QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#289032#7860. Graph of Maximum Degree 3ucup-team987#AC ✓85ms16808kbC++2019.9kb2023-12-23 14:52:282023-12-23 14:52:29

Judging History

你现在查看的是最新测评结果

  • [2023-12-23 14:52:29]
  • 评测
  • 测评结果:AC
  • 用时:85ms
  • 内存:16808kb
  • [2023-12-23 14:52:28]
  • 提交

answer

/**
 * date   : 2023-12-23 15:52:21
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(T &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//


template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};





using namespace std;

// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」
// を入れると倍速くらいになる
// mod を超えて前計算して 0 割りを踏むバグは対策済み
template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    if (MAX > 0) extend(MAX + 1);
  }

  void extend(int m = -1) {
    int n = f.size();
    if (m == -1) m = n * 2;
    m = min<int>(m, T::get_mod());
    if (n >= m) return;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};


//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;



template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].emplace_back(x, y, c);
    if (!is_directed) g[y].emplace_back(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}

/**
 * @brief グラフテンプレート
 * @docs docs/graph/graph-template.md
 */


using namespace Nyaan;

void q() {
  ini(N, M);
  auto g = wgraph<int>(N, M);

  mint ans = 0;

  // 次数 1
  ans += N;
  trc2(ans);

  set<pi> st;
  // 次数 2
  rep(i, N) {
    rep(j, sz(g[i])) rep(k, j) {
      if (g[i][j] == g[i][k]) {
        if (i < g[i][j]) {
          ans += 1;
          st.emplace(i, g[i][j]);
          st.emplace(g[i][j], i);
        }
      }
    }
  }
  trc2(ans);

  auto get_color = [&](int i, int j) {
    each(e, g[i]) if (e == j) return e.cost;
    return -1;
  };

  // 次数 3
  rep(i, N) {
    if (sz(g[i]) != 3) continue;
    map<int, int> mp;
    each(e, g[i]) mp[e]++;
    if (sz(mp) != 2) continue;
    int j = begin(mp)->fi;
    int k = next(begin(mp))->fi;
    if (mp[j] != 2) swap(j, k);
    if (!(i < j)) continue;

    int color_ik = get_color(i, k);
    int color_jk = get_color(j, k);
    if (color_jk != -1 and color_ik != color_jk) ans += 1;
  }
  trc2(ans);

  // 次数 4
  rep(i, N) {
    if (sz(g[i]) != 3) continue;
    int j = g[i][0];
    int k = g[i][1];
    int l = g[i][2];
    if (j == k or k == l or l == j) continue;
    if (i != min({int(i), j, k, l})) continue;

    vi c(4);
    int ok = 1;

#define add(s, t, u, v)        \
  {                            \
    int col = get_color(s, t); \
    if (col == -1) {           \
      ok = 0;                  \
    } else if (col == 1) {     \
      c[u]++, c[v]++;          \
    }                          \
  }

    add(i, j, 0, 1);
    add(i, k, 0, 2);
    add(i, l, 0, 3);
    add(j, k, 1, 2);
    add(j, l, 1, 3);
    add(k, l, 2, 3);

    if (ok and Sum(c) == 6 and Min(c) > 0 and Max(c) < 3) ans += 1;
  }

  // 頂点数 4 , その 2
  rep(i, N) {
    if (sz(g[i]) != 3) continue;
    map<int, int> mp;
    each(e, g[i]) mp[e]++;
    if (sz(mp) != 2) continue;
    int j = begin(mp)->fi;
    int k = next(begin(mp))->fi;
    if (mp[j] != 2) swap(j, k);
    if (!(i < j)) continue;

    if (sz(g[j]) != 3) continue;
    int l = -1;
    each(e, g[j]) if (e != i) l = e;

    if (st.count({k, l}) == 0) continue;
    if (!(i < min(k, l))) continue;
    int color_ik = get_color(i, k);
    int color_jl = get_color(j, l);
    if (color_ik != color_jl) ans += 1;
  }

  out(ans);
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3596kb

input:

3 4
1 2 0
1 3 1
2 3 0
2 3 1

output:

5

result:

ok 1 number(s): "5"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3860kb

input:

4 6
1 2 0
2 3 0
3 4 0
1 4 1
2 4 1
1 3 1

output:

5

result:

ok 1 number(s): "5"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3652kb

input:

20 28
9 6 1
9 6 0
3 8 0
8 4 0
3 8 1
3 4 1
2 13 0
13 1 0
19 1 0
2 1 1
2 19 1
13 19 1
14 15 1
14 15 0
7 12 0
12 17 0
20 17 0
7 17 1
7 20 1
12 20 1
16 18 0
18 10 0
5 10 0
16 10 1
16 5 1
18 5 1
4 6 0
9 11 0

output:

27

result:

ok 1 number(s): "27"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3560kb

input:

100 150
93 23 0
23 81 0
76 81 0
93 81 1
93 76 1
23 76 1
100 65 0
65 56 0
19 56 0
100 56 1
100 19 1
65 19 1
2 98 0
2 98 1
26 63 0
63 90 0
26 63 1
26 90 1
6 11 0
11 67 0
6 11 1
6 67 1
37 89 0
89 64 0
25 64 0
37 64 1
37 25 1
89 25 1
84 10 0
10 29 0
75 29 0
84 29 1
84 75 1
10 75 1
7 70 1
7 70 0
28 92 0
...

output:

141

result:

ok 1 number(s): "141"

Test #5:

score: 0
Accepted
time: 54ms
memory: 12836kb

input:

100000 133680
36843 86625 0
86625 63051 0
35524 63051 0
36843 63051 1
36843 35524 1
86625 35524 1
55797 82715 0
55797 82715 1
70147 35104 0
35104 91732 0
70147 35104 1
70147 91732 1
94917 70395 0
70395 68250 0
24100 68250 0
94917 68250 1
94917 24100 1
70395 24100 1
83033 18450 1
83033 18450 0
34462 ...

output:

144604

result:

ok 1 number(s): "144604"

Test #6:

score: 0
Accepted
time: 51ms
memory: 12836kb

input:

100000 133388
86620 74346 0
74346 19047 0
54911 19047 0
86620 19047 1
86620 54911 1
74346 54911 1
23715 93094 0
93094 91208 0
63189 91208 0
23715 91208 1
23715 63189 1
93094 63189 1
99337 41426 1
99337 41426 0
83742 45546 0
45546 73862 0
83742 45546 1
83742 73862 1
85256 2812 0
2812 59368 0
85918 59...

output:

144348

result:

ok 1 number(s): "144348"

Test #7:

score: 0
Accepted
time: 64ms
memory: 14144kb

input:

100000 150000
86541 24385 0
24385 75745 0
52353 75745 0
86541 75745 1
86541 52353 1
24385 52353 1
89075 78015 0
89075 78015 1
52519 74846 0
74846 12045 0
73265 12045 0
52519 12045 1
52519 73265 1
74846 73265 1
17884 63159 0
63159 47308 0
56073 47308 0
17884 47308 1
17884 56073 1
63159 56073 1
72134 ...

output:

144639

result:

ok 1 number(s): "144639"

Test #8:

score: 0
Accepted
time: 62ms
memory: 14348kb

input:

100000 150000
91951 68612 1
91951 68612 0
18361 92673 0
92673 52678 0
86520 52678 0
18361 52678 1
18361 86520 1
92673 86520 1
58779 2421 0
58779 2421 1
66622 6461 0
6461 96943 0
66622 6461 1
66622 96943 1
27201 480 1
27201 480 0
19082 3895 0
3895 17796 0
3117 17796 0
19082 17796 1
19082 3117 1
3895 ...

output:

144471

result:

ok 1 number(s): "144471"

Test #9:

score: 0
Accepted
time: 70ms
memory: 14332kb

input:

100000 150000
43756 3552 0
3552 90269 0
43756 3552 1
43756 90269 1
11104 36935 1
11104 36935 0
11648 5480 0
5480 45320 0
11648 5480 1
11648 45320 1
19216 85746 0
19216 85746 1
68825 11173 0
11173 43155 0
68825 11173 1
68825 43155 1
27349 75259 0
27349 75259 1
1704 24478 0
24478 5980 0
1704 24478 1
1...

