QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#288666#7864. Random Tree Parkingucup-team635#AC ✓79ms15816kbRust18.9kb2023-12-23 11:04:362024-11-20 09:55:56

Judging History

你现在查看的是最新测评结果

  • [2024-11-20 09:55:56]
  • 管理员手动重测本题所有得分≥97分的提交记录
  • 测评结果:AC
  • 用时:79ms
  • 内存:15816kb
  • [2024-11-20 07:55:52]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:97
  • 用时:93ms
  • 内存:15868kb
  • [2024-11-20 07:55:31]
  • hack成功,自动添加数据
  • (/hack/1204)
  • [2023-12-23 11:04:37]
  • 评测
  • 测评结果:100
  • 用时:89ms
  • 内存:16508kb
  • [2023-12-23 11:04:36]
  • 提交

answer

use std::io::Write;
use std::collections::*;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;
type M = ModInt<998244353>;

fn main() {
    input! {
        n: usize,
        p: [usize1; n - 1],
    }
    let mut child = vec![vec![]; n];
    let mut depth = vec![0; n];
    for (i, p) in p.iter().enumerate() {
        child[*p].push(i + 1);
        depth[i + 1] = depth[*p] + 1;
    }
    let pc = Precalc::new(n + 1000);
    let mut dp = vec![vec![]; n];
    let mut size = vec![1; n];
    for (v, child) in child.iter().enumerate().rev() {
        let len = depth[v] + 1;
        let mut val = vec![M::one(); len + 1];
        let mut s = 0;
        for &u in child.iter() {
            let c = std::mem::take(&mut dp[u]);
            let mut next = vec![M::zero(); len + 1];
            for (i, val) in val.iter().enumerate() {
                for (j, (next, c)) in next[i..].iter_mut().zip(c.iter()).enumerate() {
                    let p = s + i;
                    let q = size[u] + j;
                    *next += *val * *c * pc.binom(p + q, p);
                }
            }
            s += size[u];
            size[v] += size[u];
            val = next;
        }
        val.remove(0);
        dp[v] = val;
    }
    println!("{}", dp[0][0]);
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------

use std::ops::*;

// ---------- begin trait ----------
pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait Ring: Zero + One + Sub<Output = Self> {}

pub trait Field: Ring + Div<Output = Self> {}
// ---------- end trait ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);

impl<const M: u32> ModInt<{ M }> {
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ORDER: usize = 1 << (M - 1).trailing_zeros();
    const fn reduce(x: u64) -> u32 {
        let _ = Self::IS_PRIME;
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
    const fn multiply(a: u32, b: u32) -> u32 {
        Self::reduce(a as u64 * b as u64)
    }
    pub const fn new(v: u32) -> Self {
        assert!(v < M);
        Self(Self::reduce(v as u64 * Self::INI))
    }
    pub const fn const_mul(&self, rhs: Self) -> Self {
        Self(Self::multiply(self.0, rhs.0))
    }
    pub const fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::new(1);
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t = t.const_mul(r);
            }
            r = r.const_mul(r);
            n >>= 1;
        }
        t
    }
    pub const fn inv(&self) -> Self {
        assert!(self.0 != 0);
        self.pow(M as u64 - 2)
    }
    pub const fn get(&self) -> u32 {
        Self::reduce(self.0 as u64)
    }
    pub const fn zero() -> Self {
        Self::new(0)
    }
    pub const fn one() -> Self {
        Self::new(1)
    }
}

impl<const M: u32> Add for ModInt<{ M }> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= M {
            v -= M;
        }
        Self(v)
    }
}

impl<const M: u32> Sub for ModInt<{ M }> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += M;
        }
        Self(v)
    }
}

impl<const M: u32> Mul for ModInt<{ M }> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        self.const_mul(rhs)
    }
}

impl<const M: u32> Div for ModInt<{ M }> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const M: u32> AddAssign for ModInt<{ M }> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<const M: u32> SubAssign for ModInt<{ M }> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<const M: u32> MulAssign for ModInt<{ M }> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<const M: u32> DivAssign for ModInt<{ M }> {
    fn div_assign(&mut self, rhs: Self) {
        *self = *self / rhs;
    }
}

