QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#275930 | #7644. Good Splits | maspy | AC ✓ | 42ms | 4248kb | C++20 | 44.0kb | 2023-12-05 12:12:03 | 2023-12-05 12:12:04 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/mod/dynamic_modint.hpp"
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 2 "library/mod/primitive_root.hpp"
#line 2 "library/nt/factor.hpp"
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/mod/mongomery_modint.hpp"
// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
using mint = Mongomery_modint;
inline static U1 m, r, n2;
static constexpr int W = numeric_limits<U1>::digits;
static void set_mod(U1 mod) {
assert(mod & 1 && mod <= U1(1) << (W - 2));
m = mod, n2 = -U2(m) % m, r = m;
FOR(5) r *= 2 - m * r;
r = -r;
assert(r * m == U1(-1));
}
static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }
U1 x;
Mongomery_modint() : x(0) {}
Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
U1 val() const {
U1 y = reduce(x);
return y >= m ? y - m : y;
}
mint &operator+=(mint y) {
x = ((x += y.x) >= m ? x - m : x);
return *this;
}
mint &operator-=(mint y) {
x -= (x >= y.x ? y.x : y.x - m);
return *this;
}
mint &operator*=(mint y) {
x = reduce(U2(x) * y.x);
return *this;
}
mint operator+(mint y) const { return mint(*this) += y; }
mint operator-(mint y) const { return mint(*this) -= y; }
mint operator*(mint y) const { return mint(*this) *= y; }
bool operator==(mint y) const {
return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
}
bool operator!=(mint y) const { return not operator==(y); }
mint pow(ll n) const {
assert(n >= 0);
mint y = 1, z = *this;
for (; n; n >>= 1, z *= z)
if (n & 1) y *= z;
return y;
}
};
template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "library/nt/primetest.hpp"
bool primetest(const u64 x) {
assert(x < u64(1) << 62);
if (x == 2 or x == 3 or x == 5 or x == 7) return true;
if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
if (x < 121) return x > 1;
const u64 d = (x - 1) >> lowbit(x - 1);
using mint = Mongomery_modint_64<202311020>;
mint::set_mod(x);
const mint one(u64(1)), minus_one(x - 1);
auto ok = [&](u64 a) -> bool {
auto y = mint(a).pow(d);
u64 t = d;
while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
if (y != minus_one && t % 2 == 0) return false;
return true;
};
if (x < (u64(1) << 32)) {
for (u64 a: {2, 7, 61})
if (!ok(a)) return false;
} else {
for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (!ok(a)) return false;
}
}
return true;
}
#line 5 "library/nt/factor.hpp"
template <typename mint>
ll rho(ll n, ll c) {
assert(n > 1);
const mint cc(c);
auto f = [&](mint x) { return x * x + cc; };
mint x = 1, y = 2, z = 1, q = 1;
ll g = 1;
const ll m = 1LL << (__lg(n) / 5);
for (ll r = 1; g == 1; r <<= 1) {
x = y;
FOR(r) y = f(y);
for (ll k = 0; k < r && g == 1; k += m) {
z = y;
FOR(min(m, r - k)) y = f(y), q *= x - y;
g = gcd(q.val(), n);
}
}
if (g == n) do {
z = f(z);
g = gcd((x - z).val(), n);
} while (g == 1);
return g;
}
ll find_prime_factor(ll n) {
assert(n > 1);
if (primetest(n)) return n;
FOR(100) {
ll m = 0;
if (n < (1 << 30)) {
using mint = Mongomery_modint_32<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
} else {
using mint = Mongomery_modint_64<20231025>;
mint::set_mod(n);
m = rho<mint>(n, RNG(0, n));
}
if (primetest(m)) return m;
n = m;
}
assert(0);
return -1;
}
// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
assert(n >= 1);
vc<pair<ll, int>> pf;
FOR(p, 2, 100) {
if (p * p > n) break;
if (n % p == 0) {
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
}
while (n > 1) {
ll p = find_prime_factor(n);
ll e = 0;
do { n /= p, e += 1; } while (n % p == 0);
pf.eb(p, e);
}
sort(all(pf));
return pf;
}
vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
vc<pair<ll, int>> res;
while (n > 1) {
int p = lpf[n];
int e = 0;
while (n % p == 0) {
n /= p;
++e;
}
res.eb(p, e);
}
return res;
}
#line 2 "library/mod/mod_pow.hpp"
#line 2 "library/mod/barrett.hpp"
// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
u32 m;
u64 im;
explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
