QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#280601 | #7783. Military Maneuver | ucup-team180# | WA | 1883ms | 4660kb | C++20 | 45.8kb | 2023-12-09 17:11:44 | 2023-12-09 17:11:44 |
Judging History
answer
#pragma region Macros
#ifdef noimi
#include "my_template.hpp"
#else
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <immintrin.h>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>
#ifdef noimi
#define oj_local(a, b) b
#else
#define oj_local(a, b) a
#endif
#define LOCAL if(oj_local(0, 1))
#define OJ if(oj_local(1, 0))
using namespace std;
using ll = long long;
using ull = unsigned long long int;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using ld = long double;
template <typename T> using vc = vector<T>;
template <typename T> using vvc = vector<vc<T>>;
template <typename T> using vvvc = vector<vvc<T>>;
using vi = vc<int>;
using vl = vc<ll>;
using vpi = vc<pii>;
using vpl = vc<pll>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <typename T> int si(const T &x) { return x.size(); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }
vi iota(int n) {
vi a(n);
return iota(a.begin(), a.end(), 0), a;
}
template <typename T> vi iota(const vector<T> &a, bool greater = false) {
vi res(a.size());
iota(res.begin(), res.end(), 0);
sort(res.begin(), res.end(), [&](int i, int j) {
if(greater) return a[i] > a[j];
return a[i] < a[j];
});
return res;
}
// macros
#define overload5(a, b, c, d, e, name, ...) name
#define overload4(a, b, c, d, name, ...) name
#define endl '\n'
#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)
#define REP1(i, n) for(ll i = 0; i < (n); ++i)
#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)
#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)
#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)
#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)
#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))
#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)
#define fore0(a) rep(a.size())
#define fore1(i, a) for(auto &&i : a)
#define fore2(a, b, v) for(auto &&[a, b] : v)
#define fore3(a, b, c, v) for(auto &&[a, b, c] : v)
#define fore4(a, b, c, d, v) for(auto &&[a, b, c, d] : v)
#define fore(...) overload5(__VA_ARGS__, fore4, fore3, fore2, fore1, fore0)(__VA_ARGS__)
#define setbits(j, n) for(ll iiiii = (n), j = lowbit(iiiii); iiiii; iiiii ^= 1 << j, j = lowbit(iiiii))
#define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(all(v)));)
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define drop(s) cout << #s << endl, exit(0)
#define si(c) (int)(c).size()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
#define rng(v, l, r) v.begin() + (l), v.begin() + (r)
#define all(c) begin(c), end(c)
#define rall(c) rbegin(c), rend(c)
#define SORT(v) sort(all(v))
#define REV(v) reverse(all(v))
#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())
template <typename T = ll, typename S> T SUM(const S &v) { return accumulate(all(v), T(0)); }
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
namespace yesno_impl {
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
const string firstsecond[2] = {"second", "first"};
const string FirstSecond[2] = {"Second", "First"};
const string possiblestr[2] = {"impossible", "possible"};
const string Possiblestr[2] = {"Impossible", "Possible"};
void YES(bool t = 1) { cout << YESNO[t] << endl; }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { cout << YesNo[t] << endl; }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { cout << yesno[t] << endl; }
void no(bool t = 1) { yes(!t); }
void first(bool t = 1) { cout << firstsecond[t] << endl; }
void First(bool t = 1) { cout << FirstSecond[t] << endl; }
void possible(bool t = 1) { cout << possiblestr[t] << endl; }
void Possible(bool t = 1) { cout << Possiblestr[t] << endl; }
}; // namespace yesno_impl
using namespace yesno_impl;
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define INTd(...) \
int __VA_ARGS__; \
IN2(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define LLd(...) \
ll __VA_ARGS__; \
IN2(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
IN(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
IN(name)
#define VECd(type, name, size) \
vector<type> name(size); \
IN2(name)
#define VEC2(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i])
#define VEC2d(type, name1, name2, size) \
