QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#273274#7876. Cyclic Substringsucup-team987#AC ✓976ms465792kbC++2038.6kb2023-12-02 22:43:342023-12-02 22:43:34

Judging History

你现在查看的是最新测评结果

  • [2023-12-02 22:43:34]
  • 评测
  • 测评结果:AC
  • 用时:976ms
  • 内存:465792kb
  • [2023-12-02 22:43:34]
  • 提交

answer

/**
 * date   : 2023-12-02 23:43:23
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//




namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) {
        return sa_naive(s);
    }
    if (n < THRESHOLD_DOUBLING) {
        return sa_doubling(s);
    }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int>& lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) {
                sa[buf[s[v - 1]]++] = v - 1;
            }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) {
                sa[--buf[s[v - 1] + 1]] = v - 1;
            }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms_map[i] = m++;
        }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms.push_back(i);
        }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) {
                        break;
                    }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa =
            sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) {
            sorted_lms[i] = lms[rec_sa[i]];
        }
        induce(sorted_lms);
    }
    return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
    int n = int(s.size());
    if (n == 0) return {};
    std::vector<int> z(n);
    z[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        int& k = z[i];
        k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
        while (i + k < n && s[k] == s[i + k]) k++;
        if (j + z[j] < i + z[i]) j = i;
    }
    z[0] = n;
    return z;
}

std::vector<int> z_algorithm(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return z_algorithm(s2);
}

}  // namespace atcoder






using namespace std;




using namespace std;




using namespace std;

namespace internal {
unsigned long long non_deterministic_seed() {
  unsigned long long m =
      chrono::duration_cast<chrono::nanoseconds>(
          chrono::high_resolution_clock::now().time_since_epoch())
          .count();
  m ^= 9845834732710364265uLL;
  m ^= m << 24, m ^= m >> 31, m ^= m << 35;
  return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }

// 64 bit の seed 値を生成 (手元では seed 固定)
// 連続で呼び出すと同じ値が何度も返ってくるので注意
// #define RANDOMIZED_SEED するとシードがランダムになる
unsigned long long seed() {
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
  return deterministic_seed();
#else
  return non_deterministic_seed();
#endif
}

}  // namespace internal



using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
    typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
                               is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
    typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
                           true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
    typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
                           true_type, false_type>::type;

#define ENABLE_VALUE(x) \
  template <typename T> \
  constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var)                                   \
  template <class, class = void>                               \
  struct has_##var : false_type {};                            \
  template <class T>                                           \
  struct has_##var<T, void_t<typename T::var>> : true_type {}; \
  template <class T>                                           \
  constexpr auto has_##var##_v = has_##var<T>::value;

#define ENABLE_HAS_VAR(var)                                     \
  template <class, class = void>                                \
  struct has_##var : false_type {};                             \
  template <class T>                                            \
  struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
  template <class T>                                            \
  constexpr auto has_##var##_v = has_##var<T>::value;

}  // namespace internal


namespace internal {
// 整数, 整数列を 64 bit unsigned int へ移す

using u64 = unsigned long long;
using u128 = __uint128_t;

ENABLE_HAS_TYPE(first_type);
ENABLE_HAS_TYPE(second_type);
ENABLE_HAS_TYPE(iterator);

template <typename T>
u64 hash_function(const T& x) {
  static u64 r = seed();
  constexpr u64 z1 = 11995408973635179863ULL;
  if constexpr (is_broadly_integral_v<T>) {
    // Integral
    return (u64(x) ^ r) * z1;
  } else if constexpr (has_first_type_v<T> && has_second_type_v<T>) {
    // pair
    constexpr u64 z2 = 10150724397891781847ULL;
    return hash_function(x.first) + hash_function(x.second) * z2;
  } else if constexpr (has_iterator_v<T>) {
    // Container
    constexpr u64 mod = (1LL << 61) - 1;
    constexpr u64 base = 950699498548472943ULL;
    u64 m = 0;
    for (auto& z : x) {
      u64 w;
      if constexpr (is_broadly_integral_v<T>) {
        w = u64(z) ^ r;
      } else {
        w = hash_function(z);
      }
      u128 y = u128(m) * base + (w & mod);
      m = (y & mod) + (y >> 61);
      if (m >= mod) m -= mod;
    }
    m ^= m << 24, m ^= m >> 31, m ^= m << 35;
    return m;
  } else {
    static_assert([]() { return false; }());
  }
}

template <typename Key>
struct HashObject {
  size_t operator()(const Key& x) const { return hash_function(x); }
};

