QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#279966#7774. 基础寄术练习题georgeyucjr100 ✓73ms8376kbC++2316.2kb2023-12-09 13:03:022023-12-09 13:03:03

Judging History

你现在查看的是最新测评结果

  • [2023-12-09 13:03:03]
  • 评测
  • 测评结果:100
  • 用时:73ms
  • 内存:8376kb
  • [2023-12-09 13:03:02]
  • 提交

answer

# include <bits/stdc++.h>
# pragma GCC optimize(2,3,"Ofast","unroll-loops","inline")
# pragma GCC target("avx2")

#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1

#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
  x %= m;
  if (x < 0)
    x += m;
  return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
  unsigned int _m;
  unsigned long long im;

  // @param m `1 <= m < 2^31`
  barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

  // @return m
  unsigned int umod() const { return _m; }

  // @param a `0 <= a < m`
  // @param b `0 <= b < m`
  // @return `a * b % m`
  unsigned int mul(unsigned int a, unsigned int b) const {
    // [1] m = 1
    // a = b = im = 0, so okay

    // [2] m >= 2
    // im = ceil(2^64 / m)
    // -> im * m = 2^64 + r (0 <= r < m)
    // let z = a*b = c*m + d (0 <= c, d < m)
    // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
    // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
    // ((ab * im) >> 64) == c or c + 1
    unsigned long long z = a;
    z *= b;
#ifdef _MSC_VER
    unsigned long long x;
    _umul128(z, im, &x);
#else
    unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
    unsigned int v = (unsigned int)(z - x * _m);
    if (_m <= v)
      v += _m;
    return v;
  }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
  if (m == 1)
    return 0;
  unsigned int _m = (unsigned int)(m);
  unsigned long long r = 1;
  unsigned long long y = safe_mod(x, m);
  while (n) {
    if (n & 1)
      r = (r * y) % _m;
    y = (y * y) % _m;
    n >>= 1;
  }
  return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
  if (n <= 1)
    return false;
  if (n == 2 || n == 7 || n == 61)
    return true;
  if (n % 2 == 0)
    return false;
  long long d = n - 1;
  while (d % 2 == 0)
    d /= 2;
  constexpr long long bases[3] = {2, 7, 61};
  for (long long a : bases) {
    long long t = d;
    long long y = pow_mod_constexpr(a, t, n);
    while (t != n - 1 && y != 1 && y != n - 1) {
      y = y * y % n;
      t <<= 1;
    }
    if (y != n - 1 && t % 2 == 0) {
      return false;
    }
  }
  return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
  a = safe_mod(a, b);
  if (a == 0)
    return {b, 0};

  // Contracts:
  // [1] s - m0 * a = 0 (mod b)
  // [2] t - m1 * a = 0 (mod b)
  // [3] s * |m1| + t * |m0| <= b
  long long s = b, t = a;
  long long m0 = 0, m1 = 1;

  while (t) {
    long long u = s / t;
    s -= t * u;
    m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b

    // [3]:
    // (s - t * u) * |m1| + t * |m0 - m1 * u|
    // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
    // = s * |m1| + t * |m0| <= b

    auto tmp = s;
    s = t;
    t = tmp;
    tmp = m0;
    m0 = m1;
    m1 = tmp;
  }
  // by [3]: |m0| <= b/g
  // by g != b: |m0| < b/g
  if (m0 < 0)
    m0 += b / s;
  return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
  if (m == 2)
    return 1;
  if (m == 167772161)
    return 3;
  if (m == 469762049)
    return 3;
  if (m == 754974721)
    return 11;
  if (m == 998244353)
    return 3;
  int divs[20] = {};
  divs[0] = 2;
  int cnt = 1;
  int x = (m - 1) / 2;
  while (x % 2 == 0)
    x /= 2;
  for (int i = 3; (long long)(i)*i <= x; i += 2) {
    if (x % i == 0) {
      divs[cnt++] = i;
      while (x % i == 0) {
        x /= i;
      }
    }
  }
  if (x > 1) {
    divs[cnt++] = x;
  }
  for (int g = 2;; g++) {
    bool ok = true;
    for (int i = 0; i < cnt; i++) {
      if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
        ok = false;
        break;
      }
    }
    if (ok)
      return g;
  }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

