QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#276539 | #7881. Computational Complexity | ucup-team088 | TL | 924ms | 30672kb | C++17 | 8.8kb | 2023-12-05 22:36:35 | 2023-12-05 22:36:36 |
Judging History
answer
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
//ll mod = 1;
constexpr ll mod = 998244353;
//constexpr ll mod = 1000000007;
const int mod17 = 1000000007;
const ll INF = (ll)mod17 * mod17;
typedef pair<int, int>P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
using ld = double;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);
template<typename T>
void chmin(T& a, T b) {
a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
a = max(a, b);
}
template<typename T>
vector<T> vmerge(vector<T>& a, vector<T>& b) {
vector<T> res;
int ida = 0, idb = 0;
while (ida < a.size() || idb < b.size()) {
if (idb == b.size()) {
res.push_back(a[ida]); ida++;
}
else if (ida == a.size()) {
res.push_back(b[idb]); idb++;
}
else {
if (a[ida] < b[idb]) {
res.push_back(a[ida]); ida++;
}
else {
res.push_back(b[idb]); idb++;
}
}
}
return res;
}
template<typename T>
void cinarray(vector<T>& v) {
rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
rep(i, v.size()) {
if (i > 0)cout << " "; cout << v[i];
}
cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
if (n < 0) {
ll res = mod_pow(x, -n, m);
return mod_pow(res, m - 2, m);
}
if (abs(x) >= m)x %= m;
if (x < 0)x += m;
//if (x == 0)return 0;
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
//mod should be <2^31
struct modint {
int n;
modint() :n(0) { ; }
modint(ll m) {
if (m < 0 || mod <= m) {
m %= mod; if (m < 0)m += mod;
}
n = m;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[a - b];
}
ll gcd(ll a, ll b) {
a = abs(a); b = abs(b);
if (a < b)swap(a, b);
while (b) {
ll r = a % b; a = b; b = r;
}
return a;
}
template<typename T>
void addv(vector<T>& v, int loc, T val) {
if (loc >= v.size())v.resize(loc + 1, 0);
v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
fill(isp + 2, isp + mn, true);
for (int i = 2; i < mn; i++) {
if (!isp[i])continue;
ps.push_back(i);
for (int j = 2 * i; j < mn; j += i) {
isp[j] = false;
}
}
}*/
//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
if (res == st.begin())return st.end();
res--; return res;
}
//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
a = a + b; return a;
}
mP operator-(mP a, mP b) {
return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
a = a - b; return a;
}
LP operator+(LP a, LP b) {
return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
a = a + b; return a;
}
LP operator-(LP a, LP b) {
return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
a = a - b; return a;
}
P operator-(P a, P b) {
return { a.first - b.first,a.second - b.second };
}
P operator+(P a, P b) {
return { a.first + b.first,a.second + b.second };
}
mt19937 mt(time(0));
const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
//int dx[4] = { 1,0,-1,0 };
//int dy[4] = { 0,1,0,-1 };
//------------------------------------
vector<int> vf = { 2,3,5,7 };
vector<int> vg = { 2,3,4,5 };
const int bb = 20;
const int bl = 1 << bb;
ll m;
vector<ll> xs[50];
vector<ll> rvs[50];
const int sz = 100;
void init() {
map<ll, ll> mp;
vector<int> vv;
for (int v1 : vf)for (int v2 : vg)vv.push_back(v1 * v2);
mp[1] = 1;
for (int i = bb; i < 50; i++) {
ll x = (1ll << i);
while (x / (*mp.begin()).first >= sz) {
LP p = *mp.begin(); mp.erase(mp.begin());
for (int v : vv) {
ll nv = p.first * v;
mp[nv] += p.second;
if (mp[nv] >= m)mp[nv] -= m;
}
}
rvs[i].push_back(0);
for (auto p : mp) {
ll las = rvs[i].back() + p.second;
if (las >= m)las -= m;
rvs[i].push_back(las);
xs[i].push_back(p.first);
}
}
}
using T = __int128;
void solve() {
int f0, g0, t; cin >> f0 >> g0 >> t >> m;
init();
vector<ll> mf(bl);
vector<ll> mg(bl);
mf[0] = f0;
mg[0] = g0;
rep1(i, 9) {
for (int v : vf) {
mf[i] += mg[i / v];
}
