QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#280920#4811. Be Carefulzhangmj2008WA 0ms3924kbC++1721.0kb2023-12-09 18:34:312023-12-09 18:34:32

Judging History

你现在查看的是最新测评结果

  • [2023-12-09 18:34:32]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3924kb
  • [2023-12-09 18:34:31]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

typedef long long ll; typedef unsigned long long ull;
const int INF = 1e9; const ll LLNF = 4e18;

template< class Tp > void chkmax( Tp &x , Tp y ) { x = max( x , y ); }
template< class Tp > void chkmin( Tp &x , Tp y ) { x = min( x , y ); }

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using modint = atcoder::modint998244353;

void solve( ) {
	constexpr int N = 1000;
	vector< modint > fact( N + 1 ); fact[0] = 1; for( int i = 1; i <= N; i ++ ) fact[i] = fact[i - 1] * i;
	vector< modint > ifact( N + 1 ); ifact[N] = fact[N].inv( ); for( int i = N; i >= 1; i -- ) ifact[i - 1] = ifact[i] * i;
	auto binom = [&] ( int n , int m ) -> modint { return ( m < 0 || m > n ) ? ( 0 ) : ( fact[n] * ifact[m] * ifact[n - m] ); } ;

	auto fmt = [&] ( vector< modint > &x , int n , modint y ) -> void {
		for( int i = 0; i < n; i ++ ) for( int S = 0; S < ( 1 << n ); S ++ ) if( ( S >> i ) & 1 )
			x[S] += y * x[S & ~( 1 << i )];
	} ;

	int n; cin >> n;
	vector< vector< int > > G( n + 1 ); for( int i = 1; i <= n - 1; i ++ ) { int u , v; cin >> u >> v; G[u].emplace_back( v ) , G[v].emplace_back( u ); }

	vector< bool > vis( n + 1 ); vector< vector< int > > S( n + 1 ); vector< int > deg( n + 1 );
	auto pre = [&] ( auto pre , int u ) -> void {
		vis[u] = true;
		for( int v : G[u] ) if( !vis[v] ) S[u].emplace_back( v ) , deg[u] ++ , pre( pre , v );
	} ;
	pre( pre , 1 );

	vector< vector< modint > > f( n + 1 ); vector< int > siz( n + 1 );

	auto work = [&] ( int u ) -> void {
		int lim = deg[u];
		int maxsizv = 0 , pleaf = 0; for( int v : S[u] ) chkmax( maxsizv , siz[v] ) , pleaf += ( deg[v] == 0 );
		chkmin( lim , maxsizv + 1 + pleaf );

		vector< modint > F( lim + 1 );

		int C = 0; int M = INF;
		for( int c = 0; c <= n; c ++ ) {
			int m = c; for( int v : S[u] ) if( siz[v] >= c ) m ++;
			if( M >= m ) M = m , C = c;
		}

		vector< vector< modint > > X , Y; int nX = 0 , nY = 0 , nZ = 0;
		for( int v : S[u] ) {
			if( siz[v] == -1 ) nZ ++;
			else if( siz[v] <= C - 1 ) X.emplace_back( f[v] ) , nX ++;
			else Y.emplace_back( f[v] ) , nY ++;
		}

		vector< modint > a( 1 << C );
		for( int P = 0; P < ( 1 << C ); P ++ ) {
			a[P] = ( __builtin_popcount( P ) & 1 ) ? ( -1 ) : ( 1 );
			for( vector< modint > xi : X ) {
				modint t = 0; for( int l = 0; l < ( int ) xi.size( ); l ++ ) if( ( ~P >> l ) & 1 ) t += xi[l];
				a[P] *= t;
			}
		}
		for( int p = 0; p < C; p ++ ) for( int P = 0; P < ( 1 << C ); P ++ ) if( ( P >> p ) & 1 )
			a[P] += a[P & ~( 1 << p )];
		for( int P = 0; P < ( 1 << C ); P ++ )
			a[P] *= ( __builtin_popcount( P ) & 1 ) ? ( -1 ) : ( 1 );