u32 umod() const { return m; }
u32 modulo(u64 z) {
if (m == 1) return 0;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z - y + (z < y ? m : 0));
}
u64 floor(u64 z) {
if (m == 1) return z;
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
return (z < y ? x - 1 : x);
}
pair<u64, u32> divmod(u64 z) {
if (m == 1) return {z, 0};
u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
u64 y = x * m;
if (z < y) return {x - 1, z - y + m};
return {x, z - y};
}
u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};
struct Barrett_64 {
u128 mod, mh, ml;
explicit Barrett_64(u64 mod = 1) : mod(mod) {
u128 m = u128(-1) / mod;
if (m * mod + mod == u128(0)) ++m;
mh = m >> 64;
ml = m & u64(-1);
}
u64 umod() const { return mod; }
u64 modulo(u128 x) {
u128 z = (x & u64(-1)) * ml;
z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
z = (x >> 64) * mh + (z >> 64);
x -= z * mod;
return x < mod ? x : x - mod;
}
u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "library/mod/mod_pow.hpp"
u32 mod_pow(int a, ll n, int mod) {
assert(n >= 0);
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (1 << 30))) {
using mint = Mongomery_modint_32<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett bt(mod);
int r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
u64 mod_pow_64(ll a, ll n, u64 mod) {
assert(n >= 0);
a = ((a %= mod) < 0 ? a + mod : a);
if ((mod & 1) && (mod < (u64(1) << 62))) {
using mint = Mongomery_modint_64<202311021>;
mint::set_mod(mod);
return mint(a).pow(n).val();
}
Barrett_64 bt(mod);
ll r = 1;
while (n) {
if (n & 1) r = bt.mul(r, a);
a = bt.mul(a, a), n >>= 1;
}
return r;
}
#line 6 "library/mod/primitive_root.hpp"
// int
int primitive_root(int p) {
auto pf = factor(p - 1);
auto is_ok = [&](int g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
int x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
ll primitive_root_64(ll p) {
auto pf = factor(p - 1);
auto is_ok = [&](ll g) -> bool {
for (auto&& [q, e]: pf)
if (mod_pow_64(g, (p - 1) / q, p) == 1) return false;
return true;
};
while (1) {
ll x = RNG(1, p);
if (is_ok(x)) return x;
}
return -1;
}
#line 6 "library/mod/dynamic_modint.hpp"
template <int id>
struct Dynamic_Modint {
static constexpr bool is_modint = true;
using mint = Dynamic_Modint;
u32 val;
static Barrett bt;
static u32 umod() { return bt.umod(); }
static int get_mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = Barrett(m);
}
static Dynamic_Modint raw(u32 v) {
Dynamic_Modint x;
x.val = v;
return x;
}
Dynamic_Modint() : val(0) {}
Dynamic_Modint(u32 x) : val(bt.modulo(x)) {}
Dynamic_Modint(u64 x) : val(bt.modulo(x)) {}
Dynamic_Modint(int x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {}
Dynamic_Modint(ll x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {}
mint& operator+=(const mint& rhs) {
val = (val += rhs.val) < umod() ? val : val - umod();
return *this;
}
mint& operator-=(const mint& rhs) {
val = (val += umod() - rhs.val) < umod() ? val : val - umod();
return *this;
}
mint& operator*=(const mint& rhs) {
val = bt.mul(val, rhs.val);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inverse(); }
mint operator-() const { return mint() - *this; }
mint pow(ll n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x, n >>= 1;
}
return r;
}
mint inverse() const {
int x = val, mod = get_mod();
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs.val == rhs.val;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs.val != rhs.val;
}
static pair<int, int>& get_ntt() {
static pair<int, int> p = {-1, -1};
return p;
}
static void set_ntt_info() {
int mod = get_mod();
int k = lowbit(mod - 1);
int r = primitive_root(mod);
r = mod_pow(r, (mod - 1) >> k, mod);
get_ntt() = {k, r};
}
static pair<int, int> ntt_info() { return get_ntt(); }
static bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int id>
void rd(Dynamic_Modint<id>& x) {
fastio::rd(x.val);
x.val %= Dynamic_Modint<id>::umod();
}
template <int id>
void wt(Dynamic_Modint<id> x) {
fastio::wt(x.val);
}
#endif
using dmint = Dynamic_Modint<-1>;
template <int id>
Barrett Dynamic_Modint<id>::bt;
