QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#273268#7876. Cyclic Substringsucup-team133#AC ✓622ms908968kbC++2324.2kb2023-12-02 22:37:522023-12-02 22:37:52

Judging History

你现在查看的是最新测评结果

  • [2023-12-02 22:37:52]
  • 评测
  • 测评结果:AC
  • 用时:622ms
  • 内存:908968kb
  • [2023-12-02 22:37:52]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

namespace hash_impl {

static constexpr unsigned long long mod = (1ULL << 61) - 1;

struct modint {
    modint() : _v(0) {}
    modint(unsigned long long v) {
        v = (v >> 61) + (v & mod);
        if (v >= mod) v -= mod;
        _v = v;
    }

    unsigned long long val() const { return _v; }

    modint& operator+=(const modint& rhs) {
        _v += rhs._v;
        if (_v >= mod) _v -= mod;
        return *this;
    }
    modint& operator-=(const modint& rhs) {
        if (_v < rhs._v) _v += mod;
        _v -= rhs._v;
        return *this;
    }
    modint& operator*=(const modint& rhs) {
        __uint128_t t = __uint128_t(_v) * rhs._v;
        t = (t >> 61) + (t & mod);
        if (t >= mod) t -= mod;
        _v = t;
        return *this;
    }
    modint& operator/=(const modint& rhs) { return *this = *this * rhs.inv(); }

    modint operator-() const { return modint() - *this; }

    modint pow(long long n) const {
        assert(0 <= n);
        modint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    modint inv() const { return pow(mod - 2); }

    friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs) += rhs; }
    friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs) -= rhs; }
    friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs) *= rhs; }
    friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs) /= rhs; }
    friend bool operator==(const modint& lhs, const modint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const modint& lhs, const modint& rhs) { return lhs._v != rhs._v; }
    friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs._v; }

  private:
    unsigned long long _v;
};

uint64_t generate_base() {
    std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
    std::uniform_int_distribution<uint64_t> rand(2, mod - 1);
    return rand(mt);
}

modint base(generate_base());
std::vector<modint> power{1};

modint get_pow(int n) {
    if (n < int(power.size())) return power[n];
    int m = power.size();
    power.resize(n + 1);
    for (int i = m; i <= n; i++) power[i] = power[i - 1] * base;
    return power[n];
}

};  // namespace hash_impl

struct Hash {
    using mint = hash_impl::modint;
    mint x;
    int len;

    Hash() : x(0), len(0) {}
    Hash(mint x, int len) : x(x), len(len) {}

    Hash& operator+=(const Hash& rhs) {
        x = x * hash_impl::get_pow(rhs.len) + rhs.x;
        len += rhs.len;
        return *this;
    }
    Hash operator+(const Hash& rhs) { return *this += rhs; }
    bool operator==(const Hash& rhs) { return x == rhs.x and len == rhs.len; }
};

struct ReversibleHash {
    using mint = hash_impl::modint;
    mint x, rx;
    int len;

    ReversibleHash() : x(0), rx(0), len(0) {}
    ReversibleHash(mint x) : x(x), rx(x), len(1) {}
    ReversibleHash(mint x, mint rx, int len) : x(x), rx(rx), len(len) {}

    ReversibleHash rev() const { return ReversibleHash(rx, x, len); }

    ReversibleHash operator+=(const ReversibleHash& rhs) {
        x = x * hash_impl::get_pow(rhs.len) + rhs.x;
        rx = rx + rhs.rx * hash_impl::get_pow(len);
        len += rhs.len;
        return *this;
    }
    ReversibleHash operator+(const ReversibleHash& rhs) { return *this += rhs; }
    bool operator==(const ReversibleHash& rhs) { return x == rhs.x and rx == rhs.rx and len == rhs.len; }
};

std::vector<int> Manacher(const std::string& s) {
    int n = s.size();
    std::vector<int> res(n);
    for (int i = 0, j = 0; i < n;) {
        while (i - j >= 0 and i + j < n and s[i - j] == s[i + j]) j++;
        res[i] = j;
        int k = 1;
        while (i - k >= 0 and i + k < n and k + res[i - k] < j) res[i + k] = res[i - k], k++;
        i += k;
        j -= k;
    }
    return res;
}

std::vector<int> PalindromeTable(const std::string& s) {
    int n = s.size();
    std::string t(n * 2 + 1, '$');
    for (int i = 0; i < n; i++) t[i * 2 + 1] = s[i];
    std::vector<int> v = Manacher(t), res;
    for (int i = 1; i < n * 2; i++) res.emplace_back(v[i] - 1);
    return res;
}

struct RollingHash {
    using mint = hash_impl::modint;

    RollingHash() : power{mint(1)} {}

    template <typename T> std::vector<mint> build(const T& s) const {
        int n = s.size();
        std::vector<mint> hash(n + 1);
        hash[0] = 0;
        for (int i = 0; i < n; i++) hash[i + 1] = hash[i] * base + s[i];
        return hash;
    }

    template <typename T> mint get(const T& s) const {
        mint res = 0;
        for (const auto& x : s) res = res * base + x;
        return res;
    }

    mint query(const std::vector<mint>& hash, int l, int r) {
        assert(0 <= l && l <= r);
        extend(r - l);
        return hash[r] - hash[l] * power[r - l];
    }

    mint combine(mint h1, mint h2, int h2_len) {
        extend(h2_len);
        return h1 * power[h2_len] + h2;
    }