vector<type> name1(size), name2(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])
#define VEC3d(type, name1, name2, name3, size) \
vector<type> name1(size), name2(size), name3(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);
#define VEC4d(type, name1, name2, name3, name4, size) \
vector<type> name1(size), name2(size), name3(size), name4(size); \
for(int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i], name4[i]);
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN(name)
#define VVd(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN2(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
void IN2() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
scan(head);
IN(tail...);
}
template <class Head, class... Tail> void IN2(Head &head, Tail &...tail) {
scan(head);
--head;
IN2(tail...);
}
template <int p = -1> void pat() {}
template <int p = -1, class Head, class... Tail> void pat(Head &h, Tail &...tail) {
h += p;
pat<p>(tail...);
}
template <typename T, typename S> T ceil(T x, S y) {
assert(y);
return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}
template <typename T, typename S> T floor(T x, S y) {
assert(y);
return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <typename T, typename S, typename U> U bigmul(const T &x, const S &y, const U &lim) { // clamp(x * y, -lim, lim)
if(x < 0 and y < 0) return bigmul(-x, -y, lim);
if(x < 0) return -bigmul(-x, y, lim);
if(y < 0) return -bigmul(x, -y, lim);
return y == 0 or x <= lim / y ? x * y : lim;
}
template <class T> T POW(T x, int n) {
T res = 1;
for(; n; n >>= 1, x *= x)
if(n & 1) res *= x;
return res;
}
template <class T, class S> T POW(T x, S n, const ll &mod) {
T res = 1;
x %= mod;
for(; n; n >>= 1, x = x * x % mod)
if(n & 1) res = res * x % mod;
return res;
}
vector<pll> factor(ll x) {
vector<pll> ans;
for(ll i = 2; i * i <= x; i++)
if(x % i == 0) {
ans.push_back({i, 1});
while((x /= i) % i == 0) ans.back().second++;
}
if(x != 1) ans.push_back({x, 1});
return ans;
}
template <class T> vector<T> divisor(T x) {
vector<T> ans;
for(T i = 1; i * i <= x; i++)
if(x % i == 0) {
ans.pb(i);
if(i * i != x) ans.pb(x / i);
}
return ans;
}
template <typename T> void zip(vector<T> &x) {
vector<T> y = x;
UNIQUE(y);
for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class S> void fold_in(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void fold_in(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto e : a) v.emplace_back(e);
fold_in(v, tail...);
}
template <class S> void renumber(vector<S> &v) {}
template <typename Head, typename... Tail, class S> void renumber(vector<S> &v, Head &&a, Tail &&...tail) {
for(auto &&e : a) e = lb(v, e);
renumber(v, tail...);
}
template <class S, class... Args> vector<S> zip(vector<S> &head, Args &&...args) {
vector<S> v;
fold_in(v, head, args...);
sort(all(v)), v.erase(unique(all(v)), v.end());
renumber(v, head, args...);
return v;
}
template <typename S> void rearrange(const vector<S> &id) {}
template <typename S, typename T> void rearrange_exec(const vector<S> &id, vector<T> &v) {
vector<T> w(v.size());
rep(i, si(id)) w[i] = v[id[i]];
v.swap(w);
}
// 並び替える順番, 並び替える vector 達
template <typename S, typename Head, typename... Tail> void rearrange(const vector<S> &id, Head &a, Tail &...tail) {
rearrange_exec(id, a);
rearrange(id, tail...);
}
template <typename T> vector<T> RUI(const vector<T> &v) {
vector<T> res(v.size() + 1);
for(int i = 0; i < v.size(); i++) res[i + 1] = res[i] + v[i];
return res;
}
template <typename T> void zeta_supersetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] += f[b | i];
}
template <typename T> void zeta_subsetsum(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] += f[b];
}
template <typename T> void mobius_subset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b] -= f[b | i];
}
template <typename T> void mobius_superset(vector<T> &f) {
int n = f.size();
for(int i = 1; i < n; i <<= 1) rep(b, n) if(!(i & b)) f[b | i] -= f[b];
}
// 反時計周りに 90 度回転
template <typename T> void rot(vector<vector<T>> &v) {
if(empty(v)) return;
int n = v.size(), m = v[0].size();
vector<vector<T>> res(m, vector<T>(n));
rep(i, n) rep(j, m) res[m - 1 - j][i] = v[i][j];
v.swap(res);
}
vector<int> counter(const vector<int> &v, int max_num = -1) {
if(max_num == -1) max_num = MAX(v);
vector<int> res(max_num + 1);
fore(e, v) res[e]++;