}  // namespace internal

/*
@brief ハッシュ関数
*/

// 削除不可能な hashmap
//
// テンプレート引数
// fixed_size : これを true にするするとバケットサイズが固定になる
// get_hash : ハッシュ関数の指定
// 引数
// _default_value : val の初期値, この値で初期化
// _default_size :
// バケットサイズ, max(4, _default_size) 以上の 2 べきで初期化
// ただし fixed_size が true の時にしかサイズを変更できない

template <typename Key, typename Val, bool fixed_size = false,
          unsigned long long (*get_hash)(const Key&) =
              internal::hash_function<Key>>
struct UnerasableHashMap {
  int N, occupied_num, shift;
  vector<Key> keys;
  vector<Val> vals;
  vector<char> flag;

  Val default_value;
  int default_size;

  // サイズを n に変更する
  void init(int n, bool reset = false) {
    assert(n >= 4 && (n & (n - 1)) == 0);
    if constexpr (fixed_size) {
      assert(reset == true);
      n = N;
    }
    if (reset == true) {
      N = n, occupied_num = 0, shift = 64 - __builtin_ctz(n);
      keys.resize(n);
      vals.resize(n);
      flag.resize(n);
      fill(begin(vals), end(vals), default_value);
      fill(begin(flag), end(flag), 0);
    } else {
      N = n, shift = 64 - __builtin_ctz(n);
      vector<Key> keys2(n);
      vector<Val> vals2(n, default_value);
      vector<char> flag2(n);
      swap(keys, keys2), swap(vals, vals2), swap(flag, flag2);
      for (int i = 0; i < (int)flag2.size(); i++) {
        if (flag2[i]) {
          int j = hint(keys2[i]);
          keys[j] = keys2[i], vals[j] = vals2[i], flag[j] = 1;
        }
      }
    }
  }

  UnerasableHashMap(const Val& _default_value = Val{}, int _default_size = 4)
      : occupied_num(0), default_value(_default_value) {
    if (fixed_size == false) _default_size = 4;
    N = 4;
    while (N < _default_size) N *= 2;
    default_size = N;
    init(N, true);
  }

  int hint(const Key& k) {
    int hash = get_hash(k) >> shift;
    while (flag[hash] && keys[hash] != k) hash = (hash + 1) & (N - 1);
    return hash;
  }

  // key が i である要素への参照を返す
  Val& operator[](const Key& k) {
    int i = hint(k);
    if (!flag[i]) {
      if constexpr (fixed_size == false) {
        if (occupied_num * 2 >= N) {
          init(2 * N), i = hint(k);
        }
      }
      keys[i] = k, flag[i] = 1, occupied_num++;
    }
    return vals[i];
  }

  Val get(const Key& k) {
    int i = hint(k);
    return flag[i] ? vals[i] : default_value;
  }

  // 走査, f に関数 f(key, val) を入れる
  template <typename F>
  void enumerate(const F f) {
    for (int i = 0; i < (int)flag.size(); i++) {
      if (flag[i]) f(keys[i], vals[i]);
    }
  }

  int count(const Key& k) { return flag[hint(k)]; }
  bool contain(const Key& k) { return flag[hint(k)]; }
  int size() const { return occupied_num; }
  void reset() { init(default_size, true); }
  void clear() { init(default_size, true); }
};




template <typename T, typename F>
struct SegmentTree {
  int N;
  int size;
  vector<T> seg;
  const F f;
  const T I;