		for( int P = 0; P < ( 1 << C ); P ++ ) {
			vector< vector< modint > > b( 1 << nY , vector< modint >( nZ + 1 ) ); b[0][0] = a[P];
			for( int val = 0; val <= lim; val ++ ) {
				for( int Y0 = 0; Y0 < ( 1 << nY ); Y0 ++ ) for( int Z0 = 0; Z0 <= nZ; Z0 ++ ) {
					modint s = binom( nZ , Z0 ) * modint( n + 1 - val ).pow( nZ - Z0 );
					for( int y = 0; y < nY; y ++ ) if( ( ~Y0 >> y ) & 1 ) {
						modint t = 0; for( int l = val; l < ( int ) Y[y].size( ); l ++ ) t += Y[y][l];
						s *= t;
					}
					F[val] += b[Y0][Z0] * s;
				}

				vector< vector< vector< modint > > > d( nZ + 1 , vector< vector< modint > >( nY + 1 , vector< modint >( 1 << nY ) ) );
				for( int Z0 = 0; Z0 <= nZ; Z0 ++ ) for( int pY0 = 0; pY0 <= nY; pY0 ++ ) {
					for( int Y0 = 0; Y0 < ( 1 << nY ); Y0 ++ ) if( __builtin_popcount( Y0 ) == pY0 ) d[Z0][pY0][Y0] = b[Y0][Z0];
					fmt( d[Z0][pY0] , nY , 1 );
				}
				vector< vector< vector< modint > > > e( nZ + 1 , vector< vector< modint > >( nY + 1 , vector< modint >( 1 << nY ) ) );
				for( int Zi = 0; Zi <= nZ; Zi ++ ) for( int pYi = 0; pYi <= nY; pYi ++ ) {
					for( int Yi = 0; Yi < ( 1 << nY ); Yi ++ ) if( __builtin_popcount( Yi ) == pYi ) { e[Zi][pYi][Yi] = 1; for( int y = 0; y < nY; y ++ ) if( ( Yi >> y ) & 1 ) e[Zi][pYi][Yi] *= ( val < ( int ) Y[y].size( ) ? Y[y][val] : 0 ); }
					fmt( e[Zi][pYi] , nY , 1 );
				}

				vector< vector< vector< modint > > > de( nZ + 1 , vector< vector< modint > >( nY + 1 , vector< modint >( 1 << nY ) ) );
				for( int Z0 = 0; Z0 <= nZ; Z0 ++ ) for( int Zi = 0; Zi <= nZ; Zi ++ ) if( Z0 + Zi <= nZ )
					for( int pY0 = 0; pY0 <= nY; pY0 ++ ) for( int pYi = 0; pYi <= nY; pYi ++ ) if( pY0 + pYi <= nY )
						for( int Y = 0; Y < ( 1 << nY ); Y ++ )
							de[Z0 + Zi][pY0 + pYi][Y] += binom( Z0 + Zi , Z0 ) * d[Z0][pY0][Y] * e[Zi][pYi][Y];
				for( int Z = 0; Z <= nZ; Z ++ ) for( int pY = 0; pY <= nY; pY ++ )
					fmt( de[Z][pY] , nY , -1 );

				vector< vector< modint > > nb( 1 << nY , vector< modint >( nZ + 1 ) );
				for( int Y = 0; Y < ( 1 << nY ); Y ++ ) for( int Z = 0; Z <= nZ; Z ++ ) {
					nb[Y][Z] = de[Z][__builtin_popcount( Y )][Y];
					if( ( ( P >> val ) & 1 ) == 0 ) nb[Y][Z] -= b[Y][Z];
				}
				b = nb;
			}
		}

