QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#289208#7860. Graph of Maximum Degree 3ucup-team133#WA 99ms34964kbC++2319.5kb2023-12-23 16:11:532023-12-23 16:11:54

Judging History

你现在查看的是最新测评结果

  • [2023-12-23 16:11:54]
  • 评测
  • 测评结果:WA
  • 用时:99ms
  • 内存:34964kb
  • [2023-12-23 16:11:53]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using namespace std;

typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};

template <class T> istream& operator>>(istream& is, vector<T>& v) {
    for (auto& x : v) is >> x;
    return is;
}

template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
    auto sep = "";
    for (const auto& x : v) os << exchange(sep, " ") << x;
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }

template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }

template <class T> void mkuni(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }

using mint = atcoder::modint998244353;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n, m;
    cin >> n >> m;

    vector G(n, vector<vector<int>>(2));
    for (; m--;) {
        int u, v, c;
        cin >> u >> v >> c;
        u--, v--;
        G[u][c].emplace_back(v);
        G[v][c].emplace_back(u);
    }
    auto g = G;

    for (int i = 0; i < n; i++) {
        vector<vector<int>> adj(3);
        auto& x = G[i][0];
        auto& y = G[i][1];
        for (int j = 0, k = 0; j < int(x.size()) or k < int(y.size());) {
            if (j < int(x.size()) and k < int(y.size())) {
                if (x[j] == y[k]) {
                    adj[2].emplace_back(x[j]);
                    j++, k++;
                } else if (x[j] < y[k]) {
                    adj[0].emplace_back(x[j++]);
                } else {
                    adj[1].emplace_back(y[k++]);
                }
            } else if (j < int(x.size())) {
                adj[0].emplace_back(x[j++]);
            } else {
                adj[1].emplace_back(y[k++]);
            }
        }
        swap(G[i], adj);
    }

    mint ans = n;  // |S| = 1
    {
        // |S| = 2
        for (int i = 0; i < n; i++) {
            for (int& j : G[i][2]) {
                ans += (i < j);
            }
        }
    }
    {
        // |S| = 3
        for (int i = 0; i < n; i++) {
            for (int& j : G[i][2]) {
                for (int& k : G[i][0]) {
                    bool ok = false;
                    for (int& l : G[k][1]) {
                        if (l == j) {
                            ok = true;
                            break;
                        }
                    }
                    ans += ok;
                }
            }
        }
    }
    vector<int> idx(n, -1);
    queue<int> que;
    auto check = [&](const vector<int>& s) -> bool {
        for (int i = 0; const auto& v : s) {
            idx[v] = i++;
        }
        int len = s.size();
        vector<bool> seen(len, false);
        int start = *s.begin();
        seen[0] = true;
        que.emplace(start);
        while (not que.empty()) {
            int v = que.front();
            que.pop();
            for (const int& u : g[v][1]) {
                if (idx[u] == -1) continue;
                int tmp = idx[u];
                if (seen[tmp]) continue;
                seen[tmp] = true;
                que.emplace(u);
            }
        }
        for (const int& v : s) {
            idx[v] = -1;
        }
        for (const auto& tmp : seen) {
            if (not tmp) {
                return false;
            }
        }
        return true;
    };
    {
        // |S| = 4
        for (int i = 0; i < n; i++) {
            for (int& j : g[i][0]) {
                if (j < i) continue;
                for (int& k : g[i][0]) {
                    if (j == k) continue;
                    for (int& l : g[j][0]) {
                        if (l == i) continue;
                        if (l == k) continue;
                        ans += check({i, j, k, l});
                    }
                }
            }
        }
    }

    cout << ans.val() << '\n';
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 3432kb

input:

3 4
1 2 0
1 3 1
2 3 0
2 3 1

output:

5

result:

ok 1 number(s): "5"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3496kb

input:

4 6
1 2 0
2 3 0
3 4 0
1 4 1
2 4 1
1 3 1

output:

5

result:

ok 1 number(s): "5"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3560kb

input:

20 28
9 6 1
9 6 0
3 8 0
8 4 0
3 8 1
3 4 1
2 13 0
13 1 0
19 1 0
2 1 1
2 19 1
13 19 1
14 15 1
14 15 0
7 12 0
12 17 0
20 17 0
7 17 1
7 20 1
12 20 1
16 18 0
18 10 0
5 10 0
16 10 1
16 5 1
18 5 1
4 6 0
9 11 0

output:

27

result:

ok 1 number(s): "27"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3476kb

input:

100 150
93 23 0
23 81 0
76 81 0
93 81 1
93 76 1
23 76 1
100 65 0
65 56 0
19 56 0
100 56 1
100 19 1
65 19 1
2 98 0
2 98 1
26 63 0
63 90 0
26 63 1
26 90 1
6 11 0
11 67 0
6 11 1
6 67 1
37 89 0
89 64 0
25 64 0
37 64 1
37 25 1
89 25 1
84 10 0
10 29 0
75 29 0
84 29 1
84 75 1
10 75 1
7 70 1
7 70 0
28 92 0
...

output:

141

result:

ok 1 number(s): "141"

Test #5:

score: 0
Accepted
time: 77ms
memory: 34736kb

input:

100000 133680
36843 86625 0
86625 63051 0
35524 63051 0
36843 63051 1
36843 35524 1
86625 35524 1
55797 82715 0
55797 82715 1
70147 35104 0
35104 91732 0
70147 35104 1
70147 91732 1
94917 70395 0
70395 68250 0
24100 68250 0
94917 68250 1
94917 24100 1
70395 24100 1
83033 18450 1
83033 18450 0
34462 ...

output:

144604

result:

ok 1 number(s): "144604"

Test #6:

score: 0
Accepted
time: 83ms
memory: 34708kb

input:

100000 133388
86620 74346 0
74346 19047 0
54911 19047 0
86620 19047 1
86620 54911 1
74346 54911 1
23715 93094 0
93094 91208 0
63189 91208 0
23715 91208 1
23715 63189 1
93094 63189 1
99337 41426 1
99337 41426 0
83742 45546 0
45546 73862 0
83742 45546 1
83742 73862 1
85256 2812 0
2812 59368 0
85918 59...

output:

144348

result:

ok 1 number(s): "144348"

Test #7:

score: 0
Accepted
time: 86ms
memory: 34772kb

input:

100000 150000
86541 24385 0
24385 75745 0
52353 75745 0
86541 75745 1
86541 52353 1
24385 52353 1
89075 78015 0
89075 78015 1
52519 74846 0
74846 12045 0
73265 12045 0
52519 12045 1
52519 73265 1
74846 73265 1
17884 63159 0
63159 47308 0
56073 47308 0
17884 47308 1
17884 56073 1
63159 56073 1
72134 ...

output:

144639

result:

ok 1 number(s): "144639"

Test #8:

score: 0
Accepted
time: 85ms
memory: 34712kb

input:

100000 150000
91951 68612 1
91951 68612 0
18361 92673 0
92673 52678 0
86520 52678 0
18361 52678 1
18361 86520 1
92673 86520 1
58779 2421 0
58779 2421 1
66622 6461 0
6461 96943 0
66622 6461 1
66622 96943 1
27201 480 1
27201 480 0
19082 3895 0
3895 17796 0
3117 17796 0
19082 17796 1
19082 3117 1
3895 ...

output:

144471

result:

ok 1 number(s): "144471"

Test #9:

score: 0
Accepted
time: 95ms
memory: 34928kb

input:

100000 150000
43756 3552 0
3552 90269 0
43756 3552 1
43756 90269 1
11104 36935 1
11104 36935 0
11648 5480 0
5480 45320 0
11648 5480 1
11648 45320 1
19216 85746 0
19216 85746 1
68825 11173 0
11173 43155 0
68825 11173 1
68825 43155 1
27349 75259 0
27349 75259 1
1704 24478 0
24478 5980 0
1704 24478 1
1...

output:

144217

result:

ok 1 number(s): "144217"

Test #10:

score: 0
Accepted
time: 99ms
memory: 34732kb

input:

99999 149998
51151 43399 0
51151 43399 1
45978 28343 0
28343 9008 0
85724 9008 0
45978 9008 1
45978 85724 1
28343 85724 1
79446 12915 0
12915 65925 0
28869 65925 0
79446 65925 1
79446 28869 1
12915 28869 1
82642 95556 0
95556 68817 0
68334 68817 0
82642 68817 1
82642 68334 1
95556 68334 1
61212 7638...

output:

144219

result:

ok 1 number(s): "144219"

Test #11:

score: 0
Accepted
time: 98ms
memory: 34712kb

input:

100000 149999
26736 28785 0
28785 37945 0
26736 28785 1
26736 37945 1
1240 74368 0
74368 45022 0
1240 74368 1
1240 45022 1
40673 1276 0
1276 56395 0
40673 1276 1
40673 56395 1
35181 63341 0
63341 35131 0
60120 35131 0
35181 35131 1
35181 60120 1
63341 60120 1
99363 36973 0
99363 36973 1
85717 77683 ...

output:

144380

result:

ok 1 number(s): "144380"

Test #12:

score: 0
Accepted
time: 93ms
memory: 34964kb

input:

100000 150000
63695 11044 0
11044 34978 0
56531 34978 0
63695 34978 1
63695 56531 1
11044 56531 1
72139 3715 0
3715 21024 0
96696 21024 0
72139 21024 1
72139 96696 1
3715 96696 1
54670 49014 0
54670 49014 1
7670 61055 0
61055 38409 0
7670 61055 1
7670 38409 1
83399 50676 0
50676 98893 0
60069 98893 ...

output:

144559

result:

ok 1 number(s): "144559"

Test #13:

score: 0
Accepted
time: 1ms
memory: 3512kb

input:

1 0

output:

1

result:

ok 1 number(s): "1"

Test #14:

score: 0
Accepted
time: 11ms
memory: 22264kb

input:

100000 0

output:

100000

result:

ok 1 number(s): "100000"

Test #15:

score: 0
Accepted
time: 83ms
memory: 34768kb

input:

100000 150000
95066 31960 0
31960 89758 0
10935 89758 0
95066 89758 1
95066 10935 1
31960 10935 1
48016 97823 0
97823 10871 0
23454 10871 0
48016 10871 1
48016 23454 1
97823 23454 1
73749 35525 0
35525 54232 0
42182 54232 0
73749 54232 1
73749 42182 1
35525 42182 1
75405 71341 0
71341 70032 0
3284 7...

output:

125000

result:

ok 1 number(s): "125000"

Test #16:

score: 0
Accepted
time: 1ms
memory: 3480kb

input:

4 6
1 2 0
1 2 1
1 3 0
2 4 1
3 4 0
3 4 1

output:

7

result:

ok 1 number(s): "7"

Test #17:

score: -100
Wrong Answer
time: 65ms
memory: 32008kb

input:

99998 115940
40840 40839 0
28249 28248 0
24785 24783 0
36536 36534 1
71904 71901 1
62023 62021 0
34737 34740 1
18430 18434 0
27506 27505 1
4665 4664 1
36578 36577 1
99311 99314 1
43484 43482 0
26457 26459 1
99698 99695 0
10170 10172 1
98176 98179 1
47786 47785 1
56529 56531 1
86896 86895 1
78204 782...

output:

104707

result:

wrong answer 1st numbers differ - expected: '104913', found: '104707'