QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#289208 | #7860. Graph of Maximum Degree 3 | ucup-team133# | WA | 99ms | 34964kb | C++23 | 19.5kb | 2023-12-23 16:11:53 | 2023-12-23 16:11:54 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using namespace std;
typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
template <class T> istream& operator>>(istream& is, vector<T>& v) {
for (auto& x : v) is >> x;
return is;
}
template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
auto sep = "";
for (const auto& x : v) os << exchange(sep, " ") << x;
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }
template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }
template <class T> void mkuni(vector<T>& v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }
using mint = atcoder::modint998244353;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
cin >> n >> m;
vector G(n, vector<vector<int>>(2));
for (; m--;) {
int u, v, c;
cin >> u >> v >> c;
u--, v--;
G[u][c].emplace_back(v);
G[v][c].emplace_back(u);
}
auto g = G;
for (int i = 0; i < n; i++) {
vector<vector<int>> adj(3);
auto& x = G[i][0];
auto& y = G[i][1];
for (int j = 0, k = 0; j < int(x.size()) or k < int(y.size());) {
if (j < int(x.size()) and k < int(y.size())) {
if (x[j] == y[k]) {
adj[2].emplace_back(x[j]);
j++, k++;
} else if (x[j] < y[k]) {
adj[0].emplace_back(x[j++]);
} else {
adj[1].emplace_back(y[k++]);
}
} else if (j < int(x.size())) {
adj[0].emplace_back(x[j++]);
} else {
adj[1].emplace_back(y[k++]);
}
}
swap(G[i], adj);
}
mint ans = n; // |S| = 1
{
// |S| = 2
for (int i = 0; i < n; i++) {
for (int& j : G[i][2]) {
ans += (i < j);
}
}
}
{
// |S| = 3
for (int i = 0; i < n; i++) {
for (int& j : G[i][2]) {
for (int& k : G[i][0]) {
bool ok = false;
for (int& l : G[k][1]) {
if (l == j) {
ok = true;
break;
}
}
ans += ok;
}
}
}
}
vector<int> idx(n, -1);
queue<int> que;
auto check = [&](const vector<int>& s) -> bool {
for (int i = 0; const auto& v : s) {
idx[v] = i++;
}
int len = s.size();
vector<bool> seen(len, false);
int start = *s.begin();
seen[0] = true;
que.emplace(start);
while (not que.empty()) {
int v = que.front();
que.pop();
for (const int& u : g[v][1]) {
if (idx[u] == -1) continue;
int tmp = idx[u];
if (seen[tmp]) continue;
seen[tmp] = true;
que.emplace(u);
}
}
for (const int& v : s) {
idx[v] = -1;
}
for (const auto& tmp : seen) {
if (not tmp) {
return false;
}
}
return true;
};
{
// |S| = 4
for (int i = 0; i < n; i++) {
for (int& j : g[i][0]) {
if (j < i) continue;
for (int& k : g[i][0]) {
if (j == k) continue;
for (int& l : g[j][0]) {
if (l == i) continue;
if (l == k) continue;
ans += check({i, j, k, l});
}
}
}
}
}
cout << ans.val() << '\n';
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3432kb
input:
3 4 1 2 0 1 3 1 2 3 0 2 3 1
output:
5
result:
ok 1 number(s): "5"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3496kb
input:
4 6 1 2 0 2 3 0 3 4 0 1 4 1 2 4 1 1 3 1
output:
5
result:
ok 1 number(s): "5"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3560kb
input:
20 28 9 6 1 9 6 0 3 8 0 8 4 0 3 8 1 3 4 1 2 13 0 13 1 0 19 1 0 2 1 1 2 19 1 13 19 1 14 15 1 14 15 0 7 12 0 12 17 0 20 17 0 7 17 1 7 20 1 12 20 1 16 18 0 18 10 0 5 10 0 16 10 1 16 5 1 18 5 1 4 6 0 9 11 0
output:
27
result:
ok 1 number(s): "27"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3476kb
input:
100 150 93 23 0 23 81 0 76 81 0 93 81 1 93 76 1 23 76 1 100 65 0 65 56 0 19 56 0 100 56 1 100 19 1 65 19 1 2 98 0 2 98 1 26 63 0 63 90 0 26 63 1 26 90 1 6 11 0 11 67 0 6 11 1 6 67 1 37 89 0 89 64 0 25 64 0 37 64 1 37 25 1 89 25 1 84 10 0 10 29 0 75 29 0 84 29 1 84 75 1 10 75 1 7 70 1 7 70 0 28 92 0 ...
output:
141
result:
ok 1 number(s): "141"
Test #5:
score: 0
Accepted
time: 77ms
memory: 34736kb
input:
100000 133680 36843 86625 0 86625 63051 0 35524 63051 0 36843 63051 1 36843 35524 1 86625 35524 1 55797 82715 0 55797 82715 1 70147 35104 0 35104 91732 0 70147 35104 1 70147 91732 1 94917 70395 0 70395 68250 0 24100 68250 0 94917 68250 1 94917 24100 1 70395 24100 1 83033 18450 1 83033 18450 0 34462 ...
output:
144604
result:
ok 1 number(s): "144604"
Test #6:
score: 0
Accepted
time: 83ms
memory: 34708kb
input:
100000 133388 86620 74346 0 74346 19047 0 54911 19047 0 86620 19047 1 86620 54911 1 74346 54911 1 23715 93094 0 93094 91208 0 63189 91208 0 23715 91208 1 23715 63189 1 93094 63189 1 99337 41426 1 99337 41426 0 83742 45546 0 45546 73862 0 83742 45546 1 83742 73862 1 85256 2812 0 2812 59368 0 85918 59...
