QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#281746#4812. Counting Sequencezhangmj2008AC ✓6419ms17464kbC++1717.2kb2023-12-10 17:26:042023-12-10 17:26:05

Judging History

你现在查看的是最新测评结果

  • [2023-12-10 17:26:05]
  • 评测
  • 测评结果:AC
  • 用时:6419ms
  • 内存:17464kb
  • [2023-12-10 17:26:04]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

typedef long long ll; typedef unsigned long long ull;
const int INF = 1e9; const ll LLNF = 4e18;

template< class Tp > void chkmax( Tp &x , Tp y ) { x = max( x , y ); }
template< class Tp > void chkmin( Tp &x , Tp y ) { x = min( x , y ); }

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using modint = atcoder::modint998244353;

void solve( ) {
	int n; cin >> n; int c; cin >> c;

	int S = ( int ) sqrt( 2 * n ); modint ans = 0;

	vector< vector< modint > > f( 2 * S + 1 , vector< modint >( 2 * S + 1 ) );
	for( int a1 = 1; a1 <= S; a1 ++ ) f[a1][a1 % ( 2 * S + 1 )] = 1;
	for( int j = 0; j <= n; j ++ ) {
		if( j >= 2 * S + 1 ) for( int i = 1; i <= 2 * S; i ++ ) f[i][j % ( 2 * S + 1 )] = 0;
		for( int i = 1; i <= 2 * S; i ++ ) if( j >= i ) {
			if( i - 1 >= 1 ) f[i][j % ( 2 * S + 1 )] += f[i - 1][( j - i ) % ( 2 * S + 1 )];
			if( i + 1 <= 2 * S ) f[i][j % ( 2 * S + 1 )] += c * f[i + 1][( j - i ) % ( 2 * S + 1 )];
		}
		if( j == n ) for( int i = 1; i <= 2 * S; i ++ ) ans += f[i][n % ( 2 * S + 1 )];
	}

	int mov = S * ( S - 1 ) / 2;
	vector< modint > g( 2 * mov + 1 ); g[0 + mov] = 1;
	for( int k = 1; k <= S; k ++ ) {
		for( int j = -mov; j <= mov; j ++ ) { int a1 = ( n - j ) / k; if( a1 > S && a1 * k + j == n ) ans += g[j + mov]; }

		vector< modint > ng( 2 * mov + 1 );
		for( int j = -mov; j <= mov; j ++ ) {
			if( j - k >= -mov ) ng[j + mov] += g[j - k + mov];
			if( j + k <= mov ) ng[j + mov] += c * g[j + k + mov];
		}
		g = ng;
	}

	cout << ans.val( ) << "\n";
}

int main( ) {
	ios::sync_with_stdio( 0 ), cin.tie( 0 ), cout.tie( 0 );
	int T = 1; while( T -- ) solve( ); return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3560kb

input:

5 3

output:

8

result:

ok 1 number(s): "8"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

1 0

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Accepted
time: 3ms
memory: 3640kb

input:

2022 39

output:

273239559

result:

ok 1 number(s): "273239559"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3596kb

input:

1 998244352

output:

1

result:

ok 1 number(s): "1"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3560kb

input:

1 12345678

output:

1

result:

ok 1 number(s): "1"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

20 998998

output:

643731701

result:

ok 1 number(s): "643731701"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

23 123

output:

947753998

result:

ok 1 number(s): "947753998"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

50 5555

output:

745339864

result:

ok 1 number(s): "745339864"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3636kb

input:

60 6666

output:

690992218

result:

ok 1 number(s): "690992218"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3580kb

input:

100 50

output:

169678588

result:

ok 1 number(s): "169678588"

Test #11:

score: 0
Accepted
time: 1ms
memory: 3580kb

input:

500 88888

output:

216149701

result:

ok 1 number(s): "216149701"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3672kb

input:

1000 213456

output:

270989457

result:

ok 1 number(s): "270989457"

Test #13:

score: 0
Accepted
time: 3ms
memory: 3888kb

input:

2000 119988

output:

756425375

result:

ok 1 number(s): "756425375"

Test #14:

score: 0
Accepted
time: 3ms
memory: 3956kb

input:

3000 998244352

output:

71841227

result:

ok 1 number(s): "71841227"

Test #15:

score: 0
Accepted
time: 6ms
memory: 4000kb

input:

3000 555555555

output:

79880116

result:

ok 1 number(s): "79880116"

Test #16:

score: 0
Accepted
time: 10ms
memory: 3752kb

input:

4321 1234

output:

949603993

result:

ok 1 number(s): "949603993"

Test #17:

score: 0
Accepted
time: 12ms
memory: 3956kb

input:

5000 0

output:

5

result:

ok 1 number(s): "5"

Test #18:

score: 0
Accepted
time: 12ms
memory: 3984kb

input:

5000 88888777

output:

833064960

result:

ok 1 number(s): "833064960"

Test #19:

score: 0
Accepted
time: 9ms
memory: 3760kb

input:

5000 35557777

output:

696388498

result:

ok 1 number(s): "696388498"

Test #20:

score: 0
Accepted
time: 34ms
memory: 3804kb

input:

10000 123456

output:

434296902

result:

ok 1 number(s): "434296902"

Test #21:

score: 0
Accepted
time: 97ms
memory: 4156kb

input:

20000 555555

output:

34806915

result:

ok 1 number(s): "34806915"

Test #22:

score: 0
Accepted
time: 176ms
memory: 4632kb

input:

30000 777888999

output:

58443551

result:

ok 1 number(s): "58443551"

Test #23:

score: 0
Accepted
time: 389ms
memory: 5504kb

input:

50000 2

output:

90102905

result:

ok 1 number(s): "90102905"

Test #24:

score: 0
Accepted
time: 645ms
memory: 6528kb

input:

70000 77998866

output:

202638568

result:

ok 1 number(s): "202638568"

Test #25:

score: 0
Accepted
time: 1141ms
memory: 7812kb

input:

100000 998244352

output:

360520717

result:

ok 1 number(s): "360520717"

Test #26:

score: 0
Accepted
time: 1137ms
memory: 7784kb

input:

100000 555555555

output:

613886009

result:

ok 1 number(s): "613886009"

Test #27:

score: 0
Accepted
time: 2130ms
memory: 10344kb

input:

150000 233333

output:

381065878

result:

ok 1 number(s): "381065878"

Test #28:

score: 0
Accepted
time: 2129ms
memory: 10204kb

input:

150000 20050117

output:

269891864

result:

ok 1 number(s): "269891864"

Test #29:

score: 0
Accepted
time: 3328ms
memory: 12552kb

input:

200000 114514

output:

262861613

result:

ok 1 number(s): "262861613"

Test #30:

score: 0
Accepted
time: 3322ms
memory: 12644kb

input:

200000 1919810

output:

77872388

result:

ok 1 number(s): "77872388"

Test #31:

score: 0
Accepted
time: 6256ms
memory: 17384kb

input:

300000 0

output:

12

result:

ok 1 number(s): "12"

Test #32:

score: 0
Accepted
time: 6296ms
memory: 17292kb

input:

300000 1

output:

298803948

result:

ok 1 number(s): "298803948"

Test #33:

score: 0
Accepted
time: 6269ms
memory: 17384kb

input:

300000 2

output:

106751203

result:

ok 1 number(s): "106751203"

Test #34:

score: 0
Accepted
time: 6327ms
memory: 17264kb

input:

300000 1234

output:

427045479

result:

ok 1 number(s): "427045479"

Test #35:

score: 0
Accepted
time: 6332ms
memory: 17464kb

input:

300000 2345

output:

441593553

result:

ok 1 number(s): "441593553"

Test #36:

score: 0
Accepted
time: 6234ms
memory: 17304kb

input:

300000 20041115

output:

580367993

result:

ok 1 number(s): "580367993"

Test #37:

score: 0
Accepted
time: 6313ms
memory: 17380kb

input:

300000 20050117

output:

579859619

result:

ok 1 number(s): "579859619"

Test #38:

score: 0
Accepted
time: 6261ms
memory: 17316kb

input:

300000 22223333

output:

596066085

result:

ok 1 number(s): "596066085"

Test #39:

score: 0
Accepted
time: 6372ms
memory: 17304kb

input:

300000 175846372

output:

660364393

result:

ok 1 number(s): "660364393"

Test #40:

score: 0
Accepted
time: 6419ms
memory: 17280kb

input:

299999 9999999

output:

954865020

result:

ok 1 number(s): "954865020"

Test #41:

score: 0
Accepted
time: 6379ms
memory: 17288kb

input:

299998 55556666

output:

904862432

result:

ok 1 number(s): "904862432"

Test #42:

score: 0
Accepted
time: 3045ms
memory: 12132kb

input:

190733 31756136

output:

880544587

result:

ok 1 number(s): "880544587"

Test #43:

score: 0
Accepted
time: 3220ms
memory: 12640kb

input:

198497 463488298

output:

185220207

result:

ok 1 number(s): "185220207"

Test #44:

score: 0
Accepted
time: 6302ms
memory: 17344kb

input:

299997 0

output:

16

result:

ok 1 number(s): "16"

Test #45:

score: 0
Accepted
time: 2533ms
memory: 10976kb

input:

168168 296157813

output:

798716760

result:

ok 1 number(s): "798716760"

Test #46:

score: 0
Accepted
time: 1431ms
memory: 8580kb

input:

114514 1919810

output:

783513290

result:

ok 1 number(s): "783513290"