} // namespace internal

} // namespace atcoder

#endif // ATCODER_INTERNAL_MATH_HPP

#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type,
                                                     std::false_type>::type;

template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value,
                                              std::true_type, std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value,
                                                  std::true_type, std::false_type>::type;

template <class T>
using to_unsigned =
    typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>,
                              typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;

template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;

#endif

template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

} // namespace internal

} // namespace atcoder

#endif // ATCODER_INTERNAL_TYPE_TRAITS_HPP

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

} // namespace internal

template <int m, std::enable_if_t<(1 <= m)> * = nullptr> struct static_modint : internal::static_modint_base {
  using mint = static_modint;

public:
  static constexpr int mod() { return m; }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  static_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T> * = nullptr> static_modint(T v) {
    long long x = (long long)(v % (long long)(umod()));
    if (x < 0)
      x += umod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T> * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); }

  unsigned int val() const { return _v; }

  mint &operator++() {
    _v++;
    if (_v == umod())
      _v = 0;
    return *this;
  }
  mint &operator--() {
    if (_v == 0)
      _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint &operator+=(const mint &rhs) {
    _v += rhs._v;
    if (_v >= umod())
      _v -= umod();
    return *this;
  }
  mint &operator-=(const mint &rhs) {
    _v -= rhs._v;
    if (_v >= umod())
      _v += umod();
    return *this;
  }
  mint &operator*=(const mint &rhs) {
    unsigned long long z = _v;
    z *= rhs._v;
    _v = (unsigned int)(z % umod());
    return *this;
  }
  mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1)
        r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    if (prime) {
      assert(_v);
      return pow(umod() - 2);
    } else {
      auto eg = internal::inv_gcd(_v, m);
      assert(eg.first == 1);
      return eg.second;
    }
  }

  friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }
  friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }
  friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }
  friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }
  friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }
  friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }

private:
  unsigned int _v;
  static constexpr unsigned int umod() { return m; }
  static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
  using mint = dynamic_modint;

public:
  static int mod() { return (int)(bt.umod()); }
  static void set_mod(int m) {
    assert(1 <= m);
    bt = internal::barrett(m);
  }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  dynamic_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T> * = nullptr> dynamic_modint(T v) {
    long long x = (long long)(v % (long long)(mod()));
    if (x < 0)
      x += mod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T> * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); }

  unsigned int val() const { return _v; }

  mint &operator++() {
    _v++;
    if (_v == umod())
      _v = 0;
    return *this;
  }
  mint &operator--() {
    if (_v == 0)
      _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint &operator+=(const mint &rhs) {
    _v += rhs._v;
    if (_v >= umod())
      _v -= umod();
    return *this;
  }
  mint &operator-=(const mint &rhs) {
    _v += mod() - rhs._v;
    if (_v >= umod())
      _v -= umod();
    return *this;
  }
  mint &operator*=(const mint &rhs) {
    _v = bt.mul(_v, rhs._v);
    return *this;
  }
  mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1)
        r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    auto eg = internal::inv_gcd(_v, mod());
    assert(eg.first == 1);
    return eg.second;
  }

  friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }
  friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }
  friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }
  friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }
  friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }
  friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }

private:
  unsigned int _v;
  static internal::barrett bt;
  static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

} // namespace internal

} // namespace atcoder

#endif // ATCODER_MODINT_HPP
using mint = atcoder :: dynamic_modint < -1 >;

using namespace std;
# define ll long long
# define ull unsigned long long
# define rep(i, f, t, ...) for (int i = f, ##__VA_ARGS__; i <= t; ++i)
# define red(i, f, t, ...) for (int i = f, ##__VA_ARGS__; i >= t; --i)
# define emb emplace_back
# define pb push_back
# define pii pair<int, int>
# define mkp make_pair 
# define arr3 array<int, 3> 
# define arr4 array<int, 4> 
# define FILEIO(filename) freopen (filename".in", "r", stdin), freopen (filename ".out", "w", stdout)
# define N 
template < class T > constexpr static T inf = numeric_limits < T > :: max ( ) / 2;