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "library/mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 1 "library/mod/crt3.hpp"
constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
a %= mod;
u64 res = 1;
FOR(32) {
if (n & 1) res = res * a % mod;
a = a * a % mod, n /= 2;
}
return res;
}
template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
static_assert(p0 < p1 && p1 < p2);
static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x01_2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
u64 c = (a1 - a0 + p1) * x0_1 % p1;
u64 a = a0 + c * p0;
c = (a2 - a % p2 + p2) * x01_2 % p2;
return T(a) + T(c) * T(p0) * T(p1);
}
#line 2 "library/poly/convolution_naive.hpp"
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vector<T> ans(n + m - 1);
FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vc<T> ans(n + m - 1);
if (n <= 16 && (T::get_mod() < (1 << 30))) {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u64 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = sm;
}
} else {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u128 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = T::raw(sm % T::get_mod());
}
}
return ans;
}
#line 2 "library/poly/convolution_karatsuba.hpp"
// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
const int thresh = 30;
if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
int n = max(len(f), len(g));
int m = ceil(n, 2);
vc<T> f1, f2, g1, g2;
if (len(f) < m) f1 = f;
if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
if (len(f) >= m) f2 = {f.begin() + m, f.end()};
if (len(g) < m) g1 = g;
if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
if (len(g) >= m) g2 = {g.begin() + m, g.end()};
vc<T> a = convolution_karatsuba(f1, g1);
vc<T> b = convolution_karatsuba(f2, g2);
FOR(i, len(f2)) f1[i] += f2[i];
FOR(i, len(g2)) g1[i] += g2[i];
vc<T> c = convolution_karatsuba(f1, g1);
vc<T> F(len(f) + len(g) - 1);
assert(2 * m + len(b) <= len(F));
FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
if (c.back() == T(0)) c.pop_back();
FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
return F;
}
#line 2 "library/poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 1 "library/poly/fft.hpp"
namespace CFFT {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C& c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C& c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C& c) const {
return C(x * c.x - y * c.y, x * c.y + y * c.x);
}
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase) {
if (nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while (base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C>& a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); }
}
for (int k = 1; k < n; k <<= 1) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
} // namespace CFFT
#line 9 "library/poly/convolution.hpp"
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
if (a.empty() || b.empty()) return {};
int n = int(a.size()), m = int(b.size());
int sz = 1;
while (sz < n + m - 1) sz *= 2;
// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
if ((n + m - 3) <= sz / 2) {
auto a_last = a.back(), b_last = b.back();
a.pop_back(), b.pop_back();
auto c = convolution(a, b);
c.resize(n + m - 1);
c[n + m - 2] = a_last * b_last;
FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
return c;
}
a.resize(sz), b.resize(sz);
bool same = a == b;
ntt(a, 0);
if (same) {
b = a;
} else {
ntt(b, 0);
}
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using mint0 = modint<p0>;
using mint1 = modint<p1>;
using mint2 = modint<p2>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = convolution_ntt<mint0>(a0, b0);
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, n + m - 1) {
c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val);
}
return c;
}
template <typename R>
vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) {
using C = CFFT::C;
int need = (int)a.size() + (int)b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
CFFT::ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < sz; i++) {