impl<const M: u32> Neg for ModInt<{ M }> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.0 == 0 {
            self
        } else {
            Self(M - self.0)
        }
    }
}

impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<const M: u32> From<usize> for ModInt<{ M }> {
    fn from(val: usize) -> ModInt<{ M }> {
        ModInt::new((val % M as usize) as u32)
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
    fact: Vec<ModInt<MOD>>,
    ifact: Vec<ModInt<MOD>>,
    inv: Vec<ModInt<MOD>>,
}

impl<const MOD: u32> Precalc<MOD> {
    pub fn new(size: usize) -> Self {
        let mut fact = vec![ModInt::one(); size + 1];
        let mut ifact = vec![ModInt::one(); size + 1];
        let mut inv = vec![ModInt::one(); size + 1];
        for i in 2..=size {
            fact[i] = fact[i - 1] * ModInt::from(i);
        }
        ifact[size] = fact[size].inv();
        for i in (2..=size).rev() {
            inv[i] = ifact[i] * fact[i - 1];
            ifact[i - 1] = ifact[i] * ModInt::from(i);
        }
        Self { fact, ifact, inv }
    }
    pub fn fact(&self, n: usize) -> ModInt<MOD> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<MOD> {
        self.ifact[n]
    }
    pub fn inv(&self, n: usize) -> ModInt<MOD> {
        assert!(0 < n);
        self.inv[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
        if n < k {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

impl<const M: u32> Zero for ModInt<{ M }> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<const M: u32> One for ModInt<{ M }> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.get() == 1
    }
}

impl<const M: u32> Ring for ModInt<{ M }> {}
impl<const M: u32> Field for ModInt<{ M }> {}

// ---------- begin array op ----------

struct NTTPrecalc<const M: u32> {
    sum_e: [ModInt<{ M }>; 30],
    sum_ie: [ModInt<{ M }>; 30],
}

impl<const M: u32> NTTPrecalc<{ M }> {
    const fn new() -> Self {
        let cnt2 = (M - 1).trailing_zeros() as usize;
        let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
        let zeta = root.pow((M - 1) as u64 >> cnt2);
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let mut e = zeta;
        let mut ie = e.inv();
        let mut i = cnt2;
        while i >= 2 {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e.const_mul(e);
            ie = ie.const_mul(ie);
            i -= 1;
        }
        let mut now = ModInt::one();
        let mut inow = ModInt::one();
        let mut i = 0;
        while i < cnt2 - 1 {
            sum_e[i] = es[i].const_mul(now);
            sum_ie[i] = ies[i].const_mul(inow);
            now = ies[i].const_mul(now);
            inow = es[i].const_mul(inow);
            i += 1;
        }
        Self { sum_e, sum_ie }
    }
}

struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
    const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + One + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
                *res = *res + *a * *b;
            }
        }
        res
    }
}

// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
    type Item;
    fn transform(&mut self, len: usize);
    fn inverse_transform(&mut self, len: usize);
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
    type Item = ModInt<{ M }>;
    fn transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{M}>::A;
        for ph in 1..=k {
            let p = len << (k - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= pre.sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn inverse_transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{M}>::A;
        for ph in (1..=k).rev() {
            let p = len << (k - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new(2).inv().pow(k as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        const PARAM: usize = 10;
        let size = self.len() + rhs.len() - 1;
        let mut k = 0;
        while (size + (1 << k) - 1) >> k > PARAM {
            k += 1;
        }
        let len = (size + (1 << k) - 1) >> k;
        let mut f = vec![ModInt::zero(); len << k];
        let mut g = vec![ModInt::zero(); len << k];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.transform(len);
        g.transform(len);
        let mut buf = [ModInt::zero(); 2 * PARAM - 1];
        let buf = &mut buf[..(2 * len - 1)];
        let pre = &NTTPrecalcHelper::<{M}>::A;
        let mut now = ModInt::one();
        for (i, (f, g)) in f
            .chunks_exact_mut(2 * len)
            .zip(g.chunks_exact(2 * len))
            .enumerate()
        {
            let mut r = now;
            for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
                buf.fill(ModInt::zero());
                for (i, f) in f.iter().enumerate() {
                    for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
                        *buf = *buf + *f * *g;
                    }
                }
                f.copy_from_slice(&buf[..len]);
                for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
                    *f = *f + r * *buf;
                }
                r = -r;
            }
            now *= pre.sum_e[(!i).trailing_zeros() as usize];
        }
        f.inverse_transform(len);
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}
// ---------- end array op ----------


詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 2220kb

input:

3
1 1

output:

12

result:

ok 1 number(s): "12"

Test #2:

score: 0
Accepted
time: 0ms
memory: 2152kb

input:

3
1 2

output:

16

result:

ok 1 number(s): "16"

Test #3:

score: 0
Accepted
time: 0ms
memory: 2156kb

input:

4
1 2 3

output:

125

result:

ok 1 number(s): "125"

Test #4:

score: 0
Accepted
time: 0ms
memory: 2172kb

input:

8
1 2 3 1 3 4 3

output:

1198736

result:

ok 1 number(s): "1198736"

Test #5:

score: 0
Accepted
time: 0ms
memory: 2236kb

input:

15
1 2 2 2 2 3 3 2 7 7 3 10 3 13

output:

938578089

result:

ok 1 number(s): "938578089"

Test #6:

score: 0
Accepted
time: 0ms
memory: 2240kb

input:

100
1 1 1 3 5 5 5 5 9 9 3 2 11 14 9 8 16 8 18 18 20 10 12 2 22 21 27 28 29 6 2 21 2 20 21 11 16 19 9 25 39 8 14 19 6 38 22 19 25 13 3 27 19 51 23 18 45 30 30 22 24 16 12 61 42 24 3 3 53 40 59 72 6 23 1 64 41 13 71 75 30 64 11 55 70 60 32 84 25 4 69 49 15 42 72 31 71 23 58

output:

426063005

result:

ok 1 number(s): "426063005"

Test #7:

score: 0
Accepted
time: 0ms
memory: 2172kb

input:

500
1 1 3 3 3 4 3 5 2 5 8 4 12 11 8 14 1 12 7 16 7 7 17 10 8 26 7 4 13 21 6 7 20 34 35 24 25 23 25 39 20 30 13 43 43 35 45 34 7 4 11 23 11 43 35 27 6 2 3 11 37 42 27 37 62 42 41 43 63 4 57 17 18 8 11 23 72 74 41 49 76 44 50 81 46 18 45 5 8 88 77 27 35 11 52 18 32 85 57 25 32 22 39 35 43 26 63 7 62 2...

output:

105022837

result:

ok 1 number(s): "105022837"

Test #8:

score: 0
Accepted
time: 1ms
memory: 2336kb

input:

2000
1 1 2 4 4 4 1 5 9 4 5 9 9 4 15 1 11 18 11 2 4 22 10 23 18 15 6 25 25 19 15 28 32 17 29 24 35 11 32 20 25 8 7 12 27 29 40 21 23 47 24 8 6 24 53 43 9 10 48 18 16 16 10 45 42 33 20 27 33 47 41 22 37 4 38 23 8 29 14 54 49 74 60 56 45 32 11 4 58 16 71 29 49 32 31 95 38 2 89 73 91 65 26 12 94 35 1 73...

output:

510693456

result:

ok 1 number(s): "510693456"

Test #9:

score: 0
Accepted
time: 2ms
memory: 3144kb

input:

10000
1 2 1 1 2 1 4 3 5 6 1 8 8 3 2 15 4 14 10 9 9 15 17 5 21 9 11 24 17 20 17 16 4 13 10 10 36 2 8 29 34 40 8 13 27 5 1 18 16 4 40 47 4 8 9 1 54 40 38 41 46 52 31 21 21 14 49 49 46 22 14 59 71 37 30 18 37 30 36 56 24 56 48 17 75 68 68 6 65 87 48 52 8 26 94 89 29 32 40 77 51 6 9 78 1 48 100 69 85 89...

