QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#273497#7876. Cyclic Substringsucup-team088#AC ✓389ms744080kbC++1711.6kb2023-12-03 00:28:142023-12-03 00:28:16

Judging History

你现在查看的是最新测评结果

  • [2023-12-03 00:28:16]
  • 评测
  • 测评结果:AC
  • 用时:389ms
  • 内存:744080kb
  • [2023-12-03 00:28:14]
  • 提交

answer

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
//ll mod = 1;
constexpr ll mod = 998244353;
//constexpr ll mod = 1000000007;
const int mod17 = 1000000007;
const ll INF = (ll)mod17 * mod17;
typedef pair<int, int>P;

#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;

using ld = double;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);

template<typename T>
void chmin(T& a, T b) {
    a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
    a = max(a, b);
}
template<typename T>
vector<T> vmerge(vector<T>& a, vector<T>& b) {
    vector<T> res;
    int ida = 0, idb = 0;
    while (ida < a.size() || idb < b.size()) {
        if (idb == b.size()) {
            res.push_back(a[ida]); ida++;
        }
        else if (ida == a.size()) {
            res.push_back(b[idb]); idb++;
        }
        else {
            if (a[ida] < b[idb]) {
                res.push_back(a[ida]); ida++;
            }
            else {
                res.push_back(b[idb]); idb++;
            }
        }
    }
    return res;
}
template<typename T>
void cinarray(vector<T>& v) {
    rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
    rep(i, v.size()) {
        if (i > 0)cout << " "; cout << v[i];
    }
    cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
    if (n < 0) {
        ll res = mod_pow(x, -n, m);
        return mod_pow(res, m - 2, m);
    }
    if (abs(x) >= m)x %= m;
    if (x < 0)x += m;
    //if (x == 0)return 0;
    ll res = 1;
    while (n) {
        if (n & 1)res = res * x % m;
        x = x * x % m; n >>= 1;
    }
    return res;
}
//mod should be <2^31
struct modint {
    int n;
    modint() :n(0) { ; }
    modint(ll m) {
        if (m < 0 || mod <= m) {
            m %= mod; if (m < 0)m += mod;
        }
        n = m;
    }
    operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
    if (n == 0)return modint(1);
    modint res = (a * a) ^ (n / 2);
    if (n % 2)res = res * a;
    return res;
}

ll inv(ll a, ll p) {
    return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
    fact[0] = modint(1);
    for (int i = 0; i < max_n - 1; i++) {
        fact[i + 1] = fact[i] * modint(i + 1);
    }
    factinv[max_n - 1] = modint(1) / fact[max_n - 1];
    for (int i = max_n - 2; i >= 0; i--) {
        factinv[i] = factinv[i + 1] * modint(i + 1);
    }
}
modint comb(int a, int b) {
    if (a < 0 || b < 0 || a < b)return 0;
    return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
    if (a < 0 || b < 0 || a < b)return 0;
    return fact[a] * factinv[a - b];
}

ll gcd(ll a, ll b) {
    a = abs(a); b = abs(b);
    if (a < b)swap(a, b);
    while (b) {
        ll r = a % b; a = b; b = r;
    }
    return a;
}
template<typename T>
void addv(vector<T>& v, int loc, T val) {
    if (loc >= v.size())v.resize(loc + 1, 0);
    v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
    fill(isp + 2, isp + mn, true);
    for (int i = 2; i < mn; i++) {
        if (!isp[i])continue;
        ps.push_back(i);
        for (int j = 2 * i; j < mn; j += i) {
            isp[j] = false;
        }
    }
}*/

//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
    auto res = st.lower_bound(val);
    if (res == st.begin())return st.end();
    res--; return res;
}

//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
    auto res = st.lower_bound(val);
    return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
    return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
    a = a + b; return a;
}
mP operator-(mP a, mP b) {
    return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
    a = a - b; return a;
}
LP operator+(LP a, LP b) {
    return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
    a = a + b; return a;
}
LP operator-(LP a, LP b) {
    return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
    a = a - b; return a;
}
P operator+(P a, P b) {
    return { a.first + b.first,a.second + b.second };
}

mt19937 mt(time(0));

const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
//int dx[4] = { 1,0,-1,0 };
//int dy[4] = { 0,1,0,-1 };