output:

144217

result:

ok 1 number(s): "144217"

Test #10:

score: 0
Accepted
time: 67ms
memory: 14168kb

input:

99999 149998
51151 43399 0
51151 43399 1
45978 28343 0
28343 9008 0
85724 9008 0
45978 9008 1
45978 85724 1
28343 85724 1
79446 12915 0
12915 65925 0
28869 65925 0
79446 65925 1
79446 28869 1
12915 28869 1
82642 95556 0
95556 68817 0
68334 68817 0
82642 68817 1
82642 68334 1
95556 68334 1
61212 7638...

output:

144219

result:

ok 1 number(s): "144219"

Test #11:

score: 0
Accepted
time: 62ms
memory: 14144kb

input:

100000 149999
26736 28785 0
28785 37945 0
26736 28785 1
26736 37945 1
1240 74368 0
74368 45022 0
1240 74368 1
1240 45022 1
40673 1276 0
1276 56395 0
40673 1276 1
40673 56395 1
35181 63341 0
63341 35131 0
60120 35131 0
35181 35131 1
35181 60120 1
63341 60120 1
99363 36973 0
99363 36973 1
85717 77683 ...

output:

144380

result:

ok 1 number(s): "144380"

Test #12:

score: 0
Accepted
time: 62ms
memory: 14172kb

input:

100000 150000
63695 11044 0
11044 34978 0
56531 34978 0
63695 34978 1
63695 56531 1
11044 56531 1
72139 3715 0
3715 21024 0
96696 21024 0
72139 21024 1
72139 96696 1
3715 96696 1
54670 49014 0
54670 49014 1
7670 61055 0
61055 38409 0
7670 61055 1
7670 38409 1
83399 50676 0
50676 98893 0
60069 98893 ...

output:

144559

result:

ok 1 number(s): "144559"

Test #13:

score: 0
Accepted
time: 0ms
memory: 3548kb

input:

1 0

output:

1

result:

ok 1 number(s): "1"

Test #14:

score: 0
Accepted
time: 2ms
memory: 5400kb

input:

100000 0

output:

100000

result:

ok 1 number(s): "100000"

Test #15:

score: 0
Accepted
time: 54ms
memory: 11888kb

input:

100000 150000
95066 31960 0
31960 89758 0
10935 89758 0
95066 89758 1
95066 10935 1
31960 10935 1
48016 97823 0
97823 10871 0
23454 10871 0
48016 10871 1
48016 23454 1
97823 23454 1
73749 35525 0
35525 54232 0
42182 54232 0
73749 54232 1
73749 42182 1
35525 42182 1
75405 71341 0
71341 70032 0
3284 7...

output:

125000

result:

ok 1 number(s): "125000"

Test #16:

score: 0
Accepted
time: 0ms
memory: 3856kb

input:

4 6
1 2 0
1 2 1
1 3 0
2 4 1
3 4 0
3 4 1

output:

7

result:

ok 1 number(s): "7"

Test #17:

score: 0
Accepted
time: 36ms
memory: 10896kb

input:

99998 115940
40840 40839 0
28249 28248 0
24785 24783 0
36536 36534 1
71904 71901 1
62023 62021 0
34737 34740 1
18430 18434 0
27506 27505 1
4665 4664 1
36578 36577 1
99311 99314 1
43484 43482 0
26457 26459 1
99698 99695 0
10170 10172 1
98176 98179 1
47786 47785 1
56529 56531 1
86896 86895 1
78204 782...

output:

104913

result:

ok 1 number(s): "104913"

Test #18:

score: 0
Accepted
time: 48ms
memory: 11400kb

input:

99996 126880
57665 57662 0
73031 73028 0
78744 78741 1
36913 36914 0
88139 88138 1
89276 89278 0
66433 66436 1
91069 91070 0
63929 63930 0
89625 89627 0
56400 56399 1
69226 69223 1
88433 88432 1
43807 43810 0
37146 37145 0
43789 43792 1
68123 68124 1
17957 17954 1
82804 82805 0
59808 59804 1
73840 7...