# ifdef MACOS
# include "/Users/yzw/GeorgeYuOI/codes/cpp/georgeyucjr/debug/debug.hpp"
using namespace georgeyucjr;
# else
# define write(...) void ( 36 )
# define bug(...) void ( 36 )
# endif

bool Mst;

int n, m, k, mod;

struct Binom {
	int lim ;
	vector < mint > fac, ifac, inv;
	inline void Init () {
		fac[0] = inv[1] = 1; rep (i, 1, lim) fac[i] = fac[i - 1] * i;
		ifac[lim] = fac[lim].inv () ; red (i, lim, 1)ifac[i - 1] = ifac[i] * i;
		rep (i, 2, lim)inv[i] = -( mod / i ) *inv[mod % i];
	}
	inline void resize (int _){
		lim = _;
		fac.resize ( lim + 5 );
		ifac.resize ( lim + 5 );
		inv.resize ( lim + 5 );
		Init ();
	}
	inline mint C (int n, int m) {
		if (n < 0 || m < 0 || n < m) return 0;
		assert(n <= lim);
		return fac[n] * ifac[n - m ] *ifac[m];
	}
} binom;

mint f[105][5505], g[105][5505];

bool Med;

signed main() {
  ios_base :: sync_with_stdio ( false ), cin.tie ( nullptr ), cout.tie (nullptr);
  
  cin >> n >> m >> k >> mod;
  mint :: set_mod(mod);
  binom.resize ( 10000 );
  // rep (i, 1, 10) cerr << binom.inv[i].val ( ) << " "; cerr << endl;
  memset(f, 0, sizeof f);
  memset(g, 0, sizeof g);
  fill ( f[0], f[0] + ( m * (m + 1) >> 1 ) + 1, 1 );
  red (i, m, 1) {
  	int s = ( i - 1 ) * i >> 1;
  	red (j, m - i, 1) rep (x, 0, s) {
      g[j + 1][x] += 2 * f[j][x + i];
      g[j + 1][x] += binom.inv[i] * (g[j][x] - g[j][x + i]);
    }
    rep (x, 0 , s) ++g[1][x];
    red (j, m - i, 0) rep (x, 0, s) {
      f[j + 1][x] += binom.inv[x + i] * f[j][x + i];
      f[j + 1][x] += binom.inv[i] * (f[j][x] - f[j][x + i]);
    }
  }
  cout << ( k == 1 ? f[n][0] : g[n][0] ) .val () << endl;
# ifdef MACOS
  cerr << "Memory & Time Information : " << endl;
  cerr << "Memory : " << ( ( &Med ) - ( &Mst ) ) * 1. / 1024. / 1024. << "MB" << endl;
  cerr << "Time : " << clock ( ) * 1. / CLOCKS_PER_SEC * 1000. << "ms" << endl;
# endif 
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 10
Accepted

Test #1:

score: 10
Accepted
time: 3ms
memory: 8304kb

input:

9 16 1 327134593

output:

162102742

result:

ok single line: '162102742'

Test #2:

score: 0
Accepted
time: 3ms
memory: 8368kb

input:

11 18 1 834359503

output:

256188485

result:

ok single line: '256188485'

Test #3:

score: 0
Accepted
time: 0ms
memory: 8364kb

input:

18 18 1 614802701

output:

552168146

result:

ok single line: '552168146'

Test #4:

score: 0
Accepted
time: 3ms
memory: 8368kb

input:

7 16 2 861918403

output:

306693876

result:

ok single line: '306693876'

Test #5:

score: 0
Accepted
time: 3ms
memory: 8224kb

input:

11 17 2 617904383

output:

393900291

result:

ok single line: '393900291'

Subtask #2:

score: 25
Accepted

Test #6:

score: 25
Accepted
time: 66ms
memory: 8240kb

input:

60 98 1 715015339

output:

690737273

result:

ok single line: '690737273'

Test #7:

score: 0
Accepted
time: 68ms
memory: 8240kb

input:

96 97 1 507892589

output:

481151247

result:

ok single line: '481151247'

Test #8:

score: 0
Accepted
time: 59ms
memory: 8328kb

input:

90 95 1 621080027

output:

255353202

result:

ok single line: '255353202'

Test #9:

score: 0
Accepted
time: 57ms
memory: 8312kb

input:

85 94 1 297115421

output:

122254364

result:

ok single line: '122254364'

Test #10:

score: 0
Accepted
time: 54ms
memory: 8296kb

input:

81 91 1 460412027

output:

148037986

result:

ok single line: '148037986'

