}
Real dot(const Point &a, const Point &b) {
  return real(a) * real(b) + imag(a) * imag(b);
}

// ccw 点の進行方向
int ccw(const Point &a, Point b, Point c) {
  b = b - a, c = c - a;
  if (cross(b, c) > EPS) return +1;   // 反時計回り
  if (cross(b, c) < -EPS) return -1;  // 時計回り
  if (dot(b, c) < 0) return +2;       // c-a-bの順で一直線
  if (norm(b) < norm(c)) return -2;   // a-b-cの順で一直線
  return 0;                           // a-c-bの順で一直線
}

// a-bベクトルとb-cベクトルのなす角度のうち小さい方を返す
// (ベクトル同士のなす角、すなわち幾何でいうところの「外角」であることに注意!)
// rem. 凸包に対して反時計回りにこの関数を適用すると、
// 凸包の大きさにかかわらず和が360度になる(いわゆる外角の和)(AGC021-B)
Real get_angle(const Point &a, const Point &b, const Point &c) {
  const Point v(b - a), w(c - b);
  Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());
  if (alpha > beta) swap(alpha, beta);
  Real theta = (beta - alpha);
  return min(theta, 2 * acos(-1) - theta);
}

//  反時計回りである自己交差のない多角形のclass
using Polygon = vector<Point>;

// 凸包
Polygon convex_hull(vector<Point> ps) {
  int n = (int)ps.size(), k = 0;
  if (n <= 2) return ps;
  sort(ps.begin(), ps.end());
  vector<Point> ch(2 * n);
  // 反時計周りに凸包を構築していく
  for (int i = 0; i < n; ch[k++] = ps[i++]) {
    // 条件分岐内はwhile(k >= 2 && ccw(ch[k-2],ch[k-1],ps[i]) != 1)と等価
    while (k >= 2 && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
  }
  for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--]) {
    while (k >= t && cross(ch[k - 1] - ch[k - 2], ps[i] - ch[k - 1]) < EPS) --k;
  }
  ch.resize(k - 1);
  return ch;
}

// 多角形の面積
Real area(const Polygon &p) {
  Real A = 0;
  for (int i = 0; i < (int)p.size(); ++i) {
    A += cross(p[i], p[(i + 1) % p.size()]);
  }
  return A * 0.5;
}

struct Circle {
  Point p;
  Real r;

  Circle() = default;
  Circle(Point _p, Real _r) : p(_p), r(_r) {}
};

using Circles = vector<Circle>;

int intersect(Circle c1, Circle c2) {
  if (c1.r < c2.r) swap(c1, c2);
  Real d = abs(c1.p - c2.p);
  if (c1.r + c2.r < d) return 4;
  if (equals(c1.r + c2.r, d)) return 3;
  if (c1.r - c2.r < d) return 2;
  if (equals(c1.r - c2.r, d)) return 1;
  return 0;
}

pair<Point, Point> crosspoint(const Circle &c1, const Circle &c2) {
  Real d = abs(c1.p - c2.p);
  Real x = (c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d);
  if (abs(x) > 1) x = (x > 0 ? 1.0 : -1.0);
  Real a = acos(x);
  Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());
  Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);
  Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);
  return {p1, p2};
}



struct Line {
  Point a, b;
  Real aa, bb, cc;

  Line() = default;

  // Line(const Point &_a, const Point &_b) : a(_a), b(_b) {}

  Line(const Real &A, const Real &B, const Real &C) {  // Ax+By=C
    aa = A, bb = B, cc = C;
    if (equals(A, 0)) {
      assert(!equals(B, 0));
      a = Point(0, C / B);
      b = Point(1, C / B);
    } else if (equals(B, 0)) {
      a = Point(C / A, 0);
      b = Point(C / A, 1);
    } else if (equals(C, 0)) {
      a = Point(0, C / B);
      b = Point(1, (C - A) / B);
    } else {
      a = Point(0, C / B);
      b = Point(C / A, 0);
    }
  }

  friend ostream &operator<<(ostream &os, const Line &l) {
    return os << l.a << " to " << l.b;
  }

  friend istream &operator>>(istream &is, Line &l) { return is >> l.a >> l.b; }

  friend bool operator==(const Line &a, const Line &b) {
    return equals(a.a.real(), b.a.real()) && equals(a.a.imag(), b.a.imag()) &&
           equals(a.b.real(), b.b.real()) && equals(a.b.imag(), b.b.imag());
  }
  friend bool operator<(const Line &a, const Line &b) {
    if (!equals(a.a.real(), b.a.real())) return a.a.real() < b.a.real();
    if (!equals(a.a.imag(), b.a.imag())) return a.a.imag() < b.a.imag();
    if (!equals(a.b.real(), b.b.real())) return a.b.real() < b.b.real();
    if (!equals(a.b.imag(), b.b.imag())) return a.b.imag() < b.b.imag();
    return false;
  }
};

using Lines = vector<Line>;

bool is_parallel(const Line &a, const Line &b) {
  return equals(cross(a.b - a.a, b.b - b.a), 0.0);
}