int x = (i < (int)a.size() ? a[i] : 0);
int y = (i < (int)b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
CFFT::fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for (int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
CFFT::fft(fa, sz >> 1);
vector<double> ret(need);
for (int i = 0; i < need; i++) {
ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (min(n, m) <= 2500) return convolution_naive(a, b);
ll abs_sum_a = 0, abs_sum_b = 0;
ll LIM = 1e15;
FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i]));
FOR(i, m) abs_sum_b = min(LIM, abs_sum_b + abs(b[i]));
if (i128(abs_sum_a) * abs_sum_b < 1e15) {
vc<double> c = convolution_fft<ll>(a, b);
vc<ll> res(len(c));
FOR(i, len(c)) res[i] = ll(floor(c[i] + .5));
return res;
}
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1);
static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2);
static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3);
using mint1 = modint<MOD1>;
using mint2 = modint<MOD2>;
using mint3 = modint<MOD3>;
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
vc<mint3> a3(n), b3(m);
FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];
FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
auto c3 = convolution_ntt<mint3>(a3, b3);
vc<ll> c(n + m - 1);
FOR(i, n + m - 1) {
u64 x = 0;
x += (c1[i].val * i1) % MOD1 * M2M3;
x += (c2[i].val * i2) % MOD2 * M1M3;
x += (c3[i].val * i3) % MOD3 * M1M2;
ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5]
= {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (mint::can_ntt()) {
if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
return convolution_ntt(a, b);
}
if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
return convolution_garner(a, b);
}
#line 6 "main.cpp"
using mint = dmint;
void solve() {
LL(N, P);
mint::set_mod(P);
// (colored or not)
// f_n: bipartite
// g_n: connected bipartite
// f_0 = 1
// 左端の成分で場合分け
// f_n = 1 + \sum_{k=1}^n g_k [x^{n-k}]f(x)^{2k}
// colored bipartite
vc<mint> F(N + 1);
vc<mint> catalan(N + 1);
FOR(n, N + 1) catalan[n] = C<mint>(2 * n, n) * inv<mint>(n + 1);
FOR(a, N + 1) FOR(b, N + 1) {
if (a + b <= N) {
F[a + b] += C<mint>(2 * (a + b), 2 * a) * catalan[a] * catalan[b];
}
}
// colored bipartite -> connected colored bipartite
vv(mint, FPOW, N + N + 1, N + 1);
FPOW[0][0] = 1;
FOR(p, N + N) {
FPOW[p + 1] = convolution<mint>(FPOW[p], F);
FPOW[p + 1].resize(N + 1);
}
vc<mint> G(N + 1);
FOR(n, 1, N + 1) {
G[n] = F[n];
FOR(k, 1, n) { G[n] -= G[k] * FPOW[2 * k][n - k]; }
}
// connected colored bipartite -> connected bipartite
FOR(n, N + 1) { G[n] *= inv<mint>(2); }
// connected bipartite -> bipartite
F.assign(N + 1, 0);
FOR(p, N + N + 1) FPOW[p].assign(N + 1, 0);
F[0] = 1;
FOR(p, N + N + 1) FPOW[p][0] = 1;
FOR(n, 1, N + 1) {
FOR(k, 1, n + 1) { F[n] += G[k] * FPOW[2 * k][n - k]; }
// upd FPOW
FOR(p, N + N) {
FOR(i, n + 1) { FPOW[p + 1][n] += FPOW[p][i] * F[n - i]; }
}
}
FOR(n, 1, N + 1) print(F[n]);
}
signed main() {
solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3792kb
input:
5 998244353
output:
1 3 14 84 592
result:
ok 5 number(s): "1 3 14 84 592"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3684kb
input:
20 998244353
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 337584612 503820623 71483496 12733593 474907036 203223726 565209211 487441118 992424798 625482036
result:
ok 20 numbers
Test #3:
score: 0
Accepted
time: 1ms
memory: 3668kb
input:
30 147084737
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 43415138 115604731 88255570 6762644 25928144 117374310 119291296 29414136 87790057 136053957 103827626 145662835 60977924 8837626 61475022 108138661 88536961 105609125 140429327 77714436
result:
ok 30 numbers
Test #4:
score: 0
Accepted
time: 1ms
memory: 3808kb
input:
50 259851877
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 77732735 120479281 107558023 219154876 82657644 224090144 253190966 148874121 53920249 82785846 244357960 88406017 106161945 35184035 131007270 222579610 212725099 114435754 64242919 39323449 211238313 156440547 84150382 242052946 50634162 120017303 2...