return res;
}
// x in [l, r)
template <class T, class S> bool inc(const T &x, const S &l, const S &r) { return l <= x and x < r; }
template <class T, class S> bool inc(const T &x, const pair<S, S> &p) { return p.first <= x and x < p.second; }
// 便利関数
constexpr ll ten(int n) { return n == 0 ? 1 : ten(n - 1) * 10; }
constexpr ll tri(ll n) { return n * (n + 1) / 2; }
// l + ... + r
constexpr ll tri(ll l, ll r) { return (l + r) * (r - l + 1) / 2; }
ll max(int x, ll y) { return max((ll)x, y); }
ll max(ll x, int y) { return max(x, (ll)y); }
int min(int x, ll y) { return min((ll)x, y); }
int min(ll x, int y) { return min(x, (ll)y); }
// bit 演算系
#define bit(i) (1LL << i) // (1 << i)
#define test(b, i) (b >> i & 1) // b の i bit 目が立っているか
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
constexpr ll mask(int n) { return (1LL << n) - 1; }
// int popcount(signed t) { return __builtin_popcount(t); }
// int popcount(ll t) { return __builtin_popcountll(t); }
int popcount(uint64_t t) { return __builtin_popcountll(t); }
static inline uint64_t popcount64(uint64_t x) {
uint64_t m1 = 0x5555555555555555ll;
uint64_t m2 = 0x3333333333333333ll;
uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
uint64_t h01 = 0x0101010101010101ll;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
return (x * h01) >> 56;
}
bool ispow2(int i) { return i && (i & -i) == i; }
ll rnd(ll l, ll r) { //[l, r)
#ifdef noimi
static mt19937_64 gen;
#else
static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif
return uniform_int_distribution<ll>(l, r - 1)(gen);
}
ll rnd(ll n) { return rnd(0, n); }
template <class t> void random_shuffle(vc<t> &a) { rep(i, si(a)) swap(a[i], a[rnd(0, i + 1)]); }
int in() {
int x;
cin >> x;
return x;
}
ll lin() {
unsigned long long x;
cin >> x;
return x;
}
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x) { return pair<T, S>(-x.first, -x.second); }
template <class T, class S> pair<T, S> operator-(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi - y.fi, x.se - y.se); }
template <class T, class S> pair<T, S> operator+(const pair<T, S> &x, const pair<T, S> &y) { return pair<T, S>(x.fi + y.fi, x.se + y.se); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.fi, r.fi), min(l.se, r.se)); }
template <class T, class S> pair<T, S> operator+=(pair<T, S> &l, const pair<T, S> &r) { return l = l + r; }
template <class T, class S> pair<T, S> operator-=(pair<T, S> &l, const pair<T, S> &r) { return l = l - r; }
template <class T> bool intersect(const pair<T, T> &l, const pair<T, T> &r) { return (l.se < r.se ? r.fi < l.se : l.fi < r.se); }
template <class T> vector<T> &operator++(vector<T> &v) {
fore(e, v) e++;
return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
auto res = v;
fore(e, v) e++;
return res;
}
template <class T> vector<T> &operator--(vector<T> &v) {
fore(e, v) e--;
return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
auto res = v;
fore(e, v) e--;
return res;
}
template <class T> void connect(vector<T> &l, const vector<T> &r) { fore(e, r) l.eb(e); }
template <class T> vector<T> operator+(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] += r[i];
return res;
}
template <class T> vector<T> operator-(const vector<T> &l, const vector<T> &r) {
vector<T> res(max(si(l), si(r)));
rep(i, si(l)) res[i] += l[i];
rep(i, si(r)) res[i] -= r[i];
return res;
}
template <class T> vector<T> &operator+=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] += r[i];
return l;
}
template <class T> vector<T> &operator-=(const vector<T> &l, const vector<T> &r) {
if(si(l) < si(r)) l.resize(si(r));
rep(i, si(r)) l[i] -= r[i];
return l;
}
template <class T> vector<T> &operator+=(vector<T> &v, const T &x) {
fore(e, v) e += x;
return v;
}
template <class T> vector<T> &operator-=(vector<T> &v, const T &x) {
fore(e, v) e -= x;
return v;
}
template <typename T> struct edge {
int from, to;
T cost;
int id;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}
constexpr bool operator<(const edge<T> &rhs) const noexcept { return cost < rhs.cost; }
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
friend ostream operator<<(ostream &os, const edge &e) { return os << e.to; }
};
template <typename T> using Edges = vector<edge<T>>;
template <typename T = int> Edges<T> read_edges(int m, bool weighted = false) {
Edges<T> res;
res.reserve(m);
for(int i = 0; i < m; i++) {