  SegmentTree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {}

  SegmentTree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); }

  SegmentTree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) {
    init(v.size());
    for (int i = 0; i < (int)v.size(); i++) {
      seg[i + size] = v[i];
    }
    build();
  }

  void init(int _N) {
    N = _N;
    size = 1;
    while (size < N) size <<= 1;
    seg.assign(2 * size, I);
  }

  void set(int k, T x) { seg[k + size] = x; }

  void build() {
    for (int k = size - 1; k > 0; k--) {
      seg[k] = f(seg[2 * k], seg[2 * k + 1]);
    }
  }

  void update(int k, T x) {
    k += size;
    seg[k] = x;
    while (k >>= 1) {
      seg[k] = f(seg[2 * k], seg[2 * k + 1]);
    }
  }

  void add(int k, T x) {
    k += size;
    seg[k] += x;
    while (k >>= 1) {
      seg[k] = f(seg[2 * k], seg[2 * k + 1]);
    }
  }

  // query to [a, b)
  T query(int a, int b) {
    T L = I, R = I;
    for (a += size, b += size; a < b; a >>= 1, b >>= 1) {
      if (a & 1) L = f(L, seg[a++]);
      if (b & 1) R = f(seg[--b], R);
    }
    return f(L, R);
  }

  T &operator[](const int &k) { return seg[k + size]; }

  // check(a[l] * ...  * a[r-1]) が true となる最大の r
  // (右端まですべて true なら N を返す)
  template <class C>
  int max_right(int l, C check) {
    assert(0 <= l && l <= N);
    assert(check(I) == true);
    if (l == N) return N;
    l += size;
    T sm = I;
    do {
      while (l % 2 == 0) l >>= 1;
      if (!check(f(sm, seg[l]))) {
        while (l < size) {
          l = (2 * l);
          if (check(f(sm, seg[l]))) {
            sm = f(sm, seg[l]);
            l++;
          }
        }
        return l - size;
      }
      sm = f(sm, seg[l]);
      l++;
    } while ((l & -l) != l);
    return N;
  }

  // check(a[l] * ... * a[r-1]) が true となる最小の l
  // (左端まで true なら 0 を返す)
  template <typename C>
  int min_left(int r, C check) {
    assert(0 <= r && r <= N);
    assert(check(I) == true);
    if (r == 0) return 0;
    r += size;
    T sm = I;
    do {
      r--;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!check(f(seg[r], sm))) {
        while (r < size) {
          r = (2 * r + 1);
          if (check(f(seg[r], sm))) {
            sm = f(seg[r], sm);
            r--;
          }
        }
        return r + 1 - size;
      }
      sm = f(seg[r], sm);
    } while ((r & -r) != r);
    return 0;
  }
};




using namespace std;

template <typename Container>
vector<int> manacher(const Container& S) {
  vector<int> res(S.size());
  int i = 0, j = 0;
  while (i < int(S.size())) {
    while (i - j >= 0 and i + j < int(S.size()) and S[i - j] == S[i + j]) j++;
    res[i] = j;
    int k = 1;
    while (i - k >= 0 and i + k < int(S.size()) and k + res[i - k] < j)
      res[i + k] = res[i - k], k++;
    i += k, j -= k;
  }
  return res;
}

// 中心軸を固定したときの各軸に対して極大な回文を左から列挙(空文字列を含む)
template <typename Container>
vector<pair<int, int>> enumerate_palindromes(const Container& vec) {
  using T = typename Container::value_type;
  vector<T> v;
  const int N = vec.size();
  for (int i = 0; i < N - 1; i++) {
    v.push_back(vec[i]);
    v.push_back(-1);
  }
  v.push_back(vec.back());
  const auto man = manacher(v);
  vector<pair<int, int>> ret;
  for (int i = 0; i < N * 2 - 1; i++) {
    if (i & 1) {
      int w = man[i] / 2;
      ret.emplace_back((i + 1) / 2 - w, (i + 1) / 2 + w);
    } else {
      int w = (man[i] - 1) / 2;
      ret.emplace_back(i / 2 - w, i / 2 + w + 1);
    }
  }
  return ret;
}