		f[u] = vector< modint >( lim + 1 );
		for( int k = 0; k <= lim; k ++ ) f[u][k] = F[k] - ( k + 1 <= lim ? F[k + 1] : 0 );
		while( !f[u].empty( ) && f[u].back( ) == 0 ) f[u].pop_back( );
		siz[u] = ( int ) f[u].size( ) - 1;
	} ;

	auto dfs = [&] ( auto dfs , int u ) -> void {
		for( int v : S[u] ) dfs( dfs , v );
		if( deg[u] >= 1 ) work( u ); else siz[u] = -1;
	} ;
	dfs( dfs , 1 );

	for( int k = 0; k <= n; k ++ ) cout << ( k <= siz[1] ? f[1][k].val( ) : 0 ) << "\n";
}

int main( ) {
	ios::sync_with_stdio( 0 ), cin.tie( 0 ), cout.tie( 0 );
	int T = 1; while( T -- ) solve( ); return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3920kb

input:

5
1 2
1 3
2 4
2 5

output:

55
127
34
0
0
0

result:

ok 6 numbers

Test #2:

score: 0
Accepted
time: 0ms
memory: 3904kb

input:

8
1 2
1 3
1 4
1 5
1 6
6 7
6 8

output:

69632
265534
133905
47790
12636
1944
0
0
0

result:

ok 9 numbers

Test #3:

score: 0
Accepted
time: 0ms
memory: 3920kb

input:

3
1 2
2 3

output:

1
3
0
0

result:

ok 4 number(s): "1 3 0 0"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3848kb

input:

2
1 2

output:

2
1
0

result:

ok 3 number(s): "2 1 0"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3856kb

input:

10
1 8
1 9
6 1
2 1
1 4
1 10
1 5
7 1
3 1

output:

1755647
612579511
359376750
200038110
104287680
49974120
21379680
7771680
2177280
362880
0

result:

ok 11 numbers

Test #6:

score: 0
Accepted
time: 0ms
memory: 3728kb

input:

10
2 8
2 9
6 2
2 1
2 4
2 10
2 5
7 2
3 2

output:

114358881
100000000
0
0
0
0
0
0
0
0
0

result:

ok 11 numbers

Test #7:

score: 0
Accepted
time: 0ms
memory: 3924kb

input:

10
7 8
8 9
6 5
2 1
3 4
9 10
4 5
7 6
3 2

output:

10
1
0
0
0
0
0
0
0
0
0

result:

ok 11 numbers

Test #8:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

10
3 6
2 4
4 9
8 4
2 5
10 5
3 7
2 1
1 3

output:

27510
31142
102399
0
0
0
0
0
0
0
0

result:

ok 11 numbers

Test #9:

score: 0
Accepted
time: 0ms
memory: 3668kb

input:

14
10 3
6 2
2 8
3 13
1 3
1 2
3 14
4 2
9 3
12 3
2 5
7 2
11 3

output:

930962871
780146137
253920328
0
0
0
0
0
0
0
0
0
0
0
0

result:

ok 15 numbers

Test #10:

score: 0
Accepted
time: 0ms
memory: 3860kb

input:

20
7 6
2 6
5 1
17 12
9 13
12 18
3 2
9 1
2 1
12 6
10 9
14 2
4 1
6 8
11 2
16 9
13 19
8 15
20 5

output:

572808214
694156482
763085092
958730326
465749894
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

result:

ok 21 numbers

Test #11:

score: -100
Wrong Answer
time: 0ms
memory: 3664kb

input:

21
6 12
11 13
1 7
8 14
1 18
5 4
1 2
16 11
21 1
9 10
15 17
1 9
1 8
1 20
1 3
1 4
19 16
11 1
15 10
3 6

output:

675785946
725537649
889200971
209491981
198737276
319606235
80731100
489573261
404312993
0
0
0
0
0
0
0
0
0
0
0
0
0

result:

wrong answer 1st numbers differ - expected: '778184256', found: '675785946'