//------------------------------------

struct PalindromicTree {
    //
    // private:
    struct node {
        map<char, int> link;
        int suffix_link;
        int len;
        P count;
    };

    vector<node> c;
    string s;
    int active_idx;

    node* create_node() {
        c.emplace_back();
        node* ret = &c.back();
        ret->count = { 0,0 };
        return ret;
    }

    // this->s の状態に依存する
    int find_prev_palindrome_idx(int node_id) {
        const int pos = int(s.size()) - 1;
        while (true) {
            const int opposite_side_idx = pos - 1 - c[node_id].len;
            if (opposite_side_idx >= 0 && s[opposite_side_idx] == s.back()) break;
            node_id = c[node_id].suffix_link; // 次の回文に移動
        }
        return node_id;
    }

    bool debug_id2string_dfs(int v, int id, vector<char>& charas) {
        if (v == id) return true;
        for (auto kv : c[v].link) {
            if (debug_id2string_dfs(kv.second, id, charas)) {
                charas.push_back(kv.first);
                return true;
            }
        }
        return false;
    }

public:
    PalindromicTree() {
        node* size_m1 = create_node(); // 長さ-1のノードを作成
        size_m1->suffix_link = 0; // -1 の親suffixは自分自身
        size_m1->len = -1;
        node* size_0 = create_node(); // 長さ0のノードを作成
        size_0->suffix_link = 0; // 親は長さ-1のノード
        size_0->len = 0;

        active_idx = 0;
    }

    int get_active_idx() const {
        return active_idx;
    }
    node* get_node(int id) {
        return &c[id];
    }

    void add(char ch,P ad) {
        s.push_back(ch);

        // ch + [A] + ch が回文となるものを探す
        const int a = find_prev_palindrome_idx(active_idx);

        //新しいノードへのリンクが発生するか試す
        const auto inserted_result = c[a].link.insert(make_pair(ch, int(c.size())));
        active_idx = inserted_result.first->second; // insertの成否に関わらず、iteratorが指す先は新しい回文のindex
        if (!inserted_result.second) {
            c[active_idx].count = c[active_idx].count + ad;// その回文が現れた回数が増加
            return; // 既にリンクが存在したので、新しいノードを作る必要がない
        }

        // 実際に新しいノードを作成
        node* nnode = create_node();
        nnode->count = nnode->count + ad;
        nnode->len = c[a].len + 2; // ch + [A] + ch だから、長さは len(A) + 2

        // suffix_linkの設定
        if (nnode->len == 1) {
            // この時だけsuffix_linkはsize 0に伸ばす
            nnode->suffix_link = 1;
        }
        else {
            // ch + [B] + ch が回文になるものを探す。ただし長さはaより小さいもの
            const int b = find_prev_palindrome_idx(c[a].suffix_link);
            nnode->suffix_link = c[b].link[ch];
        }
    }

    //各文字列が何回現れるか計算する
    // O(n)
    vector<P> build_frequency() {
        vector<P> frequency(c.size());
        //常に親ノードのid < 子ノードのidが成り立つので、idを大きい順から回せばよい
        for (int i = int(c.size()) - 1; i > 0; i--) {
            frequency[i] = frequency[i]+c[i].count;
            frequency[c[i].suffix_link] =frequency[c[i].suffix_link]+ frequency[i];
        }
        return frequency;
    }
    modint sol(int n) {
        modint res = 0;
        vector<P> frequency(c.size());
        //常に親ノードのid < 子ノードのidが成り立つので、idを大きい順から回せばよい
        for (int i = int(c.size()) - 1; i > 0; i--) {
            frequency[i] = frequency[i] + c[i].count;
            frequency[c[i].suffix_link] = frequency[c[i].suffix_link] + frequency[i];
        }
        for (int i = 0; i < c.size(); i++) {
            int num = frequency[i].second - frequency[i].first;
            int len = c[i].len;
            if (len > 0&&len<=n) {
               //cout << num << " " << len << "\n";
               res += (modint)num * (modint)num * (modint)len;
            }
        }
        return res;
    }