output:
144348
result:
ok 1 number(s): "144348"
Test #7:
score: 0
Accepted
time: 86ms
memory: 34772kb
input:
100000 150000 86541 24385 0 24385 75745 0 52353 75745 0 86541 75745 1 86541 52353 1 24385 52353 1 89075 78015 0 89075 78015 1 52519 74846 0 74846 12045 0 73265 12045 0 52519 12045 1 52519 73265 1 74846 73265 1 17884 63159 0 63159 47308 0 56073 47308 0 17884 47308 1 17884 56073 1 63159 56073 1 72134 ...
output:
144639
result:
ok 1 number(s): "144639"
Test #8:
score: 0
Accepted
time: 85ms
memory: 34712kb
input:
100000 150000 91951 68612 1 91951 68612 0 18361 92673 0 92673 52678 0 86520 52678 0 18361 52678 1 18361 86520 1 92673 86520 1 58779 2421 0 58779 2421 1 66622 6461 0 6461 96943 0 66622 6461 1 66622 96943 1 27201 480 1 27201 480 0 19082 3895 0 3895 17796 0 3117 17796 0 19082 17796 1 19082 3117 1 3895 ...
output:
144471
result:
ok 1 number(s): "144471"
Test #9:
score: 0
Accepted
time: 95ms
memory: 34928kb
input:
100000 150000 43756 3552 0 3552 90269 0 43756 3552 1 43756 90269 1 11104 36935 1 11104 36935 0 11648 5480 0 5480 45320 0 11648 5480 1 11648 45320 1 19216 85746 0 19216 85746 1 68825 11173 0 11173 43155 0 68825 11173 1 68825 43155 1 27349 75259 0 27349 75259 1 1704 24478 0 24478 5980 0 1704 24478 1 1...
output:
144217
result:
ok 1 number(s): "144217"
Test #10:
score: 0
Accepted
time: 99ms
memory: 34732kb
input:
99999 149998 51151 43399 0 51151 43399 1 45978 28343 0 28343 9008 0 85724 9008 0 45978 9008 1 45978 85724 1 28343 85724 1 79446 12915 0 12915 65925 0 28869 65925 0 79446 65925 1 79446 28869 1 12915 28869 1 82642 95556 0 95556 68817 0 68334 68817 0 82642 68817 1 82642 68334 1 95556 68334 1 61212 7638...
output:
144219
result:
ok 1 number(s): "144219"
Test #11:
score: 0
Accepted
time: 98ms
memory: 34712kb
input:
100000 149999 26736 28785 0 28785 37945 0 26736 28785 1 26736 37945 1 1240 74368 0 74368 45022 0 1240 74368 1 1240 45022 1 40673 1276 0 1276 56395 0 40673 1276 1 40673 56395 1 35181 63341 0 63341 35131 0 60120 35131 0 35181 35131 1 35181 60120 1 63341 60120 1 99363 36973 0 99363 36973 1 85717 77683 ...
output:
144380
result:
ok 1 number(s): "144380"
Test #12:
score: 0
Accepted
time: 93ms
memory: 34964kb
input:
100000 150000 63695 11044 0 11044 34978 0 56531 34978 0 63695 34978 1 63695 56531 1 11044 56531 1 72139 3715 0 3715 21024 0 96696 21024 0 72139 21024 1 72139 96696 1 3715 96696 1 54670 49014 0 54670 49014 1 7670 61055 0 61055 38409 0 7670 61055 1 7670 38409 1 83399 50676 0 50676 98893 0 60069 98893 ...
output:
144559
result:
ok 1 number(s): "144559"
Test #13:
score: 0
Accepted
time: 1ms
memory: 3512kb
input:
1 0
output:
1
result:
ok 1 number(s): "1"
Test #14:
score: 0
Accepted
time: 11ms
memory: 22264kb
input:
100000 0
output:
100000
result:
ok 1 number(s): "100000"
Test #15:
score: 0
Accepted
time: 83ms
memory: 34768kb
input:
100000 150000 95066 31960 0 31960 89758 0 10935 89758 0 95066 89758 1 95066 10935 1 31960 10935 1 48016 97823 0 97823 10871 0 23454 10871 0 48016 10871 1 48016 23454 1 97823 23454 1 73749 35525 0 35525 54232 0 42182 54232 0 73749 54232 1 73749 42182 1 35525 42182 1 75405 71341 0 71341 70032 0 3284 7...
output:
125000
result:
ok 1 number(s): "125000"
Test #16:
score: 0
Accepted
time: 1ms
memory: 3480kb
input:
4 6 1 2 0 1 2 1 1 3 0 2 4 1 3 4 0 3 4 1
output:
7
result:
ok 1 number(s): "7"
Test #17:
score: -100
Wrong Answer
time: 65ms
memory: 32008kb
input:
99998 115940 40840 40839 0 28249 28248 0 24785 24783 0 36536 36534 1 71904 71901 1 62023 62021 0 34737 34740 1 18430 18434 0 27506 27505 1 4665 4664 1 36578 36577 1 99311 99314 1 43484 43482 0 26457 26459 1 99698 99695 0 10170 10172 1 98176 98179 1 47786 47785 1 56529 56531 1 86896 86895 1 78204 782...
output:
104707
result:
wrong answer 1st numbers differ - expected: '104913', found: '104707'