// ret[r] : s[l, r] が回文である最小の l
template <typename Container>
vector<int> enumerate_leftmost_palindromes(const Container& vec) {
  vector<int> v(vec.size(), 1);
  for (auto& [l, r] : enumerate_palindromes(vec)) {
    v[r - 1] = max(v[r - 1], r - l);
  }
  for (int i = (int)vec.size() - 2; i >= 0; i--) v[i] = max(v[i], v[i + 1] - 2);
  vector<int> ret(vec.size());
  for (int i = 0; i < (int)vec.size(); i++) ret[i] = i + 1 - v[i];
  return ret;
}

/**
 * @brief Manacher's algorithm
 */





using namespace std;



namespace internal {
using i64 = long long;
using u64 = unsigned long long;
using u128 = __uint128_t;

template <int BASE_NUM = 2>
struct Hash : array<u64, BASE_NUM> {
  using array<u64, BASE_NUM>::operator[];
  static constexpr int n = BASE_NUM;

  Hash() : array<u64, BASE_NUM>() {}

  static constexpr u64 md = (1ull << 61) - 1;

  constexpr static Hash set(const i64 &a) {
    Hash res;
    fill(begin(res), end(res), cast(a));
    return res;
  }
  Hash &operator+=(const Hash &r) {
    for (int i = 0; i < n; i++)
      if (((*this)[i] += r[i]) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator+=(const i64 &r) {
    u64 s = cast(r);
    for (int i = 0; i < n; i++)
      if (((*this)[i] += s) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator-=(const Hash &r) {
    for (int i = 0; i < n; i++)
      if (((*this)[i] += md - r[i]) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator-=(const i64 &r) {
    u64 s = cast(r);
    for (int i = 0; i < n; i++)
      if (((*this)[i] += md - s) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator*=(const Hash &r) {
    for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], r[i]);
    return *this;
  }
  Hash &operator*=(const i64 &r) {
    u64 s = cast(r);
    for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], s);
    return *this;
  }

  Hash operator+(const Hash &r) { return Hash(*this) += r; }
  Hash operator+(const i64 &r) { return Hash(*this) += r; }
  Hash operator-(const Hash &r) { return Hash(*this) -= r; }
  Hash operator-(const i64 &r) { return Hash(*this) -= r; }
  Hash operator*(const Hash &r) { return Hash(*this) *= r; }
  Hash operator*(const i64 &r) { return Hash(*this) *= r; }
  Hash operator-() const {
    Hash res;
    for (int i = 0; i < n; i++) res[i] = (*this)[i] == 0 ? 0 : md - (*this)[i];
    return res;
  }
  friend Hash pfma(const Hash &a, const Hash &b, const Hash &c) {
    Hash res;
    for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], c[i]);
    return res;
  }
  friend Hash pfma(const Hash &a, const Hash &b, const i64 &c) {
    Hash res;
    u64 s = cast(c);
    for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], s);
    return res;
  }

  Hash pow(long long e) {
    Hash a{*this}, res{Hash::set(1)};
    for (; e; a *= a, e >>= 1) {
      if (e & 1) res *= a;
    }
    return res;
  }

  static Hash get_basis() {
    static auto rand_time =
        chrono::duration_cast<chrono::nanoseconds>(
            chrono::high_resolution_clock::now().time_since_epoch())
            .count();
    static mt19937_64 rng(rand_time);
    Hash h;
    for (int i = 0; i < n; i++) {
      while (isPrimitive(h[i] = rng() % (md - 1) + 1) == false)
        ;
    }
    return h;
  }

 private:
  static u64 modpow(u64 a, u64 b) {
    u64 r = 1;
    for (a %= md; b; a = modmul(a, a), b >>= 1) r = modmul(r, a);
    return r;
  }
  static bool isPrimitive(u64 x) {
    for (auto &d : vector<u64>{2, 3, 5, 7, 11, 13, 31, 41, 61, 151, 331, 1321})
      if (modpow(x, (md - 1) / d) <= 1) return false;
    return true;
  }
  static inline constexpr u64 cast(const long long &a) {
    return a < 0 ? a + md : a;
  }
  static inline constexpr u64 modmul(const u64 &a, const u64 &b) { 
    u128 d = u128(a) * b;
    u64 ret = (u64(d) & md) + u64(d >> 61);
    return ret >= md ? ret - md : ret;
  }
  static inline constexpr u64 modfma(const u64 &a, const u64 &b, const u64 &c) {
    u128 d = u128(a) * b + c;
    u64 ret = (d >> 61) + (u64(d) & md);
    return ret >= md ? ret - md : ret;
  }
};

}  // namespace internal

/**
 * @brief ハッシュ構造体
 * @docs docs/internal/internal-hash.md
 */


template <typename Str, int BASE_NUM = 2>
struct RollingHash {
  using Hash = internal::Hash<BASE_NUM>;
  Str data;
  vector<Hash> hs, pw;
  int s;
  static Hash basis;

  RollingHash(const Str &S = Str()) { build(S); }

  void build(const Str &S) {
    data = S;
    s = S.size();
    hs.resize(s + 1);
    pw.resize(s + 1);
    pw[0] = Hash::set(1);
    hs[0] = Hash::set(0);
    for (int i = 1; i <= s; i++) {
      pw[i] = pw[i - 1] * basis;
      hs[i] = pfma(hs[i - 1], basis, S[i - 1]);
    }
  }

  Hash get(int l, int r = -1) const {
    if (r == -1) r = s;
    return pfma(hs[l], -pw[r - l], hs[r]);
  }

  // T の hash を返す
  static Hash get_hash(const Str &T) {
    Hash ret = Hash::set(0);
    for (int i = 0; i < (int)T.size(); i++) ret = pfma(ret, basis, T[i]);
    return ret;
  }

  // a + b の hash を返す
  // 引数 : a, b, b の長さ
  static Hash unite(Hash a, Hash b, long long bsize) {
    return pfma(a, basis.pow(bsize), b);
  }

  int find(Str &T, int lower = 0) const {
    auto ths = get_hash(T);
    for (int i = lower; i <= s - (int)T.size(); i++)
      if (ths == get(i, i + (int)T.size())) return i;
    return -1;
  }

  static int lcp(const RollingHash &a, const RollingHash &b, int al, int bl) {
    int ok = 0, ng = min(a.size() - al, b.size() - bl) + 1;
    while (ok + 1 < ng) {
      int med = (ok + ng) / 2;
      (a.get(al, med + al) == b.get(bl, med + bl) ? ok : ng) = med;
    }
    return ok;
  }

  static int strcmp(const RollingHash &a, const RollingHash &b, int al, int bl,
                    int ar = -1, int br = -1) {
    if (ar == -1) ar = a.size();
    if (br == -1) br = b.size();
    int n = min<int>({lcp(a, b, al, bl), ar - al, br - bl});
    return al + n == ar                      ? bl + n == br ? 0 : -1
           : bl + n == br                    ? 1
           : a.data[al + n] < b.data[bl + n] ? -1
                                             : 1;
  }

  int size() const { return s; }
};

template <typename Str, int BASE_NUM>
typename RollingHash<Str, BASE_NUM>::Hash RollingHash<Str, BASE_NUM>::basis =
    internal::Hash<BASE_NUM>::get_basis();
using roriha = RollingHash<string, 2>;

/**
 * @brief Rolling Hash
 * @docs docs/string/rolling-hash.md
 */


//


template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};


using mint = LazyMontgomeryModInt<998244353>;
using namespace Nyaan;

void q() {
  ini(N);
  ins(S);

  auto T = S + S;
  auto ps = enumerate_leftmost_palindromes(T);
  trc(ps);

  RollingHash<string, 1> rh{T};
  UnerasableHashMap<ll, char> hm;

  vp pals;
  rep(i, 2 * N) {
    int l = ps[i];
    int r = i + 1;
    if (r - l > N) continue;
    auto hs = rh.get(l, r)[0];
    if (hm.count(hs) == 0) {
      pals.emplace_back(l, r);
      hm[hs] = true;
    }
  }
  trc(pals);
  auto sa = atcoder::suffix_array(T);
  auto lcp = atcoder::lcp_array(T, sa);
  {
    vi nsa, nlcp;
    V<pl> v;
    rep(i, 2 * N) {
      if (sa[i] < N) {
        v.emplace_back(sa[i], i);
        nsa.push_back(sa[i]);
      }
    }
    rep(j, N - 1) {
      int l = v[j].se;
      int r = v[j + 1].se;
      int x = inf;
      reg(k, l, r) amin(x, lcp[k]);
      nlcp.push_back(min(N, x));
    }
    sa = nsa;
    lcp = nlcp;
  }
  trc(sa);
  trc(lcp);

  SegmentTree seg(
      lcp, [](int i, int j) { return min(i, j); }, inf);

  auto invsa = mkinv(sa);

  mint ans = 0;
  each(p, pals) {
    int l = p.fi;
    int r = p.se;
    int len = r - l;
    int pos = invsa[l];
    int x = seg.min_left(pos, [&](int z) { return z >= len; });
    int y = seg.max_right(pos, [&](int z) { return z >= len; });
    trc(l, r, T.substr(l, r - l), x, y);

    ll f = y - x + 1;
    ll g = len;
    ans += mint{f} * f * g;
  }
  out(ans);
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3616kb

input:

5
01010

output:

39

result:

ok 1 number(s): "39"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3896kb

input:

8
66776677

output:

192

result:

ok 1 number(s): "192"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3740kb

input:

1
1

output:

1

result:

ok 1 number(s): "1"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3736kb

input:

2
22

output:

12

result:

ok 1 number(s): "12"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3832kb

input:

2
21

output:

2

result:

ok 1 number(s): "2"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3652kb

input:

3
233

output:

10

result:

ok 1 number(s): "10"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3900kb

input:

3
666

output:

54

result:

ok 1 number(s): "54"

Test #8:

score: 0
Accepted
time: 172ms
memory: 139568kb

input:

1000000
3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333...

output:

496166704

result:

ok 1 number(s): "496166704"

Test #9:

score: 0
Accepted
time: 560ms
memory: 444216kb

input:

3000000
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222...

output:

890701718

result:

ok 1 number(s): "890701718"

Test #10:

score: 0
Accepted
time: 695ms
memory: 440176kb

input:

3000000
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999...

output:

224009870

result:

ok 1 number(s): "224009870"

Test #11:

score: 0
Accepted
time: 771ms
memory: 444308kb

input:

3000000
8989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989...

output:

51985943

result:

ok 1 number(s): "51985943"

Test #12:

score: 0
Accepted
time: 744ms
memory: 443708kb

input:

3000000
1911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911...

output:

355676465

result:

ok 1 number(s): "355676465"

Test #13:

score: 0
Accepted
time: 743ms
memory: 455804kb

input:

3000000
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777...

output:

788510374

result:

ok 1 number(s): "788510374"

Test #14:

score: 0
Accepted
time: 720ms
memory: 458832kb

input:

3000000
5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555...

output:

691884476

result:

ok 1 number(s): "691884476"

Test #15:

score: 0
Accepted
time: 976ms
memory: 457280kb

input:

3000000
0990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990...

output:

701050848

result:

ok 1 number(s): "701050848"

Test #16:

score: 0
Accepted
time: 719ms
memory: 363688kb

input:

3000000
2772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772...

output:

486861605

result:

ok 1 number(s): "486861605"

Test #17:

score: 0
Accepted
time: 928ms
memory: 465792kb

input:

3000000
4554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554...

output:

450625621

result:

ok 1 number(s): "450625621"

Test #18:

score: 0
Accepted
time: 958ms
memory: 464308kb

input:

3000000
1181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181...

output:

649551870

result:

ok 1 number(s): "649551870"

Extra Test:

score: 0
Extra Test Passed