chmax(mf[i], (ll)i);
for (int v : vg) {
mg[i] += mf[i / v];
}
chmax(mg[i], (ll)i);
}
rep(i, 10) {
mf[i] %= m;
mg[i] %= m;
}
for (int i = 10; i < bl; i++) {
for (int v : vf) {
mf[i] += mg[i / v];
if (mf[i] >= m)mf[i] -= m;
}
for (int v : vg) {
mg[i] += mf[i / v];
if (mg[i] >= m)mg[i] -= m;
}
}
auto query = [&](ll x)->LP {
if (x < bl)return { mf[x],mg[x] };
LP res = { 0,0 };
int chk = -1;
per(i, 50)if (x & (1ll << i)) {
chk = i; break;
}
int cr = xs[chk].size();
for (int d = 1; d < 2 * sz;d++) {
ll le = x / (d + 1);
le++;
int cl = lower_bound(all(xs[chk]), le) - xs[chk].begin();
ll val = rvs[chk][cr] - rvs[chk][cl];
if (val < 0)val += m;
res.first += (T)val * (T)mf[d] % (T)m;
if (res.first >= m)res.first -= m;
res.second += (T)val * (T)mg[d] % (T)m;
if (res.second >= m)res.second -= m;
cr = cl;
}
assert(cr == 0);
return res;
};
rep(_, t) {
ll x; cin >> x;
LP p = query(x);
cout << p.first << " " << p.second << "\n";
}
}
signed main() {
//ios::sync_with_stdio(false);
//cin.tie(0);
//cout << fixed<<setprecision(10);
//init_f();
//init();
//while(true)
//expr();
//expr2();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 44ms
memory: 30604kb
input:
1958 920 10 100000000000 0 1 2 3 10 100 200 1000 19580920 20232023
output:
1958 920 3680 7832 10592 9554 17504 11276 50294 64826 784112 893714 1894550 1905470 12057866 12979424 71481494756 48626708512 28127864908 7251681354
result:
ok 20 numbers
Test #2:
score: 0
Accepted
time: 47ms
memory: 30664kb
input:
0 0 10 100000000000 0 1 2 3 4 10 20 30 40 100
output:
0 0 1 1 2 2 3 3 4 4 11 12 25 26 41 41 55 58 162 172
result:
ok 20 numbers
Test #3:
score: 0
Accepted
time: 55ms
memory: 30648kb
input:
2023 2023 10 2023 0 1 2 3 4 5 6 7 8 9
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
result:
ok 20 numbers
Test #4:
score: 0
Accepted
time: 71ms
memory: 30668kb
input:
36092 30559 2149 729566623185 909730017626 961811467628 978809456383 494310140318 760462959632 726343527430 220697276132 366336227300 456813204361 569783542145 13854148170 51526515764 564416233246 876430686824 862897449267 956440673661 512777546436 728860125927 799238602356 978766770799 47962348351 ...
output:
192287632545 510282654057 513694515018 658644741565 90751152870 6088748556 138070013247 301112114677 224113421002 105290451187 630454127249 196841848259 546918129568 526274849982 226761501362 157889210040 135623074930 620463814922 78467045157 602244472172 51639549042 411354142414 329188915935 306494...
result:
ok 4298 numbers
Test #5:
score: 0
Accepted
time: 115ms
memory: 30560kb
input:
46012 72474 6895 931299293479 635558333906 151352929427 186830308154 201652909474 130684521091 862625793178 335372663856 565394770762 609752364488 636658378167 568072145317 23602174799 74849827839 567735061723 964475612065 721588322843 526921882143 141483206690 794896616456 923141155683 443983986019...
output:
737640936783 269480550026 785950579990 586907405473 274405996613 356240054012 164145774405 803378519477 613956922400 426121843045 509646717167 788278629379 95131481441 672600899832 720839818877 52329269906 131977527669 257593035330 737640936783 269480550026 202443098753 171133839273 188615102144 605...
result:
ok 13790 numbers
Test #6:
score: 0
Accepted
time: 924ms
memory: 30672kb
input:
4625 65696 87448 104757899185 324541097749 340894391228 353710640194 913290645927 500906082550 994613091630 486893604015 755863379632 795242109754 670982629049 89739557323 995677833835 622128974870 291590021762 74643709454 491030939322 504220665415 590951839890 749414110824 908656060298 831415689095...
output:
24017028596 61020984279 90036018081 8518714361 4807132724 94915889679 60642395760 99169995073 45912197521 30663794937 26807208137 73005099296 31855861883 38442189712 61377861921 69296474844 15633158436 24561226404 83188091024 101278210525 92283972576 51782451279 22904017080 27746280119 46615471334 7...
