QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#280168 | #7789. Outro: True Love Waits | ucup-team1469# | WA | 1ms | 3640kb | C++20 | 8.6kb | 2023-12-09 14:14:29 | 2023-12-09 14:14:29 |
Judging History
answer
#line 1 "main.cpp"
#include <bits/stdc++.h>
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/tag_and_trait.hpp>
// #include <ext/pb_ds/tree_policy.hpp>
// namespace gt = __gnu_pbds;
#define IS_MULTITEST 1
using namespace std;
#line 2 "/Library/angel/math/modint.hpp"
#line 2 "/Library/Nyaan/modint/montgomery-modint.hpp"
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1, "invalid, r * mod != 1");
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const { return pow(mod - 2); }
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
#line 2 "/Library/Nyaan/modulo/binomial.hpp"
template <typename T>
struct Binomial {
vector<T> f, g, h;
Binomial(int MAX = 0) {
assert(T::get_mod() != 0 && "Binomial<mint>()");
f.resize(1, T{1});
g.resize(1, T{1});
h.resize(1, T{1});
while (MAX >= (int)f.size()) extend();
}
void extend() {
int n = f.size();
int m = n * 2;
f.resize(m);
g.resize(m);
h.resize(m);
for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
g[m - 1] = f[m - 1].inverse();
h[m - 1] = g[m - 1] * f[m - 2];
for (int i = m - 2; i >= n; i--) {
g[i] = g[i + 1] * T(i + 1);
h[i] = g[i] * f[i - 1];
}
}
T fac(int i) {
if (i < 0) return T(0);
while (i >= (int)f.size()) extend();
return f[i];
}
T finv(int i) {
if (i < 0) return T(0);
while (i >= (int)g.size()) extend();
return g[i];
}
T inv(int i) {
if (i < 0) return -inv(-i);
while (i >= (int)h.size()) extend();
return h[i];
}
T C(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r) * finv(r);
}
inline T operator()(int n, int r) { return C(n, r); }
template <typename I>
T multinomial(const vector<I>& r) {
static_assert(is_integral<I>::value == true);
int n = 0;
for (auto& x : r) {
if (x < 0) return T(0);
n += x;
}
T res = fac(n);
for (auto& x : r) res *= finv(x);
return res;
}
template <typename I>
T operator()(const vector<I>& r) {
return multinomial(r);
}
T C_naive(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
T ret = T(1);
r = min(r, n - r);
for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
return ret;
}
T P(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r);
}
// [x^r] 1 / (1-x)^n
T H(int n, int r) {
if (n < 0 || r < 0) return T(0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
#line 5 "/Library/angel/math/modint.hpp"
using Modint1000000007 = LazyMontgomeryModInt<1000000007>;
using Binomial1000000007 = Binomial<Modint1000000007>;
using Modint998244353 = LazyMontgomeryModInt<998244353>;
using Binomial998244353 = Binomial<Modint998244353>;
#line 11 "main.cpp"
#pragma region Macros
// clang-format off
using ll = long long; using uint = unsigned int; using ull = unsigned long long;
using i32 = int; using i64 = ll; using u32 = uint; using u64 = ull;
using i128 = __int128_t; using u128 = __uint128_t;
using Str = string;
template <class T> using Vec = vector<T>;
template <class T> using RevPriq = priority_queue<T, vector<T>, greater<T>>;
constexpr std::array<std::pair<int, int>, 4> dxy4 = {{{-1, 0}, {0, 1}, {1, 0}, {0, -1}}};
constexpr std::array<std::pair<int, int>, 8> dxy8 = {
{{-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}}};
constexpr int inf32 = 1 << 30; constexpr ll inf64 = 1ll << 60;
constexpr char eoln = '\n';
#define L(i, l, r) for (int i = (l); i < (r); ++i)
#define R(i, l, r) for (int i = (r) - 1; i >= (l); --i)
#define ALL(x) (x).begin(), (x).end()
#define mem(a, x) memset((a), (x), sizeof(a))
#define sz(a) (int)((a).size())
#define fi first
#define se second
#define pb push_back
#define mp make_pair
// clang-format on
#pragma endregion
// Coding Space
// vars
// funcs
using Fp = Modint1000000007;
Fp ml(ll n) {
return (Fp(4) / Fp(3)) * Fp(4).pow(n - 1) - Fp(4) / Fp(3);
}
void main_() {
Str S, T;
cin >> S >> T;
int k;
cin >> k;
if (sz(S) < sz(T)) S = Str(sz(T) - sz(S), '0') + S;
else T = Str(sz(S) - sz(T), '0') + T;
int N = sz(S);
L(i, 0, N) {
if (S[i] == T[i]) S[i] = T[i] = '0';
else S[i] = '0', T[i] = '1';
}
reverse(ALL(S));
reverse(ALL(T));
while (not S.empty()) {
if (S.back() == '0' and T.back() == '0') {
S.pop_back();
T.pop_back();
} else {
break;
}
}
reverse(ALL(S));
reverse(ALL(T));
N = sz(S);
if (N == 0) {
cout << ml(k) << endl;
} else {
int c = 0, f = 0;
R(i, 0, N) {
if (T[i] == '0') ++c;
else {
f = i;
break;
}
}
if (k > c / 2 + 1) {
cout << -1 << endl;
return;
}
cerr << S << ' ' << T << endl;
Fp base = 0;
if (N % 2 == 1) {
S = '0' + S;
T = '0' + T;
++f;
++N;
}
for (int i = 0; i < N; i += 2) {
Fp v = ml(N / 2 - i / 2);
if (T[i] == '0' and T[i + 1] == '1') base += v + 1;
else if (T[i] == '1' and T[i + 1] == '1') base += Fp(2) * v + 2;
else if (T[i] == '1') base += Fp(3) * v + 3;
}
Fp iad = 0;
L(i, 0, k - 1) {
iad += ml(i + 2);
}
cout << base + iad << endl;
}
}
set<pair<int, int>> s;
map<int, int> c;
void main_2() {
int n = 0;
int test = 100000;
while (test--) {
++c[n];
L(i, 0, 30) {
if (s.find(minmax(n, n xor (1 << i))) == s.end()) {
s.insert(minmax(n, n xor (1 << i)));
n = n xor (1 << i);
break;
}
}
}
for (auto [a, b] : c) cout << bitset<11>(a) << ' ' << b << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
if constexpr (IS_MULTITEST == 0) {
main_2();
// main_();
} else {
// multitest (cf-style)
int T;
cin >> T;
while (T--) {
main_();
cout << flush;
}
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3572kb
input:
4 1 10 1 1 10 2 100 0 2 11 11 3
output:
2 -1 9 20
result:
ok 4 number(s): "2 -1 9 20"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
1 0 0 1
output:
0
result:
ok 1 number(s): "0"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3568kb
input:
100 110111 11111 1 10110 101101 1 11010 111111 1 100110 1 1 10010 11010 1 1100 10111 1 100100 111110 1 101110 101100 1 1011 10110 1 110100 1110 1 11010 11000 1 11110 1000 1 111000 11101 1 110 1001 1 101010 11000 1 10 111110 1 110001 101000 1 1010 1000 1 10101 11 1 111011 11010 1 110001 100000 1 1100...
output:
78 59 69 70 15 38 39 3 32 60 3 29 69 12 45 52 37 3 29 64 22 39 54 69 65 27 33 76 34 18 57 13 81 15 23 70 69 36 18 23 29 42 69 54 6 0 63 3 29 15 10 16 80 24 37 59 71 13 23 31 21 34 23 48 21 47 7 44 42 3 37 75 59 29 55 39 29 28 29 70 55 16 54 47 24 18 79 60 8 26 64 58 32 6 8 37 2 68 42 44
result:
ok 100 numbers
Test #4:
score: 0
Accepted
time: 1ms
memory: 3568kb
input:
100 10011111 111 2 1011101100 1000000100 1 100011111 1001001111 1 1001100101 1100100001 1 10101000 10000100 1 1011110101 100011101 1 110100001 111011010 1 1101001100 1111101101 1 1001101 11011010 1 1101110110 1101011000 1 110011001 1100001111 2 1001111001 1011001111 1 1001110 1101110100 2 1110110100...
output:
295 248 788 431 73 930 144 319 283 76 -1 305 -1 -1 86 -1 312 293 1293 433 1179 0 884 963 1215 576 -1 1132 499 811 864 949 1322 406 526 862 -1 447 1203 1238 873 -1 -1 1131 1108 438 134 359 80 740 1057 752 31 950 1093 1261 650 235 996 876 504 925 1344 450 1010 273 -1 1144 1041 717 -1 164 -1 11 798 419...
result:
ok 100 numbers
Test #5:
score: -100
Wrong Answer
time: 0ms
memory: 3640kb
input:
1000 1010011001 1100000000 1 1111001110 100100011 1 10000001 1110100110 1 1001000010 1111011110 1 11110001 101101110 1 10110001 110010 1 110111100 1111011111 1 1010101010 1111110000 1 11010110 11000110 1 1101101100 10001101 1 1101000110 111100110 3 1101100 10110 1 1001101001 10010001 1 1000110100 11...
output:
633 1267 752 627 629 257 1173 465 21 916 1365 145 1250 1006 155 783 412 684 400 1126 1204 185 298 932 535 246 1094 325 272 -1 -1 389 164 -1 -1 644 436 1271 261 741 351 212 985 426 236 1356 952 1256 1039 911 709 547 1349 142 229 1077 538 48 1089 378 1152 524 218 1161 485 884 751 299 206 268 95 933 76...
result:
wrong answer 11th numbers differ - expected: '1361', found: '1365'