int u, v, c = 0;
scan(u), scan(v), u--, v--;
if(weighted) scan(c);
res.eb(u, v, c, i);
}
return res;
}
using Tree = vector<vector<int>>;
using Graph = vector<vector<int>>;
template <class T> using Wgraph = vector<vector<edge<T>>>;
Graph getG(int n, int m = -1, bool directed = false, int margin = 1) {
Tree res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
cin >> a >> b;
a -= margin, b -= margin;
res[a].emplace_back(b);
if(!directed) res[b].emplace_back(a);
}
return res;
}
Graph getTreeFromPar(int n, int margin = 1) {
Graph res(n);
for(int i = 1; i < n; i++) {
int a;
cin >> a;
res[a - margin].emplace_back(i);
}
return res;
}
template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {
Wgraph<T> res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
T c;
scan(a), scan(b), scan(c);
a -= margin, b -= margin;
res[a].emplace_back(b, c);
if(!directed) res[b].emplace_back(a, c);
}
return res;
}
void add(Graph &G, int x, int y) { G[x].eb(y), G[y].eb(x); }
template <class S, class T> void add(Wgraph<S> &G, int x, int y, T c) { G[x].eb(y, c), G[y].eb(x, c); }
#define TEST \
INT(testcases); \
while(testcases--)
i128 abs(const i128 &x) { return x > 0 ? x : -x; }
istream &operator>>(istream &is, i128 &v) {
string s;
is >> s;
v = 0;
for(int i = 0; i < (int)s.size(); i++) {
if(isdigit(s[i])) { v = v * 10 + s[i] - '0'; }
}
if(s[0] == '-') { v *= -1; }
return is;
}
ostream &operator<<(ostream &os, const i128 &v) {
if(v == 0) { return (os << "0"); }
i128 num = v;
if(v < 0) {
os << '-';
num = -num;
}
string s;
for(; num > 0; num /= 10) { s.push_back((char)(num % 10) + '0'); }
reverse(s.begin(), s.end());
return (os << s);
}
namespace aux {
template <typename T, unsigned N, unsigned L> struct tp {
static void output(std::ostream &os, const T &v) {
os << std::get<N>(v) << (&os == &cerr ? ", " : " ");
tp<T, N + 1, L>::output(os, v);
}
};
template <typename T, unsigned N> struct tp<T, N, N> {
static void output(std::ostream &os, const T &v) { os << std::get<N>(v); }
};
} // namespace aux
template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &t) {
if(&os == &cerr) { os << '('; }
aux::tp<std::tuple<Ts...>, 0, sizeof...(Ts) - 1>::output(os, t);
if(&os == &cerr) { os << ')'; }
return os;
}
template <typename T, typename S, typename U> std::ostream &operator<<(std::ostream &os, const priority_queue<T, S, U> &_pq) {
auto pq = _pq;
vector<T> res;
while(!empty(pq)) res.emplace_back(pq.top()), pq.pop();
return os << res;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
if(&os == &cerr) { return os << "(" << p.first << ", " << p.second << ")"; }
return os << p.first << " " << p.second;
}
template <class Ch, class Tr, class Container> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Container &x) {
bool f = true;
if(&os == &cerr) os << "[";
for(auto &y : x) {
if(&os == &cerr)
os << (f ? "" : ", ") << y;
else
os << (f ? "" : " ") << y;
f = false;
}
if(&os == &cerr) os << "]";
return os;
}
#define dump(...) static_cast<void>(0)
#define dbg(...) static_cast<void>(0)
void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
cout << head;
if(sizeof...(tail)) cout << ' ';
OUT(tail...);
}
template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;
template <class T, class S> constexpr pair<T, S> inf<pair<T, S>> = {inf<T>, inf<S>};
template <class T> void OUT2(const T &t, T INF = inf<T>, T res = -1) { OUT(t != INF ? t : res); }
template <class T> void OUT2(vector<T> &v, T INF = inf<T>, T res = -1) {
fore(e, v) if(e == INF) e = res;
OUT(v);
fore(e, v) if(e == res) e = INF;
}
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }
};
template <class S> vector<pair<S, int>> runLength(const vector<S> &v) {
vector<pair<S, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
vector<pair<char, int>> runLength(const string &v) {
vector<pair<char, int>> res;
for(auto &e : v) {
if(res.empty() or res.back().fi != e)
res.eb(e, 1);
else
res.back().se++;
}
return res;
}
struct string_converter {
char start = 0;
char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' : isdigit(c) ? '0' : 0); }
int convert(const char &c) {
if(!start) start = type(c);
return c - start;
}
int convert(const char &c, const string &chars) { return chars.find(c); }
template <typename T> auto convert(const T &v) {
vector<decltype(convert(v[0]))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e));
return ret;