output:

103597

result:

ok 1 number(s): "103597"

Test #19:

score: 0
Accepted
time: 43ms
memory: 11588kb

input:

99996 128661
40089 40092 1
43861 43862 1
75629 75628 0
19597 19598 0
15151 15154 0
95642 95641 0
80320 80317 1
57255 57254 0
35316 35314 0
44675 44676 1
38847 38850 0
50886 50883 1
7617 7615 0
52310 52311 0
71474 71478 1
60036 60035 1
12009 12012 1
72347 72348 1
80343 80345 0
58804 58806 1
11386 113...

output:

103531

result:

ok 1 number(s): "103531"

Test #20:

score: 0
Accepted
time: 42ms
memory: 10992kb

input:

85086 109171
68997 68998 1
24077 24074 0
81830 81829 0
6102 6100 0
16851 16850 0
44103 44101 0
35639 35637 0
46162 46161 1
70373 70372 1
2625 2624 0
50990 50989 0
52220 52219 1
3452 3453 0
21915 21916 0
19561 19564 1
2616 2615 1
59039 59040 1
72589 72590 1
40147 40148 0
83359 83360 1
4274 4275 1
736...

output:

96534

result:

ok 1 number(s): "96534"

Test #21:

score: 0
Accepted
time: 0ms
memory: 3696kb

input:

6 9
1 2 0
1 2 1
1 3 0
2 3 1
3 4 0
4 5 0
4 6 1
5 6 0
5 6 1

output:

10

result:

ok 1 number(s): "10"

Test #22:

score: 0
Accepted
time: 45ms
memory: 10972kb

input:

99998 115940
91307 35051 0
41850 19274 0
35587 78894 0
26695 91651 1
79179 482 1
26680 7283 0
51999 18100 1
97541 51977 0
31565 24059 1
48770 33590 1
79885 37272 1
16578 79254 1
23825 66223 0
51722 3968 1
30481 33229 0
86577 14556 1
63261 87530 1
17567 19857 1
48438 12110 1
68610 47458 1
88373 92315...

output:

104913

result:

ok 1 number(s): "104913"

Test #23:

score: 0
Accepted
time: 48ms
memory: 11356kb

input:

99996 126880
31926 32431 0
89751 77638 0
81312 90949 1
9164 78061 0
79960 37357 1
15044 53165 0
46804 58840 1
96661 32396 0
93436 39774 0
81650 97489 0
28285 25380 1
51642 75847 1
38686 99309 1
65477 46389 0
17012 64436 0
39535 20467 1
55466 34797 1
56580 52438 1
88447 46598 0
94878 81598 1
36359 71...

output:

103597

result:

ok 1 number(s): "103597"

Test #24:

score: 0
Accepted
time: 46ms
memory: 11520kb

input:

99996 128661
68631 18634 1
39185 98747 1
93688 3993 0
63831 49896 0
88466 11249 0
76247 13150 0
44166 89827 1
14706 98796 0
55609 32463 0
96040 11481 1
15800 28436 0
35644 61568 1
90823 7941 0
16497 32517 0
70520 2507 1
36824 37963 1
43899 12185 1
16439 35062 1
22697 5663 0
22986 20940 1
93694 62377...

output:

103531

result:

ok 1 number(s): "103531"

Test #25:

score: 0
Accepted
time: 41ms
memory: 11160kb

input:

85086 109171
54967 52668 1
64243 48915 0
78737 27043 0
69272 84477 0
11191 72192 0
56490 36228 0
52083 25417 0
58946 51014 1
57855 26735 1
83625 46445 0
72878 43133 0
77230 69968 1
7791 38318 0
14928 27213 0
5215 50302 1
75864 25928 1
11582 54867 1
53793 83950 1
70191 16278 0
69499 3665 1
45931 3663...

output:

96534

result:

ok 1 number(s): "96534"

Test #26:

score: 0
Accepted
time: 85ms
memory: 16808kb

input:

100000 150000
99933 55358 0
90416 2554 0
64997 12630 0
43499 35304 0
43164 38359 0
82333 47941 0
15092 76350 1
6401 82373 0
90467 57736 1
72290 58218 0
64844 79192 0
71055 40232 1
54743 65698 0
19204 38062 1
1490 24882 0
18848 1970 1
18829 25405 0
93396 54676 1
5241 60149 0
26699 39910 1
70898 82827...

output:

150000

result:

ok 1 number(s): "150000"

Test #27:

score: 0
Accepted
time: 65ms
memory: 13848kb

input:

100000 130000
15237 21286 1
60817 70086 1
62915 43855 1
23616 97040 1
54175 84281 1
22498 80217 1
58904 98534 0
88649 79847 0
46299 28927 1
90160 25868 1
59368 62900 1
93860 42461 1
2630 7547 1
54787 84637 1
6577 95373 1
62108 8000 1
14358 53523 1
85474 77621 1
68271 30113 1
26333 71197 1
78110 6040...

output:

130000

result:

ok 1 number(s): "130000"

Test #28:

score: 0
Accepted
time: 41ms
memory: 10484kb

input:

65534 98300
42421 54323 0
45888 19783 0
11682 46414 0
41620 27016 0
62650 43400 1
24787 17246 0
38437 37760 0
51438 27810 0
5194 36179 0
42153 44739 0
38012 47581 0
64561 26437 0
30761 19033 0
29631 18563 0
10689 6913 0
9438 48319 0
18569 39847 0
21454 526 0
59916 36345 0
2577 7295 0
22843 14281 0
4...

output:

81918

result:

ok 1 number(s): "81918"

Test #29:

score: 0
Accepted
time: 46ms
memory: 10552kb

input:

65534 98300
44683 25158 1
35394 27103 0
11618 63123 1
26627 62829 1
63124 18531 1
38195 27395 0
30743 3378 1
52310 58855 0
59905 3467 0
60227 44700 0
4466 13169 0
11289 35510 1
45259 23426 1
55348 47991 1
48231 26070 1
48525 16062 1
57931 14114 1
27522 12180 0
12757 20313 1
42080 63292 0
26595 51845...

output:

81918

result:

ok 1 number(s): "81918"

Test #30:

score: 0
Accepted
time: 44ms
memory: 10608kb

input:

65534 98300
13270 32154 0
55961 42311 1
28791 53182 1
59289 50275 1
8038 50111 1
26166 35350 1
11126 60403 1
39908 858 0
59214 30194 1
35679 36357 1
3720 42580 1
24721 42253 1
39094 30603 1
6697 51066 0
3419 63371 1
64362 40934 1
51257 14082 1
63044 59478 1
20968 167 1
30514 42744 1
41849 32144 1
16...

output:

81918

result:

ok 1 number(s): "81918"

Test #31:

score: 0
Accepted
time: 48ms
memory: 11292kb

input:

100000 98302
61966 27142 0
53993 68970 0
34298 58099 1
63874 66725 0
14229 34649 0
2188 81478 0
11724 47884 0
19350 71019 0
61938 51579 0
35352 84486 0
84906 82998 0
14543 39824 0
48746 90624 0
40191 40994 1
47705 23039 0
62784 79792 0
15245 88212 0
92737 95500 0
94811 43930 1
69757 74299 0
53560 49...

output:

116384

result:

ok 1 number(s): "116384"

Test #32:

score: 0
Accepted
time: 52ms
memory: 11340kb

input:

100000 98302
63951 83046 0
49356 1318 1
76776 11042 0
10897 51960 0
91740 36201 1
79579 70160 0
48233 7988 1
77589 73526 0
64917 41777 1
25721 24712 1
40519 61024 0
44493 67177 0
33335 24084 0
3709 42347 0
79762 84853 0
19590 61141 0
77360 58976 0
72886 44054 0
26544 51830 0
5866 45365 0
76622 26661...

output:

124574

result:

ok 1 number(s): "124574"

Test #33:

score: 0
Accepted
time: 48ms
memory: 11328kb

input:

100000 98302
88683 65853 1
85733 28420 1
76008 55360 1
49391 24933 1
87657 14404 1
90800 58622 1
75122 69522 1
22879 73168 1
9291 55797 0
50874 91259 1
86132 9922 1
39521 5711 1
75332 50647 1
14679 89034 1
15252 65542 1
26783 18217 1
11499 26206 1
10487 12140 1
69139 5819 1
62356 90026 1
82272 78670...

output:

116384

result:

ok 1 number(s): "116384"

Test #34:

score: 0
Accepted
time: 54ms
memory: 11796kb

input:

96000 144000
69465 78015 0
70940 79248 0
21267 22945 0
42324 69262 0
92079 61298 0
14312 89231 0
76879 64390 0
9515 87921 0
72921 56907 0
77360 7365 0
5845 31109 0
50706 19916 0
29274 5084 0
27393 91084 0
89690 81434 0
81818 17371 0
59817 87334 0
40802 63933 0
34255 67445 0
84919 73480 0
6355 64057 ...

output:

96000

result:

ok 1 number(s): "96000"

Test #35:

score: 0
Accepted
time: 56ms
memory: 12040kb

input:

98000 147000
64116 52839 0
58466 64469 1
68501 33965 1
35430 29683 1
18936 7790 1
11024 87600 0
87090 27191 1
3526 40531 1
8967 64385 0
74728 9321 1
14888 6420 0
27780 41446 0
56978 5452 0
13425 79329 1
87611 32959 0
3067 17931 0
22989 82933 1
24468 5242 0
47124 59392 1
79914 93411 1
87124 90315 1
7...

output:

98000

result:

ok 1 number(s): "98000"

Test #36:

score: 0
Accepted
time: 49ms
memory: 12056kb

input:

100000 150000
56602 2395 1
82739 49727 1
27928 35973 1
98253 71027 1
35442 98024 1
18060 72579 1
86277 73382 1
47014 51013 1
65310 17335 1
54892 30774 1
77960 822 1
47490 41910 1
62706 85890 1
71056 13146 1
34092 33865 1
58748 46635 1
21972 37259 1
51199 31504 1
43608 87941 1
90790 42330 1
50214 189...

output:

100000

result:

ok 1 number(s): "100000"

Test #37:

score: 0
Accepted
time: 56ms
memory: 11876kb

input:

95000 142500
89254 6524 0
87399 92742 0
50117 8349 0
76363 58825 0
52190 83971 0
6795 20007 0
79651 49566 0
10970 79953 0
11980 53524 0
7467 38087 0
32096 9083 0
17827 38927 0
79988 23057 0
17001 32129 0
56030 42010 0
77569 59418 0
70155 41087 0
27648 77230 0
21167 61067 0
56132 86455 0
80647 19119 ...

output:

95000

result:

ok 1 number(s): "95000"

Test #38:

score: 0
Accepted
time: 57ms
memory: 11820kb

input:

97000 145500
94330 53090 1
74854 79436 0
31002 6670 1
20802 11748 0
23526 78897 0
2600 84830 0
19572 95411 1
87783 55713 0
20454 22602 1
30751 12787 0
67094 60165 0
9477 19434 1
91443 58645 0
49984 1623 0
44709 41427 0
1043 24331 1
79185 42581 0
25102 27915 0
67200 90145 1
25416 40396 1
35961 3087 0...

output:

97000

result:

ok 1 number(s): "97000"

Test #39:

score: 0
Accepted
time: 59ms
memory: 12040kb

input:

99000 148500
63457 58943 1
22274 81761 1
72574 63452 1
67950 79564 1
42979 37610 1
30695 97830 1
33234 77173 1
84106 7156 1
40075 39589 1
41001 66646 1
68993 48814 1
19560 49612 1
80409 70249 1
5995 75043 1
78335 53789 1
87696 94760 1
32934 22366 1
64938 22623 1
49846 19013 1
96854 6968 1
6539 63262...

output:

99000

result:

ok 1 number(s): "99000"

Extra Test:

score: 0
Extra Test Passed