    // debug用
    // idがどのような回文を表しているのかを返す
    // O(n)
    string debug_id2string(int id) {
        if (id == 0) {
            return "(-1)";
        }
        else if (id == 1) {
            return "(0)";
        }

        vector<char> charas;
        debug_id2string_dfs(0, id, charas);
        debug_id2string_dfs(1, id, charas);

        string ret(charas.begin(), charas.end());
        int start = int(charas.size()) - 1;
        if (c[id].len % 2 == 1) start--;
        for (int i = start; i >= 0; i--) ret.push_back(charas[i]);

        return ret;
    }

    void display_frequencies() {
        auto freq = build_frequency();
        printf("frequencies of each palindrome...\n");
        for (int i = 0; i < int(c.size()); i++) {
            const string palindrome = debug_id2string(i);
            printf("  %s : %d\n", palindrome.c_str(), freq[i]);
        }
    }
};

void solve() {
    int n; cin >> n;
    string s; cin >> s;
    PalindromicTree pt;
    rep(i, s.size())pt.add(s[i], { 1,1 });
    rep(i, s.size())pt.add(s[i], { 0,1 });
    modint ans = pt.sol(n);
    cout << ans << "\n";

}



signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    //cout << fixed<<setprecision(10);
    //init_f();
    //init();
    //while(true)
    //expr();
    //int t; cin >> t; rep(i, t)
    solve();
    return 0;
}

这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 11888kb

input:

5
01010

output:

39

result:

ok 1 number(s): "39"

Test #2:

score: 0
Accepted
time: 4ms
memory: 12156kb

input:

8
66776677

output:

192

result:

ok 1 number(s): "192"

Test #3:

score: 0
Accepted
time: 4ms
memory: 12044kb

input:

1
1

output:

1

result:

ok 1 number(s): "1"

Test #4:

score: 0
Accepted
time: 0ms
memory: 12148kb

input:

2
22

output:

12

result:

ok 1 number(s): "12"

Test #5:

score: 0
Accepted
time: 4ms
memory: 12040kb

input:

2
21

output:

2

result:

ok 1 number(s): "2"

Test #6:

score: 0
Accepted
time: 2ms
memory: 11900kb

input:

3
233

output:

10

result:

ok 1 number(s): "10"

Test #7:

score: 0
Accepted
time: 5ms
memory: 12116kb

input:

3
666

output:

54

result:

ok 1 number(s): "54"

Test #8:

score: 0
Accepted
time: 111ms
memory: 250332kb

input:

1000000
3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333...

output:

496166704

result:

ok 1 number(s): "496166704"

Test #9:

score: 0
Accepted
time: 378ms
memory: 740276kb

input:

3000000
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222...

output:

890701718

result:

ok 1 number(s): "890701718"

Test #10:

score: 0
Accepted
time: 248ms
memory: 379056kb

input:

3000000
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999...

output:

224009870

result:

ok 1 number(s): "224009870"

Test #11:

score: 0
Accepted
time: 343ms
memory: 740496kb

input:

3000000
8989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989...

output:

51985943

result:

ok 1 number(s): "51985943"

Test #12:

score: 0
Accepted
time: 376ms
memory: 741948kb

input:

3000000
1911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911...

output:

355676465

result:

ok 1 number(s): "355676465"

Test #13:

score: 0
Accepted
time: 383ms
memory: 743492kb

input:

3000000
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777...

output:

788510374

result:

ok 1 number(s): "788510374"

Test #14:

score: 0
Accepted
time: 389ms
memory: 743544kb

input:

3000000
5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555...

output:

691884476

result:

ok 1 number(s): "691884476"

Test #15:

score: 0
Accepted
time: 232ms
memory: 379640kb

input:

3000000
0990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990...

output:

701050848

result:

ok 1 number(s): "701050848"

Test #16:

score: 0
Accepted
time: 133ms
memory: 132020kb

input:

3000000
2772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772...

output:

486861605

result:

ok 1 number(s): "486861605"

Test #17:

score: 0
Accepted
time: 375ms
memory: 741672kb

input:

3000000
4554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554...

output:

450625621

result:

ok 1 number(s): "450625621"

Test #18:

score: 0
Accepted
time: 311ms
memory: 744080kb

input:

3000000
1181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181...

output:

649551870

result:

ok 1 number(s): "649551870"

Extra Test:

score: 0
Extra Test Passed