}
template <typename T> auto convert(const T &v, const string &chars) {
vector<decltype(convert(v[0], chars))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e, chars));
return ret;
}
int operator()(const char &v, char s = 0) {
start = s;
return convert(v);
}
int operator()(const char &v, const string &chars) { return convert(v, chars); }
template <typename T> auto operator()(const T &v, char s = 0) {
start = s;
return convert(v);
}
template <typename T> auto operator()(const T &v, const string &chars) { return convert(v, chars); }
} toint;
template <class T, class F> T bin_search(T ok, T ng, const F &f) {
while(abs(ok - ng) > 1) {
T mid = ok + ng >> 1;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class F> T bin_search_double(T ok, T ng, const F &f, int iter = 80) {
while(iter--) {
// T mid = (ok + ng) / 2;
T mid = sqrtl(ok * ng);
(f(mid) ? ok : ng) = mid;
}
return ok;
}
struct Setup_io {
Setup_io() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(11);
}
} setup_io;
#endif
#pragma endregion
namespace fast_gcd {
using u64 = uint64_t;
using u32 = uint32_t;
__attribute__((target("bmi"))) constexpr u64 binary_gcd(u64 a, u64 b) {
if(a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a);
int m = __builtin_ctzll(b);
a >>= n;
b >>= m;
while(a != b) {
int m = __builtin_ctzll(a - b);
bool f = a > b;
u64 c = f ? a : b;
b = f ? b : a;
a = (c - b) >> m;
}
return a << min(n, m);
}
} // namespace fast_gcd
using fast_gcd::binary_gcd;
// q / p
struct frac {
template <typename T> static constexpr inline T gcd(const T a, const T b) { return (b == 0) ? a : gcd(b, a % b); }
ll q, p;
inline constexpr void simplify() {
if(p < 0) {
p *= -1;
q *= -1;
}
ll g = binary_gcd(q < 0 ? -q : q, p);
if(g) {
p /= g;
q /= g;
if(p == 0 and q < 0) q = 1;
}
}
constexpr frac(ll q = 0, ll p = 1) noexcept : q(q), p(p) { simplify(); }
constexpr bool operator<(const frac &r) const { return q * r.p < p * r.q; }
constexpr bool operator>(const frac &r) const { return q * r.p > p * r.q; }
constexpr bool operator<=(const frac &r) const { return q * r.p <= p * r.q; }
constexpr bool operator>=(const frac &r) const { return q * r.p >= p * r.q; }
template <class T> constexpr bool operator<(const T &r) const { return *this < frac(r); }
template <class T> constexpr bool operator>(const T &r) const { return *this > frac(r); }
constexpr bool operator==(const frac &r) const { return q * r.p == p * r.q; }
constexpr bool operator!=(const frac &r) const { return !((*this) == r); }
constexpr frac operator+() const noexcept { return *this; }
constexpr frac operator-() const noexcept { return frac(-q, p); }
constexpr frac operator+(const frac r) const noexcept { return frac(*this) += r; }
constexpr frac operator-(const frac r) const noexcept { return frac(*this) -= r; }
constexpr frac operator*(const frac r) const noexcept { return frac(*this) *= r; }
constexpr frac operator/(const frac r) const noexcept { return frac(*this) /= r; }
constexpr frac &operator+=(const frac &r) noexcept {
ll g = binary_gcd(p, r.p);
q = r.p / g * q + p / g * r.q;
p = p / g * r.p;
(*this).simplify();
return *this;
}
constexpr frac &operator-=(const frac &r) noexcept {
ll g = binary_gcd(p, r.p);
q = r.p / g * q - p / g * r.q;
p = p / g * r.p;
(*this).simplify();
return *this;
}
constexpr frac &operator*=(const frac &r) noexcept {
q *= r.q;
p *= r.p;
(*this).simplify();
return *this;
}
constexpr frac &operator/=(const frac &r) noexcept {
q *= r.p;
p *= r.q;
(*this).simplify();
return *this;
}
void print() {
long double tmp = (long double)q / (long double)p;
cout << tmp;
}
};
istream &operator>>(istream &is, frac &p) {
ll a;
is >> a;
p = frac(a, 1);
return is;
}
ostream &operator<<(ostream &os, const frac &r) { return os << 1.0 * r.q / r.p; }
namespace Geometry {
using T = long double;
constexpr T eps = 1e-9;
bool eq(const T &x, const T &y) { return abs(x - y) <= eps; }
inline constexpr int type(T x, T y) {
if(x == 0 and y == 0) return 0;
if(y < 0 or (y == 0 and x > 0)) return -1;
return 1;
}
struct Point {
T x, y;
constexpr Point(T _x = 0, T _y = 0) : x(_x), y(_y) {}
constexpr Point operator+() const noexcept { return *this; }
constexpr Point operator-() const noexcept { return Point(-x, -y); }
constexpr Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
constexpr Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
