QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#273306 | #7875. Queue Sorting | ucup-team987# | AC ✓ | 236ms | 3624kb | C++23 | 17.0kb | 2023-12-02 23:01:35 | 2023-12-02 23:01:36 |
Judging History
answer
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
namespace {
using Fp = atcoder::modint998244353;
Comb<Fp> comb(1000);
void solve() {
int n;
scan(n);
vector<int> a(n);
scan(a);
vector<Fp> f{1};
for (int e : a | views::reverse) {
vector<Fp> nf(len(f) + e);
for (int k : rep(len(f))) {
// [0, k] に e 個挿入する
for (int c0 : rep(e + 1)) {
// 0 に c0 個挿入する
if (c0 < e) {
for (int i : rep1(k)) {
// (0, i) には挿入しない、i には 1 個以上挿入する
// e-c0-1 個を [i, k] の k-i+1 箇所に分割する
nf[c0 + i] += f[k] * comb.multiset(k - i + 1, e - c0 - 1);
}
} else {
// 0 only
nf[c0 + k] += f[k];
}
}
}
f = move(nf);
}
Fp ans = ALL(accumulate, f, Fp(0));
print(ans);
}
} // namespace
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
}
#else // __INCLUDE_LEVEL__
#include <bits/stdc++.h>
using namespace std;
#define ALL(f, r, ...) [&](auto&& _) { return f(begin(_), end(_), ##__VA_ARGS__); }(r)
template <class T>
vector<T> make_vector_for_overwrite(int n) {
static_assert(is_trivially_destructible_v<T>);
vector<T> v;
v.reserve(n);
auto p = (T**)&v;
p[1] = p[2];
return v;
}
template <class T>
class Comb {
public:
Comb() = default;
explicit Comb(int max_n)
: fact_(make_vector_for_overwrite<T>(max_n + 1)),
recip_fact_(make_vector_for_overwrite<T>(max_n + 1)) {
fact_[0] = 1;
for (int n = 1; n <= max_n; ++n) {
fact_[n] = fact_[n - 1] * n;
}
recip_fact_[max_n] = 1 / fact_[max_n];
for (int n = max_n; 1 <= n; --n) {
recip_fact_[n - 1] = n * recip_fact_[n];
}
}
T recip(int n) const {
assert(n);
return n < 0 ? -recip(-n) : recip_fact_[n] * fact_[n - 1];
}
T fact(int n) const {
assert(0 <= n);
return fact_[n];
}
T recip_fact(int n) const { return n < 0 ? 0 : recip_fact_[n]; }
T falling_fact(int n, int k) const {
assert(0 <= n || n < k);
if (n < 0) {
T t = falling_fact(k - n - 1, k);
return k & 1 ? -t : t;
}
return n < k ? 0 : recip_fact(n - k) * fact(n);
}
T recip_falling_fact(int n, int k) const {
assert(n < 0 || k <= n);
return falling_fact(n - k, -k);
}
T rising_fact(int n, int k) const {
assert(n <= 0 || 0 < n + k);
return falling_fact(n + k - 1, k);
}
T recip_rising_fact(int n, int k) const {
assert(0 < n || n + k <= 0);
return falling_fact(n - 1, -k);
}
T binom(int n, int k) const {
if ((n < 0) ^ (k < 0) ^ (n < k)) {
return 0;
}
if (n < 0 && k < 0) {
k = n - k;
}
return recip_fact(k) * falling_fact(n, k);
}
T recip_binom(int n, int k) const {
assert((0 <= n) ^ (0 <= k) ^ (k <= n));
k = max(k, n - k);
return recip_falling_fact(n, k) * fact(k);
}
T multiset(int n, int k) const { return binom(n + k - 1, k); }
T recip_multiset(int n, int k) const {
assert((0 < n) ^ (0 <= k) ^ (0 < n + k));
return recip_binom(n + k - 1, k);
}
private:
vector<T> fact_;
vector<T> recip_fact_;
};
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m,
unsigned long long a, unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
template <class T>
concept tuple_like = __is_tuple_like<T>::value && !ranges::range<T>;
template <class R>
concept nstr_range = ranges::range<R> && !convertible_to<R, string_view>;
namespace std {
istream& operator>>(istream& is, tuple_like auto&& t) {
return apply([&is](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
istream& operator>>(istream& is, nstr_range auto&& r) {
for (auto&& e : r) {
is >> e;
}
return is;
}
ostream& operator<<(ostream& os, tuple_like auto&& t) {
auto f = [&os](auto&... xs) -> ostream& {
[[maybe_unused]] auto sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
ostream& operator<<(ostream& os, nstr_range auto&& r) {
auto sep = "";
for (auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
#define DEF_INC_OR_DEC(op) \
auto& operator op(tuple_like auto&& t) { \
apply([](auto&... xs) { (op xs, ...); }, t); \
return t; \
} \
auto& operator op(nstr_range auto&& r) { \
for (auto&& e : r) { \
op e; \
} \
return r; \
}
DEF_INC_OR_DEC(++)
DEF_INC_OR_DEC(--)
#undef DEF_INC_OR_DEC
} // namespace std
namespace atcoder {
template <class T, internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
return os << x.val();
}
} // namespace atcoder
void scan(auto&&... xs) { cin >> tie(xs...); }
void print(auto&&... xs) { cout << tie(xs...) << '\n'; }
using views::drop;
using views::take;
inline constexpr auto rev = views::reverse;
inline constexpr auto len = ranges::ssize;
inline auto rep(int l, int r) { return views::iota(min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
#endif // __INCLUDE_LEVEL__
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3500kb
input:
4 1 1 1 1
output:
14
result:
ok 1 number(s): "14"
Test #2:
score: 0
Accepted
time: 225ms
memory: 3624kb
input:
300 0 5 2 2 1 0 3 2 2 5 2 1 1 2 1 3 2 3 2 0 0 0 0 1 2 2 3 0 2 2 3 2 0 2 3 0 6 0 0 2 0 1 3 2 1 1 1 3 4 0 1 0 4 1 1 1 1 1 1 2 3 2 1 2 3 2 3 0 5 3 3 2 0 1 1 0 2 1 1 2 0 0 2 1 1 3 2 2 1 2 1 3 0 3 0 1 2 2 0 5 0 2 2 0 0 0 1 2 1 4 2 1 1 0 3 0 2 0 3 1 1 2 0 2 1 1 0 2 0 1 2 2 3 3 1 1 1 1 0 1 3 3 1 0 2 2 4 2 ...
output:
507010274
result:
ok 1 number(s): "507010274"
Test #3:
score: 0
Accepted
time: 216ms
memory: 3568kb
input:
500 1 1 0 2 1 0 2 3 2 0 0 2 0 2 1 1 0 0 1 1 1 2 1 1 1 0 1 1 2 2 1 4 0 2 1 0 2 3 1 0 1 1 0 2 1 2 2 1 0 0 3 1 4 1 1 2 1 1 0 1 3 1 2 0 0 0 2 1 2 0 0 3 2 1 1 1 1 1 2 1 0 1 0 0 0 1 0 0 2 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 2 1 1 0 1 1 0 1 1 0 0 1 0 3 1 3 0 0 2 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 ...
output:
7590964
result:
ok 1 number(s): "7590964"
Test #4:
score: 0
Accepted
time: 236ms
memory: 3500kb
input:
200 3 1 0 3 2 1 0 3 1 1 2 3 3 1 6 2 1 3 2 1 1 2 1 2 1 5 2 2 3 4 0 4 2 1 2 2 0 2 3 1 2 3 6 3 2 3 2 2 4 2 7 2 1 5 1 9 0 4 4 8 3 3 3 1 3 0 2 2 8 1 3 5 4 3 0 6 1 6 1 3 4 2 2 1 1 4 4 4 1 0 4 3 4 3 3 0 3 2 0 0 3 4 0 3 1 3 2 4 3 2 0 3 2 2 3 2 2 2 1 2 2 1 0 2 0 3 1 3 5 1 3 3 6 5 3 2 2 2 3 6 2 0 5 2 2 2 2 1 ...
output:
507844569
result:
ok 1 number(s): "507844569"
Test #5:
score: 0
Accepted
time: 52ms
memory: 3488kb
input:
100 4 8 2 5 4 4 3 0 2 7 2 3 4 4 1 2 3 4 4 4 3 3 3 3 3 2 4 1 3 5 5 1 4 6 1 1 1 3 2 3 2 1 0 1 4 4 2 4 2 5 3 5 1 6 2 3 3 1 4 4 4 1 4 4 3 4 2 0 2 3 6 1 3 3 5 4 1 1 2 3 0 3 2 2 1 3 3 2 5 6 3 2 3 3 5 4 2 3 4 4
output:
989550242
result:
ok 1 number(s): "989550242"
Test #6:
score: 0
Accepted
time: 1ms
memory: 3548kb
input:
1 1
output:
1
result:
ok 1 number(s): "1"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3568kb
input:
500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
output:
1
result:
ok 1 number(s): "1"
Test #8:
score: 0
Accepted
time: 1ms
memory: 3452kb
input:
10 2 1 3 3 2 3 1 1 3 1
output:
165452340
result:
ok 1 number(s): "165452340"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3496kb
input:
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
output:
2
result:
ok 1 number(s): "2"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3492kb
input:
20 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0
output:
28
result:
ok 1 number(s): "28"
Test #11:
score: 0
Accepted
time: 0ms
memory: 3472kb
input:
10 1 1 1 1 1 1 1 1 1 1
output:
16796
result:
ok 1 number(s): "16796"
Test #12:
score: 0
Accepted
time: 40ms
memory: 3568kb
input:
300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
output:
431279497
result:
ok 1 number(s): "431279497"
Test #13:
score: 0
Accepted
time: 30ms
memory: 3444kb
input:
2 232 268
output:
929717758
result:
ok 1 number(s): "929717758"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3484kb
input:
1 500
output:
1
result:
ok 1 number(s): "1"
Test #15:
score: 0
Accepted
time: 129ms
memory: 3444kb
input:
3 155 180 165
output:
911108550
result:
ok 1 number(s): "911108550"
Extra Test:
score: 0
Extra Test Passed