result:
ok 174896 numbers
Test #7:
score: 0
Accepted
time: 300ms
memory: 30604kb
input:
14545 18504 24898 310785536775 50369414029 493590300593 553141557375 616338447787 866832676714 135190324674 601568991739 991767475529 948181269880 701011912636 639662587174 967753492870 160818187307 982894396663 184811806844 288729173645 518365001123 3574920653 699636637896 885581030321 227437326762...
output:
230379585588 282893684496 13911364238 39284517930 176790841557 274445952454 193216065450 156787491642 209030903098 129334601749 303968485891 121048097813 281524501935 227151375068 113606190940 153251759384 52704408619 125469600129 282450949147 185742976542 283723332110 113117774598 35391811596 23685...
result:
ok 49796 numbers
Test #8:
score: 0
Accepted
time: 105ms
memory: 30536kb
input:
24465 60420 5451 512518207068 743647145169 687426729690 724316856711 323681216943 237054238172 271472590422 716244379463 186531051694 101120430005 772181715954 161329999180 939829151905 671251781902 706749356702 290684936938 58171790124 528214369534 411903034120 690999684701 866800967640 62345896443...
output:
459924162645 318783416538 339019744008 78457535841 220446603579 257208701322 484581216738 249822897402 339783439530 427811175228 16082994351 231701822103 139456487361 111068628870 409702155636 141745699002 350279528034 52998807225 34751698464 318301237488 354335881755 315047176536 293154215637 12022...
result:
ok 10902 numbers
Test #9:
score: 0
Accepted
time: 144ms
memory: 30548kb
input:
58732 77988 10197 718545844658 432629909013 876968191491 923747773891 31023986099 607275799632 403459888874 826624799890 385589595156 249764622836 797916032244 711253029031 911904810940 218530928931 398053731601 400853034329 827614406604 505513152806 824526114884 645517179069 852315872255 1518563480...
output:
24000605268 693906447722 525784005798 714879350432 36422110278 667430950574 542153388742 693441524642 362698623376 431263731428 672885760590 97526477814 391490140074 590187631066 328145721424 601650408696 195995642958 617957874512 710138473080 616425385720 122228033978 1244962196 629811143468 197577...
result:
ok 20394 numbers
Test #10:
score: 0
Accepted
time: 840ms
memory: 30648kb
input:
22238 38788 74071 415988077246 383064772058 462095580167 177796182736 526444376691 553790727170 341399532741 434214439467 93665007089 8304450603 715899864226 581669048092 416564857486 796877611087 243428789606 100626765568 394142066971 253575121111 895217901037 415120242068 471521631858 970528271113...
output:
385279906044 258911594936 22906585374 73540222996 57816276602 201337940164 7149938072 174502276630 209805777078 77501184158 57919629614 274052543450 126817027564 101901346578 112656720460 197320817058 354605200408 34739504608 46029199082 30272239080 71552593352 181566346300 377248315820 100880109630...
result:
ok 148142 numbers
Test #11:
score: 0
Accepted
time: 902ms
memory: 30600kb
input:
32158 91598 78816 622015714836 72047535902 655932009263 381522067212 229492178551 915422354038 481976765785 544594859895 288428583255 165538578025 745929147812 135887045238 388640516521 344156758116 930438197210 206499895662 163584683449 267719456819 312135949096 365342769140 457036536473 3622549414...
output:
210074081370 27113743842 259753958536 98110597916 120975103772 293399465790 194692867960 22758588982 525481257566 596282347744 425811249644 466839902174 570537420584 570043937800 99647769876 444393829062 510257855410 587819161518 106048452974 319224577026 588389038572 356369734726 379782897354 43256...
result:
ok 157632 numbers
Test #12:
score: -100
Time Limit Exceeded
input:
66425 33512 92074 828043352426 802170819478 845473471064 548402399253 941129915004 285643915496 613964064237 659270247619 524332679152 318477738151 817098951130 653259489949 360716175556 854590352711 658588124545 316667993052 928732332633 245018240090 724759029859 324155230804 438256473792 753981611...
output:
571418482429 265649138476 22819138341 417543158364 153077693089 319889825969 617869129685 210757061376 617468843391 631998922716 809093498986 137138398929 735211697119 537435604204 203539232394 77766921856 275785833762 548878412771 345019591447 786348488828 568177254727 496265684109 570040097867 769...