constexpr Point &operator+=(const Point &p) { return x += p.x, y += p.y, *this; }
constexpr Point &operator-=(const Point &p) { return x -= p.x, y -= p.y, *this; }
constexpr T operator*(const Point &p) const { return x * p.x + y * p.y; }
constexpr Point &operator*=(const T &k) { return x *= k, y *= k, *this; }
constexpr Point operator*(const T &k) { return Point(x * k, y * k); }
constexpr bool operator==(const Point &r) const noexcept { return r.x == x and r.y == y; }
constexpr T cross(const Point &r) const { return x * r.y - y * r.x; }
constexpr bool operator<(const Point &r) const { return pair(x, y) < pair(r.x, r.y); }
// 1 : left, 0 : same, -1 : right
constexpr int toleft(const Point &r) const {
auto t = cross(r);
return t > eps ? 1 : t < -eps ? -1 : 0;
}
constexpr bool arg_cmp(const Point &r) const {
int L = type(x, y), R = type(r.x, r.y);
if(L != R) return L < R;
T X = x * r.y, Y = r.x * y;
if(X != Y) return X > Y;
return x < r.x;
}
};
bool arg_cmp(const Point &l, const Point &r) { return l.arg_cmp(r); }
ostream &operator<<(ostream &os, const Point &p) { return os << p.x << " " << p.y; }
istream &operator>>(istream &is, Point &p) {
is >> p.x >> p.y;
return is;
}
struct Line {
Point a, b;
Line() = default;
Line(Point a, Point b) : a(a), b(b) {}
// ax + by = c
Line(T A, T B, T C) {
if(A == 0) {
a = Point(0, C / B), b = Point(1, C / B);
} else if(B == 0) {
a = Point(C / A, 0), b = Point(C / A, 1);
} else {
a = Point(0, C / B), b = Point(C / A, 0);
}
}
// 1 : left, 0 : same, -1 : right
constexpr int toleft(const Point &r) const {
auto t = (b - a).cross(r - a);
return t > eps ? 1 : t < -eps ? -1 : 0;
}
friend std::ostream &operator<<(std::ostream &os, Line &ls) {
return os << "{"
<< "(" << ls.a.x << ", " << ls.a.y << "), (" << ls.b.x << ", " << ls.b.y << ")}";
}
};
istream &operator>>(istream &is, Line &p) { return is >> p.a >> p.b; }
Point rotate(long double theta, const Point &p) { return Point(cosl(theta) * p.x - sinl(theta) * p.y, sinl(theta) * p.x + cosl(theta) * p.y); }
struct Segment : Line {
Segment() = default;
Segment(Point a, Point b) : Line(a, b) {}
};
ostream &operator<<(ostream &os, Segment &p) { return os << p.a << " to " << p.b; }
istream &operator>>(istream &is, Segment &p) {
is >> p.a >> p.b;
return is;
}
struct Circle {
Point p;
T r;
Circle() = default;
Circle(Point p, T r) : p(p), r(r) {}
};
using pt = Point;
using Points = vector<pt>;
using Polygon = Points;
T cross(const pt &x, const pt &y) { return x.x * y.y - x.y * y.x; }
T dot(const pt &x, const pt &y) { return x.x * y.x + x.y * y.y; }
T abs2(const pt &x) { return dot(x, x); }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C
// 点の回転方向
int ccw(const Point &a, Point b, Point c) {
b = b - a, c = c - a;
if(cross(b, c) > 0) return +1; // "COUNTER_CLOCKWISE"
if(cross(b, c) < 0) return -1; // "CLOCKWISE"
if(dot(b, c) < 0) return +2; // "ONLINE_BACK"
if(abs2(b) < abs2(c)) return -2; // "ONLINE_FRONT"
return 0; // "ON_SEGMENT"
}
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
// 平行判定
bool parallel(const Line &a, const Line &b) { return (cross(a.b - a.a, b.b - b.a) == 0); }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
// 垂直判定
bool orthogonal(const Line &a, const Line &b) { return (dot(a.a - a.b, b.a - b.b) == 0); }
bool intersect(const Line &l, const Point &p) { return abs(ccw(l.a, l.b, p)) != 1; }
bool intersect(const Line &l, const Line &m) { return !parallel(l, m); }
bool intersect(const Segment &s, const Point &p) { return ccw(s.a, s.b, p) == 0; }
bool intersect(const Line &l, const Segment &s) { return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) <= 0; }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B
bool intersect(const Segment &s, const Segment &t) { return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0; }
bool intersect(const Polygon &ps, const Polygon &qs) {
int pl = si(ps), ql = si(qs), i = 0, j = 0;
while((i < pl or j < ql) and (i < 2 * pl) and (j < 2 * ql)) {
auto ps0 = ps[(i + pl - 1) % pl], ps1 = ps[i % pl];
auto qs0 = qs[(j + ql - 1) % ql], qs1 = qs[j % ql];
if(intersect(Segment(ps0, ps1), Segment(qs0, qs1))) return true;
Point a = ps1 - ps0;
Point b = qs1 - qs0;
T v = cross(a, b);
T va = cross(qs1 - qs0, ps1 - qs0);
T vb = cross(ps1 - ps0, qs1 - ps0);
if(!v and va < 0 and vb < 0) return false;
if(!v and !va and !vb) {
i += 1;
} else if(v >= 0) {