output:

158503783

result:

ok 1 number(s): "158503783"

Test #10:

score: 0
Accepted
time: 79ms
memory: 15816kb

input:

100000
1 1 1 2 4 4 7 8 6 9 7 8 12 10 15 15 9 12 9 16 9 13 11 18 11 8 6 23 22 28 8 29 12 24 14 9 33 5 17 4 33 29 41 19 37 34 19 41 15 21 20 13 36 25 34 38 2 56 33 53 40 36 26 28 34 7 19 66 35 43 52 47 53 32 61 11 55 10 78 75 43 80 71 16 20 68 27 41 80 33 69 50 71 7 5 26 24 78 62 17 76 15 10 11 56 64 ...

output:

937583571

result:

ok 1 number(s): "937583571"

Test #11:

score: 0
Accepted
time: 70ms
memory: 15584kb

input:

100000
1 2 1 2 5 3 5 4 6 8 2 1 6 2 5 5 1 6 12 12 15 11 23 3 4 13 3 22 8 5 13 12 10 9 6 27 37 22 14 24 12 26 15 30 2 27 43 4 47 9 42 5 33 26 13 54 17 32 23 15 34 36 14 49 41 25 14 35 22 35 51 50 17 22 38 54 71 41 69 44 61 18 77 3 78 53 74 70 67 8 18 10 88 2 1 74 36 15 76 62 7 70 89 24 72 77 15 44 49 ...

output:

264669337

result:

ok 1 number(s): "264669337"

Test #12:

score: 0
Accepted
time: 74ms
memory: 15496kb

input:

100000
1 1 3 2 2 6 7 6 3 4 10 1 2 14 12 16 3 2 19 20 3 2 12 17 6 17 16 9 27 18 23 21 2 31 18 13 6 17 39 13 25 18 29 11 42 17 10 34 22 9 33 31 52 45 5 54 43 52 56 4 5 47 63 51 41 54 28 65 31 70 2 63 59 53 53 40 39 5 46 71 13 6 41 31 57 4 82 62 78 59 87 72 92 9 5 69 90 92 19 15 78 41 39 23 12 1 47 49 ...

output:

399299126

result:

ok 1 number(s): "399299126"

Test #13:

score: 0
Accepted
time: 71ms
memory: 15772kb

input:

100000
1 1 1 4 5 5 3 7 6 1 7 8 8 11 11 13 7 7 1 1 13 20 21 22 22 19 8 2 29 28 4 27 8 16 30 4 5 14 21 35 29 32 35 22 14 23 41 24 33 12 31 39 4 40 24 5 38 46 20 23 37 5 27 39 32 41 26 50 33 15 50 40 40 23 52 58 31 16 25 60 36 72 29 33 48 1 82 1 25 57 15 69 5 78 29 81 36 46 97 38 15 7 39 51 19 80 29 77...

output:

58289876

result:

ok 1 number(s): "58289876"

Test #14:

score: 0
Accepted
time: 60ms
memory: 15664kb

input:

100000
1 1 1 1 4 1 7 2 4 8 6 3 2 9 15 15 5 5 7 1 12 15 4 19 7 8 15 21 26 28 13 20 14 21 30 27 21 2 3 14 1 33 33 8 41 25 11 38 35 35 35 5 16 29 16 9 24 39 13 12 3 58 20 44 3 43 53 57 13 23 44 43 14 4 23 69 27 73 22 55 25 64 52 40 71 48 56 56 8 68 27 30 92 46 18 7 58 30 65 69 61 55 38 92 33 102 80 2 2...

output:

861492056

result:

ok 1 number(s): "861492056"

Test #15:

score: 0
Accepted
time: 69ms
memory: 15488kb

input:

100000
1 1 2 3 2 2 5 8 7 4 1 3 5 11 15 2 9 8 19 5 19 11 15 19 19 11 26 3 13 15 30 1 18 28 16 33 9 23 15 2 3 36 7 11 44 31 40 15 46 7 8 5 23 36 22 12 2 28 23 14 11 40 21 18 60 24 32 42 50 57 21 27 60 54 9 63 76 56 22 59 40 41 31 58 27 68 10 45 70 54 46 29 68 6 4 61 11 7 60 56 69 92 69 5 88 71 46 21 7...

output:

528382031

result:

ok 1 number(s): "528382031"

Test #16:

score: 0
Accepted
time: 71ms
memory: 15664kb

input:

100000
1 1 3 1 1 5 4 5 3 3 6 4 1 8 10 15 5 14 5 16 9 13 14 13 8 15 26 17 1 21 11 31 18 16 21 27 14 32 9 27 30 30 3 41 33 26 47 25 26 6 24 15 11 15 6 49 48 25 23 56 3 38 31 28 54 14 17 45 60 64 24 21 14 30 20 30 38 8 13 43 37 11 83 78 75 12 30 66 37 85 24 77 72 71 49 78 88 73 25 68 19 51 79 43 93 21 ...

output:

316789948

result:

ok 1 number(s): "316789948"

Test #17:

score: 0
Accepted
time: 70ms
memory: 15576kb

input:

100000
1 2 1 2 5 4 3 8 5 8 7 6 3 10 15 12 10 4 17 15 16 13 11 1 15 10 4 16 21 11 25 11 15 4 9 21 18 16 17 29 39 3 39 1 34 5 1 14 44 5 15 16 12 15 42 28 45 32 8 33 7 32 61 9 8 34 54 66 59 61 51 51 37 40 30 61 36 36 45 18 75 27 27 45 45 53 50 77 26 89 72 41 15 18 56 53 64 6 34 33 9 90 41 50 8 4 58 101...

output:

846732448

result:

ok 1 number(s): "846732448"

Test #18:

score: 0
Accepted
time: 61ms
memory: 15560kb

input:

100000
1 1 1 3 3 6 5 7 1 3 11 6 3 2 4 4 12 1 6 10 15 8 8 20 24 10 3 5 25 4 10 13 18 30 19 11 9 6 8 24 16 5 17 2 42 33 35 3 26 42 7 42 30 17 6 41 57 53 8 19 41 50 4 16 13 45 28 50 53 22 20 2 9 30 62 25 43 76 2 41 67 74 16 2 43 64 17 28 61 15 35 33 12 60 29 64 51 33 16 18 16 15 45 18 77 40 10 87 70 72...

output:

994347719

result:

ok 1 number(s): "994347719"

Test #19:

score: 0
Accepted
time: 66ms
memory: 15608kb

input:

100000
1 1 1 4 3 3 5 8 8 1 4 9 9 14 6 12 5 3 2 9 14 4 15 11 14 14 12 18 3 22 25 1 23 1 15 8 21 35 31 34 15 23 30 13 32 18 22 33 32 18 36 46 36 27 45 16 4 35 48 12 29 1 59 64 33 12 4 1 53 8 29 16 18 67 75 7 54 18 74 21 55 69 47 54 42 56 2 85 3 90 81 42 15 90 9 41 72 68 43 58 28 87 38 22 39 29 26 44 2...

output:

946042832

result:

ok 1 number(s): "946042832"

Test #20:

score: 0
Accepted
time: 21ms
memory: 7308kb

input:

40000
1 2 2 4 1 6 5 3 3 6 3 3 4 6 10 12 1 18 18 4 11 3 9 14 25 13 14 18 4 3 1 6 13 16 9 17 37 13 38 7 10 36 13 8 22 3 17 1 20 12 33 37 8 10 25 35 41 52 10 35 36 59 20 25 32 62 18 5 3 22 66 13 2 52 38 30 62 18 35 77 51 58 32 34 44 2 70 85 46 2 80 84 67 91 91 80 19 13 42 99 75 36 38 51 62 93 96 37 96 ...

output:

599775439

result:

ok 1 number(s): "599775439"

Extra Test:

score: 0
Extra Test Passed