result:
ok 50 numbers
Test #5:
score: 0
Accepted
time: 3ms
memory: 3888kb
input:
100 175127923
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 162456689 171123145 54532804 71333538 68283136 25628469 138841774 142350839 27676343 15931022 158187457 43201304 18465009 37939972 169592319 94983552 152752931 69017296 46403905 173424585 170947507 7870926 90491276 10182721 58907963 136216980 28163587...
result:
ok 100 numbers
Test #6:
score: 0
Accepted
time: 10ms
memory: 4064kb
input:
150 367542041
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 337584612 190675313 252320457 264200037 124276323 161424010 184935571 230223063 343780965 314302578 342350468 265272499 173792750 339843799 301192856 263531782 208259173 113525686 44197147 288967350 139023077 142942582 324678736 318907769 315638511 40...
result:
ok 150 numbers
Test #7:
score: 0
Accepted
time: 15ms
memory: 4116kb
input:
177 861641813
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 337584612 51986430 817568411 233712834 530886113 262319436 602763301 391560421 714952237 234059952 504165773 214901044 343336951 654631331 578657419 506328910 26764748 407306588 36662800 819329882 372916107 103054885 512356475 207029843 192047130 1038...
result:
ok 177 numbers
Test #8:
score: 0
Accepted
time: 0ms
memory: 3732kb
input:
1 998244353
output:
1
result:
ok 1 number(s): "1"
Test #9:
score: 0
Accepted
time: 42ms
memory: 4004kb
input:
200 864048671
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 337584612 42358998 716480375 849841780 472934607 500922480 184767796 279937457 399183954 512063087 91797677 107549673 485929841 293677006 593203756 235501697 372544850 500179291 849823101 602694217 345293985 459931747 386664093 196167251 265892579 252...
result:
ok 200 numbers
Test #10:
score: 0
Accepted
time: 20ms
memory: 4248kb
input:
199 958494587
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 337584612 623069921 583730251 536976835 256616783 340763703 344818742 765288755 200573977 666742925 957661404 606909377 32714935 246057767 23198149 389527637 588746573 223336510 430768410 501175382 380964997 647932740 845833201 113681916 396614824 546...
result:
ok 199 numbers
Test #11:
score: 0
Accepted
time: 12ms
memory: 4184kb
input:
198 165619889
output:
1 3 14 84 592 4659 39699 359004 3399164 33378417 6344834 20536013 73289310 162017284 159458288 100856961 164827673 70631917 154742952 14393421 27830529 37917167 68934527 54693629 76175385 34254720 114820104 69340313 35844068 25551171 137354127 120937326 10672731 81957539 132401938 29387190 74534300 ...
result:
ok 198 numbers
Extra Test:
score: 0
Extra Test Passed