if(vb > 0)
i += 1;
else
j += 1;
} else {
if(va > 0)
j += 1;
else
i += 1;
}
}
return false;
}
T norm(const Point &p) { return p.x * p.x + p.y * p.y; }
Point projection(const Segment &l, const Point &p) {
T t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
Point crosspoint(const Line &l, const Line &m) {
T A = cross(l.b - l.a, m.b - m.a);
T B = cross(l.b - l.a, l.b - m.a);
if(A == 0 and B == 0) return m.a;
return m.a + (m.b - m.a) * (B / A);
}
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C
Point crosspoint(const Segment &l, const Segment &m) { return crosspoint(Line(l), Line(m)); }
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B
// 凸性判定
bool is_convex(const Points &p) {
int n = (int)p.size();
for(int i = 0; i < n; i++) {
if(ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1) return false;
}
return true;
}
Points convex_hull(Points p) {
int n = p.size(), k = 0;
if(n <= 2) return p;
sort(begin(p), end(p), [](pt x, pt y) { return (x.x != y.x ? x.x < y.x : x.y < y.y); });
Points ch(2 * n);
for(int i = 0; i < n; ch[k++] = p[i++]) {
while(k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) <= 0) --k;
}
for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {
while(k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) <= 0) --k;
}
ch.resize(k - 1);
return ch;
}
// 面積の 2 倍
T area2(const Points &p) {
T res = 0;
rep(i, si(p)) { res += cross(p[i], p[i == si(p) - 1 ? 0 : i + 1]); }
return res;
}
enum { _OUT, _ON, _IN };
int contains(const Polygon &Q, const Point &p) {
bool in = false;
for(int i = 0; i < Q.size(); i++) {
Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;
if(a.y > b.y) swap(a, b);
if(a.y <= 0 && 0 < b.y && cross(a, b) < 0) in = !in;
if(cross(a, b) == 0 && dot(a, b) <= 0) return _ON;
}
return in ? _IN : _OUT;
}
Polygon Minkowski_sum(const Polygon &P, const Polygon &Q) {
vector<Segment> e1(P.size()), e2(Q.size()), ed(P.size() + Q.size());
const auto cmp = [](const Segment &u, const Segment &v) { return (u.b - u.a).arg_cmp(v.b - v.a); };
rep(i, P.size()) e1[i] = {P[i], P[(i + 1) % P.size()]};
rep(i, Q.size()) e2[i] = {Q[i], Q[(i + 1) % Q.size()]};
rotate(begin(e1), min_element(all(e1), cmp), end(e1));
rotate(begin(e2), min_element(all(e2), cmp), end(e2));
merge(all(e1), all(e2), begin(ed), cmp);
const auto check = [](const Points &res, const Point &u) {
const auto back1 = res.back(), back2 = *prev(end(res), 2);
return eq(cross(back1 - back2, u - back2), eps) and dot(back1 - back2, u - back1) >= -eps;
};
auto u = e1[0].a + e2[0].a;
Points res{u};
res.reserve(P.size() + Q.size());
for(const auto &v : ed) {
u = u + v.b - v.a;
while(si(res) >= 2 and check(res, u)) res.pop_back();
res.eb(u);
}
if(res.size() and check(res, res[0])) res.pop_back();
return res;
}
// -1 : on, 0 : out, 1 : in
// O(log(n))
int is_in(const Polygon &p, const Point &a) {
if(p.size() == 1) return a == p[0] ? -1 : 0;
if(p.size() == 2) return intersect(Segment(p[0], p[1]), a);
if(a == p[0]) return -1;
if((p[1] - p[0]).toleft(a - p[0]) == -1 || (p.back() - p[0]).toleft(a - p[0]) == 1) return 0;
const auto cmp = [&](const Point &u, const Point &v) { return (u - p[0]).toleft(v - p[0]) == 1; };
const size_t i = lower_bound(p.begin() + 1, p.end(), a, cmp) - p.begin();
if(i == 1) return intersect(Segment(p[0], p[i]), a) ? -1 : 0;
if(i == p.size() - 1 && intersect(Segment(p[0], p[i]), a)) return -1;
if(intersect(Segment(p[i - 1], p[i]), a)) return -1;
return (p[i] - p[i - 1]).toleft(a - p[i - 1]) > 0;
}
Points halfplane_intersection(vector<Line> L, const T inf = 1e9) {
Point box[4] = {Point(inf, inf), Point(-inf, inf), Point(-inf, -inf), Point(inf, -inf)};
rep(i, 4) { L.emplace_back(box[i], box[(i + 1) % 4]); }
sort(all(L), [](const Line &l, const Line &r) { return (l.b - l.a).arg_cmp(r.b - r.a); });
deque<Line> dq;
int len = 0;
auto check = [](const Line &a, const Line &b, const Line &c) { return a.toleft(crosspoint(b, c)) == -1; };
rep(i, L.size()) {
while(dq.size() > 1 and check(L[i], *(end(dq) - 2), *(end(dq) - 1))) dq.pop_back();
while(dq.size() > 1 and check(L[i], dq[0], dq[1])) dq.pop_front();
// dump(L[i], si(dq));
if(dq.size() and eq(cross(L[i].b - L[i].a, dq.back().b - dq.back().a), 0)) {
if(dot(L[i].b - L[i].a, dq.back().b - dq.back().a) < eps) return {};
if(L[i].toleft(dq.back().a) == -1)
dq.pop_back();
else
continue;
}
dq.emplace_back(L[i]);
}
while(dq.size() > 2 and check(dq[0], *(end(dq) - 2), *(end(dq) - 1))) dq.pop_back();
while(dq.size() > 2 and check(dq.back(), dq[0], dq[1])) dq.pop_front();
if(si(dq) < 3) return {};
Polygon ret(dq.size());
rep(i, dq.size()) ret[i] = crosspoint(dq[i], dq[(i + 1) % dq.size()]);
return ret;
}
} // namespace Geometry
using namespace Geometry;
Point projection(const Line &l, const Point &p) {
long double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
Point projection(const Segment &l, const Point &p) {
long double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
long double abs(Point P) { return sqrtl(abs2(P)); }
long double dist(const Point &A, const Point &B) { return hypot(A.x - B.x, A.y - B.y); }
// 三角形 PAB の内部の点の、P との距離の二乗の期待値
long double solve(const Point &P, const Point &A, const Point &B) {
if(dist(A, B) < 1e-9) {
Point C = (A + B) * 0.5;
return powl(dist(P, C), 2) / 3;
}
auto H = projection(Line(A, B), P);
long double h = abs(H - P), a = abs(H - A), b = abs(H - B);
if(ccw(A, H, B) == -2) a = -a;
return (a * a + a * b + b * b + h * h * 3) / 6;
}
const long double PI = acosl(-1);
int main() {
INT(xl, yl, xr, yr);
INT(n);
Points P(n);
rep(i, n) { cin >> P[i].x >> P[i].y; }
vector<Line> rect;
rect.eb(Line(Point(xl, yl), Point(xr, yl)));
rect.eb(Line(Point(xr, yl), Point(xr, yr)));
rect.eb(Line(Point(xr, yr), Point(xl, yr)));
rect.eb(Line(Point(xl, yr), Point(xl, yl)));
long double ans = 0;
rep(i, n) {
auto v = rect, w = rect;
// v : min, w : max
rep(j, n) {
dump(i, j);
if(i == j) continue;
Point mid = (P[i] + P[j]) * 0.5;
Point nxt = mid + rotate(PI / 2, mid - P[i]);
v.eb(Line(mid, nxt));
w.eb(Line(nxt, mid));
}
dump(i);
auto f = [&](vector<Line> &v) {
auto C = halfplane_intersection(v);
dump(C);
long double res = 0;
rep(j, si(C)) {
auto p = C[j], q = C[(j + 1) % si(C)];
dump(P[i], p, q, solve(P[i], p, q), area2(Points{P[i], p, q}));
res += solve(P[i], p, q) * area2(Points{P[i], p, q}) * 0.5;
}
dump(res);
return res;
};
ans += f(w) - f(v);
}
OUT(ans / (xr - xl) / (yr - yl) * PI);
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 4008kb
input:
0 0 2 2 2 3 1 1 3
output:
8.37758040957
result:
ok found '8.3775804', expected '8.3775804', error '0.0000000'
Test #2:
score: 0
Accepted
time: 0ms
memory: 4084kb
input:
0 0 2 2 2 5 1 1 3
output:
37.69911184308
result:
ok found '37.6991118', expected '37.6991118', error '0.0000000'
Test #3:
score: 0
Accepted
time: 1800ms
memory: 4496kb
input:
-2911 2151 336 5941 2000 -83 79 -94 47 48 -29 -47 64 84 75 -44 -86 -58 -11 -31 58 20 53 80 -19 -82 74 -60 -26 8 -68 -42 -61 -14 12 -58 -18 92 10 35 -26 71 64 76 89 -80 6 70 4 -96 -99 95 -80 -3 -22 71 -89 -75 17 -35 -82 -59 95 60 48 -74 50 -82 90 -26 5 -75 -31 -45 85 85 14 -70 -57 59 46 55 13 -23 60 ...
output:
6657168.14285338596
result:
ok found '6657168.1428534', expected '6657168.1428534', error '0.0000000'
Test #4:
score: 0
Accepted
time: 1771ms
memory: 4660kb
input:
-3013 5287 7654 9132 2000 -19 49 -17 -35 64 68 48 -49 -72 -14 29 -93 -13 -8 -80 11 39 88 -31 82 68 -66 5 41 -74 -8 0 15 11 34 69 -12 15 -86 5 -78 -48 73 10 9 -2 8 81 52 41 -43 -45 -41 -23 60 -40 -45 -26 27 -32 73 8 -20 2 91 46 17 51 -66 -65 -32 37 -9 58 63 -14 -31 60 -56 -85 -22 9 -66 -7 -53 -21 40 ...
output:
10130702.49401499024
result:
ok found '10130702.4940150', expected '10130702.4940150', error '0.0000000'
Test #5:
score: 0
Accepted
time: 1876ms
memory: 4584kb
input:
-5561 9559 6905 9930 2000 79 338 2 214 325 -193 -390 -157 -517 943 -759 970 449 901 -369 636 -661 -211 847 -558 223 -564 185 822 -656 -854 -991 -617 -422 -169 -63 -799 327 -911 -960 945 -948 831 -494 93 266 -299 139 -535 796 707 75 -146 10 566 72 -713 -132 -341 348 924 -739 -838 982 995 -445 500 -71...
output:
158891446.62387780730
result:
ok found '158891446.6238778', expected '158891446.6238778', error '0.0000000'
Test #6:
score: -100
Wrong Answer
time: 1883ms
memory: 4600kb
input:
-5245 -7558 1275 934 2000 -40 125 79 -30 49 13 -127 153 -151 -28 -82 -140 147 131 123 -105 -84 71 -49 -146 -140 82 57 172 -140 -32 -173 24 -55 -101 44 142 -68 -114 122 69 -137 66 19 199 31 109 -161 -66 63 -101 65 -114 166 -66 83 -162 60 70 -19 -134 15 161 -130 22 -130 50 8 -121 150 89 132 44 -131 -3...
output:
11172663.97291949424
result:
wrong answer 1st numbers differ - expected: '11172638.2656236', found: '11172663.9729195', error = '0.0000023'