Point cross_point_ll(const Line &l, const Line &m) {
  Real A = cross(l.b - l.a, m.b - m.a);
  Real B = cross(l.b - l.a, l.b - m.a);
  if (equals(abs(A), 0) && equals(abs(B), 0)) return m.a;
  return m.a + (m.b - m.a) * B / A;
}
bool is_intersect_ll(const Line &l, const Line &m) {
  Real A = cross(l.b - l.a, m.b - m.a);
  Real B = cross(l.b - l.a, l.b - m.a);
  if (equals(abs(A), 0) && equals(abs(B), 0)) return true;
  return !is_parallel(l, m);
}

using namespace Nyaan;

struct Parser {
  int i = 0;
  string S;

  int buf = 0;
  int root = -1;
  vvi g;
  V<array<int, 3>> A;

  // 1 &, 2 |, 3 ^, 4 !
  vi B;

  Parser(string _s) : S(_s) { root = formula(); }

  int add_node() {
    g.push_back({});
    A.push_back({});
    B.push_back(-1);
    return buf++;
  }

  int formula() {
    if (S[i] != '(') return atomic();
    i++;
    int p = add_node();
    if (S[i] == '!') {
      i++;
      int c1 = formula();
      assert(S[i] == ')');
      i++;

      g[p].push_back(c1);
      B[p] = 4;
    } else {
      int c1 = formula();
      char op = S[i];
      i++;
      int c2 = formula();
      assert(S[i] == ')');
      i++;

      g[p].push_back(c1);
      g[p].push_back(c2);
      B[p] = op == '&' ? 1 : op == '|' ? 2 : 3;
    }
    return p;
  }
  int atomic() {
    assert(S[i] == '[');
    i++;
    array<int, 3> a;
    int aidx = 0;
    rep(t, 3) {
      int j = i;
      while (S[j] == '-') j++;
      while ('0' <= S[j] and S[j] <= '9') j++;
      a[aidx] = stoll(S.substr(i, j - i));
      aidx++;
      i = j + 1;
    }
    int p = add_node();
    A[p] = a;
    return p;
  }
};

// 代表元, 面積を持つ
struct PlaneSweep {
  struct Data {
    double area;
    Point L, R;
  };
  vector<Line> ls;
  double xmin, xmax, ymin, ymax;
  vector<Data> res;

  PlaneSweep(const vector<Line> &_ls, double _xmin, double _xmax, double _ymin,
             double _ymax)
      : ls(_ls), xmin(_xmin), xmax(_xmax), ymin(_ymin), ymax(_ymax) {
    run();
  }

  // x = x0 のときの y 座標
  double eval(const Line &l1, double x0) {
    return (l1.cc - l1.aa * x0) / l1.bb;
    // Line l2{1, 0, x0};
    // return cross_point_ll(l1, l2).imag();
  }

  void run() {
    // 縦線を取り除く
    vector<double> xs{xmin, xmax};

    Line lower{0, 1, ymin};
    Line upper{0, 1, ymax};

    {
      vector<Line> ls2;
      ls2.push_back(upper);
      ls2.push_back(lower);
      for (auto &l : ls) {
        if (l.a.real() == l.b.real()) {
          xs.push_back(l.a.real());
        } else {
          ls2.push_back(l);
        }
      }
      sort(all(ls2));
      ls2.erase(unique(all(ls2)), end(ls2));
      ls = ls2;

      sort(all(xs));
      xs.erase(unique(all(xs)), end(xs));
    }

    // [lid, uid] 間が本質

    auto comp = [&](const Line &l1, const Line &l2, double cur_x) {
      double y1 = eval(l1, cur_x);
      double y2 = eval(l2, cur_x);
      if (!equals(y1, y2)) return y1 < y2;
      y1 = eval(l1, cur_x + xmax);
      y2 = eval(l2, cur_x + xmax);
      return y1 < y2;
    };

    double cur_x = xmin;

    V<Data> dat;

    auto reset = [&](double x) {
      sort(all(ls),
           [&](const Line &l1, const Line &l2) { return comp(l1, l2, x); });
      dat.clear();
      rep(i, sz(ls) - 1) {
        double yl = eval(ls[i + 0], x);
        double yu = eval(ls[i + 1], x);
        Data d;
        d.area = 0;

        yl = eval(ls[i + 0], x + EPS);
        yu = eval(ls[i + 1], x + EPS);
        d.L = Point{xmin + EPS, (yl + yu) / 2};
        dat.push_back(d);
      }
    };
    reset(xmin);

    reverse(all(xs));
    xs.pop_back();
    while (cur_x != xmax) {
      trc(cur_x, ls);
      rep(i, sz(ls) - 1) cerr << dat[i].area << " \n"[i + 1 == sz(dat)];
      int pos = -1;
      double nxt_x = xs.back();

      rep(i, sz(ls) - 1) {
        double x = cross_point_ll(ls[i], ls[i + 1]).real();
        if (dat[i].area == 0 and sign(x - cur_x) <= 0) continue;
        if (sign(x - cur_x) >= 0 and amin(nxt_x, x)) pos = i;
      }
      trc(pos, nxt_x);