Subtask #3:

score: 15
Accepted

Test #11:

score: 15
Accepted
time: 3ms
memory: 8248kb

input:

29 29 2 545875273

output:

171843225

result:

ok single line: '171843225'

Test #12:

score: 0
Accepted
time: 0ms
memory: 8244kb

input:

29 29 2 342070607

output:

291380196

result:

ok single line: '291380196'

Test #13:

score: 0
Accepted
time: 3ms
memory: 8248kb

input:

30 30 2 293965439

output:

148471965

result:

ok single line: '148471965'

Test #14:

score: 0
Accepted
time: 4ms
memory: 8324kb

input:

30 30 2 528219961

output:

203632962

result:

ok single line: '203632962'

Test #15:

score: 0
Accepted
time: 0ms
memory: 8296kb

input:

30 30 1 202836509

output:

158493990

result:

ok single line: '158493990'

Subtask #4:

score: 10
Accepted

Test #16:

score: 10
Accepted
time: 3ms
memory: 8324kb

input:

27 30 2 360712453

output:

80987914

result:

ok single line: '80987914'

Test #17:

score: 0
Accepted
time: 3ms
memory: 8256kb

input:

26 29 2 377615957

output:

278812897

result:

ok single line: '278812897'

Test #18:

score: 0
Accepted
time: 3ms
memory: 8248kb

input:

22 30 2 163686233

output:

19517828

result:

ok single line: '19517828'

Test #19:

score: 0
Accepted
time: 3ms
memory: 8248kb

input:

20 29 2 785657729

output:

713061509

result:

ok single line: '713061509'

Test #20:

score: 0
Accepted
time: 3ms
memory: 8300kb

input:

24 29 1 374090597

output:

312615700

result:

ok single line: '312615700'

Subtask #5:

score: 15
Accepted

Test #21:

score: 15
Accepted
time: 0ms
memory: 8308kb

input:

29 38 2 909155077

output:

745973305

result:

ok single line: '745973305'

Test #22:

score: 0
Accepted
time: 0ms
memory: 8244kb

input:

40 40 2 1067474879

output:

995503334

result:

ok single line: '995503334'

Test #23:

score: 0
Accepted
time: 0ms
memory: 8304kb

input:

32 37 2 751116719

output:

699924081

result:

ok single line: '699924081'

Test #24:

score: 0
Accepted
time: 4ms
memory: 8376kb

input:

33 37 2 496100951

output:

21741458

result:

ok single line: '21741458'

Test #25:

score: 0
Accepted
time: 4ms
memory: 8308kb

input:

34 38 1 499914887

output:

386116226

result:

ok single line: '386116226'

Subtask #6:

score: 10
Accepted

Test #26:

score: 10
Accepted
time: 13ms
memory: 8372kb

input:

57 66 2 767174999

output:

315351738

result:

ok single line: '315351738'

Test #27:

score: 0
Accepted
time: 20ms
memory: 8312kb

input:

52 69 2 399947623

output:

237685494

result:

ok single line: '237685494'

Test #28:

score: 0
Accepted
time: 12ms
memory: 8308kb

input:

63 64 2 903693961

output:

520250635

result:

ok single line: '520250635'

Test #29:

score: 0
Accepted
time: 21ms
memory: 8372kb

input:

65 70 2 268454909

output:

255864893

result:

ok single line: '255864893'

Test #30:

score: 0
Accepted
time: 19ms
memory: 8320kb

input:

58 68 1 562105223

output:

175445185

result:

ok single line: '175445185'

Subtask #7:

score: 15
Accepted

Test #31:

score: 15
Accepted
time: 62ms
memory: 8320kb

input:

96 96 2 453296971

output:

222864385

result:

ok single line: '222864385'

Test #32:

score: 0
Accepted
time: 65ms
memory: 8304kb

input:

85 96 2 859572601

output:

457416092

result:

ok single line: '457416092'

Test #33:

score: 0
Accepted
time: 60ms
memory: 8300kb

input:

89 94 2 753918677

output:

366789523

result:

ok single line: '366789523'

Test #34:

score: 0
Accepted
time: 56ms
memory: 8240kb

input:

91 92 2 202806031

output:

64270709

result:

ok single line: '64270709'

Test #35:

score: 0
Accepted
time: 73ms
memory: 8304kb

input:

100 100 1 493945957

output:

109570004

result:

ok single line: '109570004'