QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#273274 | #7876. Cyclic Substrings | ucup-team987# | AC ✓ | 976ms | 465792kb | C++20 | 38.6kb | 2023-12-02 22:43:34 | 2023-12-02 22:43:34 |
Judging History
answer
/**
* date : 2023-12-02 23:43:23
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(vector<T> &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
using namespace std;
using namespace std;
using namespace std;
namespace internal {
unsigned long long non_deterministic_seed() {
unsigned long long m =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= 9845834732710364265uLL;
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }
// 64 bit の seed 値を生成 (手元では seed 固定)
// 連続で呼び出すと同じ値が何度も返ってくるので注意
// #define RANDOMIZED_SEED するとシードがランダムになる
unsigned long long seed() {
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
return deterministic_seed();
#else
return non_deterministic_seed();
#endif
}
} // namespace internal
using namespace std;
namespace internal {
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
#define ENABLE_HAS_TYPE(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<typename T::var>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
#define ENABLE_HAS_VAR(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
} // namespace internal
namespace internal {
// 整数, 整数列を 64 bit unsigned int へ移す
using u64 = unsigned long long;
using u128 = __uint128_t;
ENABLE_HAS_TYPE(first_type);
ENABLE_HAS_TYPE(second_type);
ENABLE_HAS_TYPE(iterator);
template <typename T>
u64 hash_function(const T& x) {
static u64 r = seed();
constexpr u64 z1 = 11995408973635179863ULL;
if constexpr (is_broadly_integral_v<T>) {
// Integral
return (u64(x) ^ r) * z1;
} else if constexpr (has_first_type_v<T> && has_second_type_v<T>) {
// pair
constexpr u64 z2 = 10150724397891781847ULL;
return hash_function(x.first) + hash_function(x.second) * z2;
} else if constexpr (has_iterator_v<T>) {
// Container
constexpr u64 mod = (1LL << 61) - 1;
constexpr u64 base = 950699498548472943ULL;
u64 m = 0;
for (auto& z : x) {
u64 w;
if constexpr (is_broadly_integral_v<T>) {
w = u64(z) ^ r;
} else {
w = hash_function(z);
}
u128 y = u128(m) * base + (w & mod);
m = (y & mod) + (y >> 61);
if (m >= mod) m -= mod;
}
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
} else {
static_assert([]() { return false; }());
}
}
template <typename Key>
struct HashObject {
size_t operator()(const Key& x) const { return hash_function(x); }
};
} // namespace internal
/*
@brief ハッシュ関数
*/
// 削除不可能な hashmap
//
// テンプレート引数
// fixed_size : これを true にするするとバケットサイズが固定になる
// get_hash : ハッシュ関数の指定
// 引数
// _default_value : val の初期値, この値で初期化
// _default_size :
// バケットサイズ, max(4, _default_size) 以上の 2 べきで初期化
// ただし fixed_size が true の時にしかサイズを変更できない
template <typename Key, typename Val, bool fixed_size = false,
unsigned long long (*get_hash)(const Key&) =
internal::hash_function<Key>>
struct UnerasableHashMap {
int N, occupied_num, shift;
vector<Key> keys;
vector<Val> vals;
vector<char> flag;
Val default_value;
int default_size;
// サイズを n に変更する
void init(int n, bool reset = false) {
assert(n >= 4 && (n & (n - 1)) == 0);
if constexpr (fixed_size) {
assert(reset == true);
n = N;
}
if (reset == true) {
N = n, occupied_num = 0, shift = 64 - __builtin_ctz(n);
keys.resize(n);
vals.resize(n);
flag.resize(n);
fill(begin(vals), end(vals), default_value);
fill(begin(flag), end(flag), 0);
} else {
N = n, shift = 64 - __builtin_ctz(n);
vector<Key> keys2(n);
vector<Val> vals2(n, default_value);
vector<char> flag2(n);
swap(keys, keys2), swap(vals, vals2), swap(flag, flag2);
for (int i = 0; i < (int)flag2.size(); i++) {
if (flag2[i]) {
int j = hint(keys2[i]);
keys[j] = keys2[i], vals[j] = vals2[i], flag[j] = 1;
}
}
}
}
UnerasableHashMap(const Val& _default_value = Val{}, int _default_size = 4)
: occupied_num(0), default_value(_default_value) {
if (fixed_size == false) _default_size = 4;
N = 4;
while (N < _default_size) N *= 2;
default_size = N;
init(N, true);
}
int hint(const Key& k) {
int hash = get_hash(k) >> shift;
while (flag[hash] && keys[hash] != k) hash = (hash + 1) & (N - 1);
return hash;
}
// key が i である要素への参照を返す
Val& operator[](const Key& k) {
int i = hint(k);
if (!flag[i]) {
if constexpr (fixed_size == false) {
if (occupied_num * 2 >= N) {
init(2 * N), i = hint(k);
}
}
keys[i] = k, flag[i] = 1, occupied_num++;
}
return vals[i];
}
Val get(const Key& k) {
int i = hint(k);
return flag[i] ? vals[i] : default_value;
}
// 走査, f に関数 f(key, val) を入れる
template <typename F>
void enumerate(const F f) {
for (int i = 0; i < (int)flag.size(); i++) {
if (flag[i]) f(keys[i], vals[i]);
}
}
int count(const Key& k) { return flag[hint(k)]; }
bool contain(const Key& k) { return flag[hint(k)]; }
int size() const { return occupied_num; }
void reset() { init(default_size, true); }
void clear() { init(default_size, true); }
};
template <typename T, typename F>
struct SegmentTree {
int N;
int size;
vector<T> seg;
const F f;
const T I;
SegmentTree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}
SegmentTree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }
SegmentTree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {
init(v.size());
for (int i = 0; i < (int)v.size(); i++) {
seg[i + size] = v[i];
}
build();
}
void init(int _N) {
N = _N;
size = 1;
while (size < N) size <<= 1;
seg.assign(2 * size, I);
}
void set(int k, T x) { seg[k + size] = x; }
void build() {
for (int k = size - 1; k > 0; k--) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void update(int k, T x) {
k += size;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
void add(int k, T x) {
k += size;
seg[k] += x;
while (k >>= 1) {
seg[k] = f(seg[2 * k], seg[2 * k + 1]);
}
}
// query to [a, b)
T query(int a, int b) {
T L = I, R = I;
for (a += size, b += size; a < b; a >>= 1, b >>= 1) {
if (a & 1) L = f(L, seg[a++]);
if (b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
T &operator[](const int &k) { return seg[k + size]; }
// check(a[l] * ... * a[r-1]) が true となる最大の r
// (右端まですべて true なら N を返す)
template <class C>
int max_right(int l, C check) {
assert(0 <= l && l <= N);
assert(check(I) == true);
if (l == N) return N;
l += size;
T sm = I;
do {
while (l % 2 == 0) l >>= 1;
if (!check(f(sm, seg[l]))) {
while (l < size) {
l = (2 * l);
if (check(f(sm, seg[l]))) {
sm = f(sm, seg[l]);
l++;
}
}
return l - size;
}
sm = f(sm, seg[l]);
l++;
} while ((l & -l) != l);
return N;
}
// check(a[l] * ... * a[r-1]) が true となる最小の l
// (左端まで true なら 0 を返す)
template <typename C>
int min_left(int r, C check) {
assert(0 <= r && r <= N);
assert(check(I) == true);
if (r == 0) return 0;
r += size;
T sm = I;
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(f(seg[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (check(f(seg[r], sm))) {
sm = f(seg[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = f(seg[r], sm);
} while ((r & -r) != r);
return 0;
}
};
using namespace std;
template <typename Container>
vector<int> manacher(const Container& S) {
vector<int> res(S.size());
int i = 0, j = 0;
while (i < int(S.size())) {
while (i - j >= 0 and i + j < int(S.size()) and S[i - j] == S[i + j]) j++;
res[i] = j;
int k = 1;
while (i - k >= 0 and i + k < int(S.size()) and k + res[i - k] < j)
res[i + k] = res[i - k], k++;
i += k, j -= k;
}
return res;
}
// 中心軸を固定したときの各軸に対して極大な回文を左から列挙(空文字列を含む)
template <typename Container>
vector<pair<int, int>> enumerate_palindromes(const Container& vec) {
using T = typename Container::value_type;
vector<T> v;
const int N = vec.size();
for (int i = 0; i < N - 1; i++) {
v.push_back(vec[i]);
v.push_back(-1);
}
v.push_back(vec.back());
const auto man = manacher(v);
vector<pair<int, int>> ret;
for (int i = 0; i < N * 2 - 1; i++) {
if (i & 1) {
int w = man[i] / 2;
ret.emplace_back((i + 1) / 2 - w, (i + 1) / 2 + w);
} else {
int w = (man[i] - 1) / 2;
ret.emplace_back(i / 2 - w, i / 2 + w + 1);
}
}
return ret;
}
// ret[r] : s[l, r] が回文である最小の l
template <typename Container>
vector<int> enumerate_leftmost_palindromes(const Container& vec) {
vector<int> v(vec.size(), 1);
for (auto& [l, r] : enumerate_palindromes(vec)) {
v[r - 1] = max(v[r - 1], r - l);
}
for (int i = (int)vec.size() - 2; i >= 0; i--) v[i] = max(v[i], v[i + 1] - 2);
vector<int> ret(vec.size());
for (int i = 0; i < (int)vec.size(); i++) ret[i] = i + 1 - v[i];
return ret;
}
/**
* @brief Manacher's algorithm
*/
using namespace std;
namespace internal {
using i64 = long long;
using u64 = unsigned long long;
using u128 = __uint128_t;
template <int BASE_NUM = 2>
struct Hash : array<u64, BASE_NUM> {
using array<u64, BASE_NUM>::operator[];
static constexpr int n = BASE_NUM;
Hash() : array<u64, BASE_NUM>() {}
static constexpr u64 md = (1ull << 61) - 1;
constexpr static Hash set(const i64 &a) {
Hash res;
fill(begin(res), end(res), cast(a));
return res;
}
Hash &operator+=(const Hash &r) {
for (int i = 0; i < n; i++)
if (((*this)[i] += r[i]) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator+=(const i64 &r) {
u64 s = cast(r);
for (int i = 0; i < n; i++)
if (((*this)[i] += s) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator-=(const Hash &r) {
for (int i = 0; i < n; i++)
if (((*this)[i] += md - r[i]) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator-=(const i64 &r) {
u64 s = cast(r);
for (int i = 0; i < n; i++)
if (((*this)[i] += md - s) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator*=(const Hash &r) {
for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], r[i]);
return *this;
}
Hash &operator*=(const i64 &r) {
u64 s = cast(r);
for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], s);
return *this;
}
Hash operator+(const Hash &r) { return Hash(*this) += r; }
Hash operator+(const i64 &r) { return Hash(*this) += r; }
Hash operator-(const Hash &r) { return Hash(*this) -= r; }
Hash operator-(const i64 &r) { return Hash(*this) -= r; }
Hash operator*(const Hash &r) { return Hash(*this) *= r; }
Hash operator*(const i64 &r) { return Hash(*this) *= r; }
Hash operator-() const {
Hash res;
for (int i = 0; i < n; i++) res[i] = (*this)[i] == 0 ? 0 : md - (*this)[i];
return res;
}
friend Hash pfma(const Hash &a, const Hash &b, const Hash &c) {
Hash res;
for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], c[i]);
return res;
}
friend Hash pfma(const Hash &a, const Hash &b, const i64 &c) {
Hash res;
u64 s = cast(c);
for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], s);
return res;
}
Hash pow(long long e) {
Hash a{*this}, res{Hash::set(1)};
for (; e; a *= a, e >>= 1) {
if (e & 1) res *= a;
}
return res;
}
static Hash get_basis() {
static auto rand_time =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
static mt19937_64 rng(rand_time);
Hash h;
for (int i = 0; i < n; i++) {
while (isPrimitive(h[i] = rng() % (md - 1) + 1) == false)
;
}
return h;
}
private:
static u64 modpow(u64 a, u64 b) {
u64 r = 1;
for (a %= md; b; a = modmul(a, a), b >>= 1) r = modmul(r, a);
return r;
}
static bool isPrimitive(u64 x) {
for (auto &d : vector<u64>{2, 3, 5, 7, 11, 13, 31, 41, 61, 151, 331, 1321})
if (modpow(x, (md - 1) / d) <= 1) return false;
return true;
}
static inline constexpr u64 cast(const long long &a) {
return a < 0 ? a + md : a;
}
static inline constexpr u64 modmul(const u64 &a, const u64 &b) {
u128 d = u128(a) * b;
u64 ret = (u64(d) & md) + u64(d >> 61);
return ret >= md ? ret - md : ret;
}
static inline constexpr u64 modfma(const u64 &a, const u64 &b, const u64 &c) {
u128 d = u128(a) * b + c;
u64 ret = (d >> 61) + (u64(d) & md);
return ret >= md ? ret - md : ret;
}
};
} // namespace internal
/**
* @brief ハッシュ構造体
* @docs docs/internal/internal-hash.md
*/
template <typename Str, int BASE_NUM = 2>
struct RollingHash {
using Hash = internal::Hash<BASE_NUM>;
Str data;
vector<Hash> hs, pw;
int s;
static Hash basis;
RollingHash(const Str &S = Str()) { build(S); }
void build(const Str &S) {
data = S;
s = S.size();
hs.resize(s + 1);
pw.resize(s + 1);
pw[0] = Hash::set(1);
hs[0] = Hash::set(0);
for (int i = 1; i <= s; i++) {
pw[i] = pw[i - 1] * basis;
hs[i] = pfma(hs[i - 1], basis, S[i - 1]);
}
}
Hash get(int l, int r = -1) const {
if (r == -1) r = s;
return pfma(hs[l], -pw[r - l], hs[r]);
}
// T の hash を返す
static Hash get_hash(const Str &T) {
Hash ret = Hash::set(0);
for (int i = 0; i < (int)T.size(); i++) ret = pfma(ret, basis, T[i]);
return ret;
}
// a + b の hash を返す
// 引数 : a, b, b の長さ
static Hash unite(Hash a, Hash b, long long bsize) {
return pfma(a, basis.pow(bsize), b);
}
int find(Str &T, int lower = 0) const {
auto ths = get_hash(T);
for (int i = lower; i <= s - (int)T.size(); i++)
if (ths == get(i, i + (int)T.size())) return i;
return -1;
}
static int lcp(const RollingHash &a, const RollingHash &b, int al, int bl) {
int ok = 0, ng = min(a.size() - al, b.size() - bl) + 1;
while (ok + 1 < ng) {
int med = (ok + ng) / 2;
(a.get(al, med + al) == b.get(bl, med + bl) ? ok : ng) = med;
}
return ok;
}
static int strcmp(const RollingHash &a, const RollingHash &b, int al, int bl,
int ar = -1, int br = -1) {
if (ar == -1) ar = a.size();
if (br == -1) br = b.size();
int n = min<int>({lcp(a, b, al, bl), ar - al, br - bl});
return al + n == ar ? bl + n == br ? 0 : -1
: bl + n == br ? 1
: a.data[al + n] < b.data[bl + n] ? -1
: 1;
}
int size() const { return s; }
};
template <typename Str, int BASE_NUM>
typename RollingHash<Str, BASE_NUM>::Hash RollingHash<Str, BASE_NUM>::basis =
internal::Hash<BASE_NUM>::get_basis();
using roriha = RollingHash<string, 2>;
/**
* @brief Rolling Hash
* @docs docs/string/rolling-hash.md
*/
//
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
static_assert(r * mod == 1, "this code has bugs.");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint operator+() const { return mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const {
int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
while (y > 0) {
t = x / y;
x -= t * y, u -= t * v;
tmp = x, x = y, y = tmp;
tmp = u, u = v, v = tmp;
}
return mint{u};
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
using mint = LazyMontgomeryModInt<998244353>;
using namespace Nyaan;
void q() {
ini(N);
ins(S);
auto T = S + S;
auto ps = enumerate_leftmost_palindromes(T);
trc(ps);
RollingHash<string, 1> rh{T};
UnerasableHashMap<ll, char> hm;
vp pals;
rep(i, 2 * N) {
int l = ps[i];
int r = i + 1;
if (r - l > N) continue;
auto hs = rh.get(l, r)[0];
if (hm.count(hs) == 0) {
pals.emplace_back(l, r);
hm[hs] = true;
}
}
trc(pals);
auto sa = atcoder::suffix_array(T);
auto lcp = atcoder::lcp_array(T, sa);
{
vi nsa, nlcp;
V<pl> v;
rep(i, 2 * N) {
if (sa[i] < N) {
v.emplace_back(sa[i], i);
nsa.push_back(sa[i]);
}
}
rep(j, N - 1) {
int l = v[j].se;
int r = v[j + 1].se;
int x = inf;
reg(k, l, r) amin(x, lcp[k]);
nlcp.push_back(min(N, x));
}
sa = nsa;
lcp = nlcp;
}
trc(sa);
trc(lcp);
SegmentTree seg(
lcp, [](int i, int j) { return min(i, j); }, inf);
auto invsa = mkinv(sa);
mint ans = 0;
each(p, pals) {
int l = p.fi;
int r = p.se;
int len = r - l;
int pos = invsa[l];
int x = seg.min_left(pos, [&](int z) { return z >= len; });
int y = seg.max_right(pos, [&](int z) { return z >= len; });
trc(l, r, T.substr(l, r - l), x, y);
ll f = y - x + 1;
ll g = len;
ans += mint{f} * f * g;
}
out(ans);
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3616kb
input:
5 01010
output:
39
result:
ok 1 number(s): "39"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3896kb
input:
8 66776677
output:
192
result:
ok 1 number(s): "192"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3740kb
input:
1 1
output:
1
result:
ok 1 number(s): "1"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
2 22
output:
12
result:
ok 1 number(s): "12"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3832kb
input:
2 21
output:
2
result:
ok 1 number(s): "2"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3652kb
input:
3 233
output:
10
result:
ok 1 number(s): "10"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3900kb
input:
3 666
output:
54
result:
ok 1 number(s): "54"
Test #8:
score: 0
Accepted
time: 172ms
memory: 139568kb
input:
1000000 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333...
output:
496166704
result:
ok 1 number(s): "496166704"
Test #9:
score: 0
Accepted
time: 560ms
memory: 444216kb
input:
3000000 2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222...
output:
890701718
result:
ok 1 number(s): "890701718"
Test #10:
score: 0
Accepted
time: 695ms
memory: 440176kb
input:
3000000 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999...
output:
224009870
result:
ok 1 number(s): "224009870"
Test #11:
score: 0
Accepted
time: 771ms
memory: 444308kb
input:
3000000 8989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989...
output:
51985943
result:
ok 1 number(s): "51985943"
Test #12:
score: 0
Accepted
time: 744ms
memory: 443708kb
input:
3000000 1911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911...
output:
355676465
result:
ok 1 number(s): "355676465"
Test #13:
score: 0
Accepted
time: 743ms
memory: 455804kb
input:
3000000 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777...
output:
788510374
result:
ok 1 number(s): "788510374"
Test #14:
score: 0
Accepted
time: 720ms
memory: 458832kb
input:
3000000 5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555...
output:
691884476
result:
ok 1 number(s): "691884476"
Test #15:
score: 0
Accepted
time: 976ms
memory: 457280kb
input:
3000000 0990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990...
output:
701050848
result:
ok 1 number(s): "701050848"
Test #16:
score: 0
Accepted
time: 719ms
memory: 363688kb
input:
3000000 2772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772...
output:
486861605
result:
ok 1 number(s): "486861605"
Test #17:
score: 0
Accepted
time: 928ms
memory: 465792kb
input:
3000000 4554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554...
output:
450625621
result:
ok 1 number(s): "450625621"
Test #18:
score: 0
Accepted
time: 958ms
memory: 464308kb
input:
3000000 1181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181...
output:
649551870
result:
ok 1 number(s): "649551870"
Extra Test:
score: 0
Extra Test Passed