      // x in [cur_x, nxt_x] 間の分の面積を追加する
      rep(i, sz(ls) - 1) {
        double diff1 = eval(ls[i + 1], cur_x) - eval(ls[i], cur_x);
        double diff2 = eval(ls[i + 1], nxt_x) - eval(ls[i], nxt_x);
        double s = (diff1 + diff2) * (nxt_x - cur_x) / 2;
        trc(s);
        dat[i].area += s;
      }

      // cur_x 更新
      cur_x = nxt_x;

      // 縦線が入る -> 全部リセット
      if (pos == -1) {
        rep(i, sz(ls) - 1) {
          double yl = eval(ls[i + 0], cur_x);
          double yu = eval(ls[i + 1], cur_x);
          dat[i].R = Point{cur_x, (yl + yu) / 2};

          Point M = (dat[i].L + dat[i].R) / 2;
          if (sign(M.imag() - ymin) < 0) continue;
          if (sign(ymax - M.imag()) < 0) continue;
          res.push_back(dat[i]);
        }
        reset(cur_x);
      } else {
        // そうでない場合 -> i のみリセット
        int i = pos;
        {
          double yl = eval(ls[i + 0], cur_x - EPS);
          double yu = eval(ls[i + 1], cur_x - EPS);
          dat[i].R = Point{cur_x - EPS, (yl + yu) / 2};
        }
        double yl = eval(ls[i + 0], cur_x);
        // double yu = eval(ls[i + 1], cur_x);

        Point M = (dat[i].L + dat[i].R) / 2;
        if (sign(M.imag() - ymin) >= 0 and sign(ymax - M.imag()) >= 0) {
          res.push_back(dat[i]);
        }
        dat[i].area = 0;
        dat[i].L = {cur_x, yl};
        dat[i].R = {0, 0};

        if (eval(ls[i], cur_x + xmax) > eval(ls[i + 1], cur_x + xmax)) {
          swap(ls[i], ls[i + 1]);
        }
      }
    }

    return;
  }
};

void q() {
  ini(xmin, xmax, ymin, ymax);
  ins(S);

  Parser parser{S};
  trc(parser.g);
  trc(parser.A);
  trc(parser.B);

  V<Line> ls;
  rep(i, sz(parser.B)) {
    if (parser.B[i] != -1) continue;
    auto &v = parser.A[i];
    ls.push_back(Line(v[0], v[1], -v[2]));
  }

  PlaneSweep ps(ls, xmin, xmax, ymin, ymax);
  each(d, ps.res) { trc(d.area, (d.L + d.R) / 2); }

  double ans = 0;
  for (int i = 0; i < sz(ps.res); i += 64) {
    int ie = min(sz(ps.res), i + 64);

    V<double> xs(ie - i), ys(ie - i);
    reg(j, i, ie) {
      xs[j - i] = ((ps.res[j].L + ps.res[j].R) / 2).real();
      ys[j - i] = ((ps.res[j].L + ps.res[j].R) / 2).imag();
    }
    auto dfs = [&](auto rc, int c) -> u64 {
      if (parser.B[c] == -1) {
        u64 res = 0;
        reg(j, i, ie) {
          double z = 0;
          double x = xs[j - i];
          double y = ys[j - i];
          z += x * parser.A[c][0];
          z += y * parser.A[c][1];
          z += parser.A[c][2];
          if (z >= 0) res |= 1uLL << (j - i);
        }
        return res;
      } else if (parser.B[c] <= 3) {
        u64 b1 = rc(rc, parser.g[c][0]);
        u64 b2 = rc(rc, parser.g[c][1]);
        if (parser.B[c] == 1) return b1 & b2;
        if (parser.B[c] == 2) return b1 | b2;
        return b1 ^ b2;
      }
      u64 b1 = rc(rc, parser.g[c][0]);
      return ~b1;
    };
    u64 b = dfs(dfs, parser.root);
    reg(j, i, ie) {
      if ((b >> (j - i)) & 1) ans += ps.res[j].area;
    }
  }
  out(ans);
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3744kb

input:

0 1 0 1
([-1,1,0]^[-1,-1,1])

output:

0.500000000000000

result:

ok found '0.5000000', expected '0.5000000', error '0.0000000'

Test #2:

score: 0
Accepted
time: 1ms
memory: 3700kb

input:

-5 10 -10 5
((!([1,2,-3]&[10,3,-2]))^([-2,3,1]|[5,-2,7]))

output:

70.451693404634582

result:

ok found '70.4516934', expected '70.4516934', error '0.0000000'

Test #3:

score: 0
Accepted
time: 1ms
memory: 3892kb

input:

0 1 -1 1
([1,1,1]&[-1,-1,-1])

output:

0.000000000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #4:

score: -100
Time Limit Exceeded

input:

0 1000 0 1000
(([1,-1,0]&[-1000,999,999])&([1,0,-998]&[0,1,-998]))

output:


result: