QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#280019 | #7789. Outro: True Love Waits | ucup-team1631# | WA | 1ms | 3508kb | C++23 | 9.9kb | 2023-12-09 13:23:29 | 2023-12-09 13:23:29 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define rep(i, s, t) for (int i = (int)(s); i < (int)(t); ++i)
#define revrep(i, t, s) for (int i = (int)(t)-1; i >= (int)(s); --i)
#define all(x) begin(x), end(x)
template <typename T>
bool chmax(T& a, const T& b) {
return a < b ? (a = b, 1) : 0;
}
template <typename T>
bool chmin(T& a, const T& b) {
return a > b ? (a = b, 1) : 0;
}
template <int mod>
class Modint {
using mint = Modint;
static_assert(mod > 0, "Modulus must be positive");
public:
static constexpr int get_mod() noexcept { return mod; }
constexpr Modint(long long y = 0) noexcept
: x(y >= 0 ? y % mod : (y % mod + mod) % mod) {}
constexpr int value() const noexcept { return x; }
constexpr mint& operator+=(const mint& r) noexcept {
if ((x += r.x) >= mod) x -= mod;
return *this;
}
constexpr mint& operator-=(const mint& r) noexcept {
if ((x += mod - r.x) >= mod) x -= mod;
return *this;
}
constexpr mint& operator*=(const mint& r) noexcept {
x = static_cast<int>(1LL * x * r.x % mod);
return *this;
}
constexpr mint& operator/=(const mint& r) noexcept {
*this *= r.inv();
return *this;
}
constexpr mint operator-() const noexcept { return mint(-x); }
constexpr mint operator+(const mint& r) const noexcept {
return mint(*this) += r;
}
constexpr mint operator-(const mint& r) const noexcept {
return mint(*this) -= r;
}
constexpr mint operator*(const mint& r) const noexcept {
return mint(*this) *= r;
}
constexpr mint operator/(const mint& r) const noexcept {
return mint(*this) /= r;
}
constexpr bool operator==(const mint& r) const noexcept { return x == r.x; }
constexpr bool operator!=(const mint& r) const noexcept { return x != r.x; }
constexpr mint inv() const noexcept {
int a = x, b = mod, u = 1, v = 0;
while (b > 0) {
int t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return mint(u);
}
constexpr mint pow(long long n) const noexcept {
mint ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend std::ostream& operator<<(std::ostream& os, const mint& r) {
return os << r.x;
}
friend std::istream& operator>>(std::istream& is, mint& r) {
long long t;
is >> t;
r = mint(t);
return is;
}
private:
int x;
};
template <typename T>
class Matrix {
public:
static Matrix concat(const Matrix& A, const Matrix& B) {
assert(A.m == B.m);
Matrix C(A.m, A.n + B.n);
for (int i = 0; i < A.m; ++i) {
std::copy(A[i].begin(), A[i].end(), C[i].begin());
std::copy(B[i].begin(), B[i].end(), C[i].begin() + A.n);
}
return C;
}
Matrix() = default;
Matrix(int m, int n) : mat(m, std::vector<T>(n)), m(m), n(n) {}
Matrix(std::initializer_list<std::initializer_list<T>> list) {
for (auto& l : list) mat.emplace_back(l);
m = mat.size();
n = mat[0].size();
}
int row() const { return m; }
int col() const { return n; }
const std::vector<T>& operator[](int i) const { return mat[i]; }
std::vector<T>& operator[](int i) { return mat[i]; }
Matrix& operator+=(const Matrix& rhs) {
assert(m == rhs.m && n == rhs.n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
mat[i][j] += rhs[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& rhs) {
assert(m == rhs.m && n == rhs.n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
mat[i][j] -= rhs[i][j];
}
}
return *this;
}
Matrix operator+(const Matrix& rhs) const { return Matrix(*this) += rhs; }
Matrix operator-(const Matrix& rhs) const { return Matrix(*this) -= rhs; }
Matrix transpose() const {
Matrix ret(n, m);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
ret[i][j] = mat[j][i];
}
}
return ret;
}
Matrix matmul(const Matrix& B) const {
assert(n == B.m);
Matrix ret(m, B.n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < B.n; ++j) {
for (int k = 0; k < n; ++k) {
ret[i][j] += mat[i][k] * B[k][j];
}
}
}
return ret;
}
Matrix rref() const {
Matrix A(*this);
int pivot = 0;
for (int j = 0; j < n; ++j) {
int i = pivot;
while (i < m && eq(A[i][j], T(0))) ++i;
if (i == m) continue;
if (i != pivot) A[i].swap(A[pivot]);
T p = A[pivot][j];
for (int l = j; l < n; ++l) A[pivot][l] /= p;
for (int k = 0; k < m; ++k) {
if (k == pivot) continue;
T v = A[k][j];
for (int l = j; l < n; ++l) {
A[k][l] -= A[pivot][l] * v;
}
}
++pivot;
}
return A;
}
int rank() const {
auto A = rref();
for (int i = 0; i < m; ++i) {
bool nonzero = false;
for (int j = 0; j < n; ++j) {
if (!eq(A[i][j], T(0))) {
nonzero = true;
break;
}
}
if (!nonzero) return i;
}
return m;
}
template <typename U,
typename std::enable_if<std::is_floating_point<U>::value>::type* =
nullptr>
static constexpr bool eq(U a, U b) {
return std::abs(a - b) < 1e-8;
}
template <typename U, typename std::enable_if<!std::is_floating_point<
U>::value>::type* = nullptr>
static constexpr bool eq(U a, U b) {
return a == b;
}
protected:
std::vector<std::vector<T>> mat;
int m, n;
};
template <typename T>
class SquareMatrix : public Matrix<T> {
using Matrix<T>::Matrix;
using Matrix<T>::eq;
using Matrix<T>::n;
public:
static SquareMatrix I(int n) {
SquareMatrix ret(n);
for (int i = 0; i < n; ++i) ret[i][i] = 1;
return ret;
}
SquareMatrix() = default;
explicit SquareMatrix(int n) : Matrix<T>(n, n) {}
SquareMatrix(const Matrix<T>& mat) : Matrix<T>(mat) {
assert(Matrix<T>::m == n);
}
SquareMatrix(std::initializer_list<std::initializer_list<T>> list)
: Matrix<T>(list) {
assert(Matrix<T>::m == n);
}
SquareMatrix pow(long long k) const {
auto ret = I(n);
auto A(*this);
while (k > 0) {
if (k & 1) ret = ret.matmul(A);
A = A.matmul(A);
k >>= 1;
}
return ret;
}
T det() const {
SquareMatrix A(*this);
T ret = 1;
for (int j = 0; j < n; ++j) {
int i = j;
while (i < n && eq(A[i][j], T(0))) ++i;
if (i == n) return 0;
if (i != j) {
A[i].swap(A[j]);
ret = -ret;
}
T p = A[j][j];
ret *= p;
for (int l = j; l < n; ++l) A[j][l] /= p;
for (int k = j + 1; k < n; ++k) {
T v = A[k][j];
for (int l = j; l < n; ++l) {
A[k][l] -= A[j][l] * v;
}
}
}
return ret;
}
SquareMatrix inv() const {
assert(!eq(det(), T(0)));
auto IB = Matrix<T>::concat(*this, I(n)).rref();
SquareMatrix B(n);
for (int i = 0; i < n; ++i) {
std::copy(IB[i].begin() + n, IB[i].end(), B[i].begin());
}
return B;
}
};
using mint = Modint<(int)1e9 + 7>;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
const SquareMatrix<mint> mat = {{4, 1}, {0, 1}};
auto calc = [&](int k) {
auto res = mat.pow(k - 1);
return res[0][0] + res[0][1] - 1;
};
auto get_index = [&](char d0, char d1) {
if (d0 == '0' && d1 == '0') return 0;
if (d0 == '1' && d1 == '0') return 1;
if (d0 == '1' && d1 == '1') return 2;
if (d0 == '0' && d1 == '1') return 3;
};
int T;
cin >> T;
while (T--) {
string s, t;
int k;
cin >> s >> t >> k;
if (s.size() > t.size()) swap(s, t);
reverse(all(s));
reverse(all(t));
rep(i, 0, s.size()) {
if (s[i] == '1') {
t[i] = (t[i] == '0' ? '1' : '0');
}
}
while (t.size() > 0 && t.back() == '0') {
t.pop_back();
}
if (t.size() % 2 == 1) t.push_back('0');
if (t.empty()) {
mint ans = calc(k);
cout << ans << "\n";
} else {
mint ans = get_index(t[0], t[1]);
mint sz = 5;
int num_visit = 1;
if (t.substr(0, 2) == "00") ++num_visit;
for (int d = 2; d < t.size(); d += 2) {
if (t.substr(d, 2) == "00") ++num_visit;
ans += sz * get_index(t[d], t[d + 1]);
sz = sz * 4 + 1;
}
if (k > num_visit) {
cout << -1 << "\n";
} else {
ans += calc(k);
cout << ans << "\n";
}
}
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3420kb
input:
4 1 10 1 1 10 2 100 0 2 11 11 3
output:
2 -1 9 20
result:
ok 4 number(s): "2 -1 9 20"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3488kb
input:
1 0 0 1
output:
0
result:
ok 1 number(s): "0"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3452kb
input:
100 110111 11111 1 10110 101101 1 11010 111111 1 100110 1 1 10010 11010 1 1100 10111 1 100100 111110 1 101110 101100 1 1011 10110 1 110100 1110 1 11010 11000 1 11110 1000 1 111000 11101 1 110 1001 1 101010 11000 1 10 111110 1 110001 101000 1 1010 1000 1 10101 11 1 111011 11010 1 110001 100000 1 1100...
output:
78 59 69 70 15 38 39 3 32 60 3 29 69 12 45 52 37 3 29 64 22 39 54 69 65 27 33 76 34 18 57 13 81 15 23 70 69 36 18 23 29 42 69 54 6 0 63 3 29 15 10 16 80 24 37 59 71 13 23 31 21 34 23 48 21 47 7 44 42 3 37 75 59 29 55 39 29 28 29 70 55 16 54 47 24 18 79 60 8 26 64 58 32 6 8 37 2 68 42 44
result:
ok 100 numbers
Test #4:
score: -100
Wrong Answer
time: 1ms
memory: 3508kb
input:
100 10011111 111 2 1011101100 1000000100 1 100011111 1001001111 1 1001100101 1100100001 1 10101000 10000100 1 1011110101 100011101 1 110100001 111011010 1 1101001100 1111101101 1 1001101 11011010 1 1101110110 1101011000 1 110011001 1100001111 2 1001111001 1011001111 1 1001110 1101110100 2 1110110100...
output:
295 248 788 431 73 930 144 319 283 76 -1 305 746 899 86 -1 312 293 1293 433 1179 0 884 963 1215 576 473 1132 499 811 864 949 1322 406 526 862 -1 447 1203 1238 873 -1 -1 1131 1108 438 134 359 80 740 1057 752 31 950 1093 1261 650 235 996 876 504 925 1344 450 1010 273 411 1144 1041 717 949 164 -1 11 79...
result:
wrong answer 13th numbers differ - expected: '-1', found: '746'