    int lcp(const std::vector<mint>& a, int l1, int r1, const std::vector<mint>& b, int l2, int r2) {
        int len = std::min(r1 - l1, r2 - l2);
        int lb = 0, ub = len + 1;
        while (ub - lb > 1) {
            int mid = (lb + ub) >> 1;
            (query(a, l1, l1 + mid) == query(b, l2, l2 + mid) ? lb : ub) = mid;
        }
        return lb;
    }

  private:
    const mint base = hash_impl::base;
    std::vector<mint> power;

    inline void extend(int len) {
        if (int(power.size()) > len) return;
        int pre = power.size();
        power.resize(len + 1);
        for (int i = pre - 1; i < len; i++) power[i + 1] = power[i] * base;
    }
};

using namespace std;

typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};

template <class T> istream& operator>>(istream& is, vector<T>& v) {
    for (auto& x : v) is >> x;
    return is;
}

template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
    auto sep = "";
    for (const auto& x : v) os << exchange(sep, " ") << x;
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }

template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }

template <class T> void mkuni(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }

using mint = atcoder::modint998244353;
using ull = unsigned long long;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n;
    cin >> n;
    string S;
    cin >> S;

    string T = S + S;
    auto table = PalindromeTable(T);
    vector<map<ull, pair<int, int>>> representative(n + 1);
    vector<map<ull, mint>> cnt(n + 1);
    RollingHash RH;
    auto hash = RH.build(T);
    for (int i = 0, j = 0; i < 2 * n; i++, j += 2) {  // i が中心
        int len = table[j];
        assert(len & 1);
        len = min(n, len);
        if (~len & 1) len--;
        {
            int l = i - len / 2, r = l + len;
            if (l >= n) continue;
            auto enc = RH.query(hash, l, r).val();
            representative[r - l][enc] = {l, r};
            cnt[r - l][enc]++;
        }
        if (i >= n) {
            int l = n, r = 2 * i - l + 1;
            assert(r <= 2 * n);
            auto enc = RH.query(hash, l, r).val();
            representative[r - l][enc] = {l, r};
            cnt[r - l][enc]--;
        }
    }
    for (int i = 0, j = 1; i + 1 < 2 * n; i++, j += 2) {  // i, i + 1 の間が中心
        int len = table[j];
        assert(~len & 1);
        len = min(n, len);
        if (len & 1) len--;
        {
            int l = i + 1 - len / 2, r = l + len;
            if (l >= n) continue;
            auto enc = RH.query(hash, l, r).val();
            representative[r - l][enc] = {l, r};
            cnt[r - l][enc]++;
        }
        if (i >= n) {
            int l = n, r = (2 * i + 1) - l + 1;
            assert(r <= 2 * n);
            auto enc = RH.query(hash, l, r).val();
            representative[r - l][enc] = {l, r};
            cnt[r - l][enc]--;
        }
    }

    mint ans = 0;
    for (int i = n; i > 0; i--) {
        for (auto [tmp, val] : cnt[i]) {
            ans += val * val * i;
            if (i - 2 > 0) {
                auto [l, r] = representative[i][tmp];
                auto nxt = RH.query(hash, l + 1, r - 1).val();
                representative[i - 2][nxt] = {l + 1, r - 1};
                cnt[i - 2][nxt] += val;
            }
        }
    }

    cout << ans.val() << '\n';
    return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3412kb

input:

5
01010

output:

39

result:

ok 1 number(s): "39"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3484kb

input:

8
66776677

output:

192

result:

ok 1 number(s): "192"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3568kb

input:

1
1

output:

1

result:

ok 1 number(s): "1"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3428kb

input:

2
22

output:

12

result:

ok 1 number(s): "12"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3500kb

input:

2
21

output:

2

result:

ok 1 number(s): "2"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3472kb

input:

3
233

output:

10

result:

ok 1 number(s): "10"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3528kb

input:

3
666

output:

54

result:

ok 1 number(s): "54"

Test #8:

score: 0
Accepted
time: 156ms
memory: 264028kb

input:

1000000
3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333...

output:

496166704

result:

ok 1 number(s): "496166704"

Test #9:

score: 0
Accepted
time: 553ms
memory: 787904kb

input:

3000000
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222...

output:

890701718

result:

ok 1 number(s): "890701718"

Test #10:

score: 0
Accepted
time: 598ms
memory: 736912kb

input:

3000000
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999...

output:

224009870

result:

ok 1 number(s): "224009870"

Test #11:

score: 0
Accepted
time: 499ms
memory: 788040kb

input:

3000000
8989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989...

output:

51985943

result:

ok 1 number(s): "51985943"

Test #12:

score: 0
Accepted
time: 543ms
memory: 788088kb

input:

3000000
1911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911911...

output:

355676465

result:

ok 1 number(s): "355676465"

Test #13:

score: 0
Accepted
time: 602ms
memory: 882628kb

input:

3000000
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777...

output:

788510374

result:

ok 1 number(s): "788510374"

Test #14:

score: 0
Accepted
time: 622ms
memory: 908968kb

input:

3000000
5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555...

output:

691884476

result:

ok 1 number(s): "691884476"

Test #15:

score: 0
Accepted
time: 479ms
memory: 783520kb

input:

3000000
0990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990990909909909099090990990909909909099090990990909909099099090990990909909099099090990990909909099099090990909909909099099090990909909909099090990...

output:

701050848

result:

ok 1 number(s): "701050848"

Test #16:

score: 0
Accepted
time: 280ms
memory: 505864kb

input:

3000000
2772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772772727727727277272772772727727727277272772772727727277277272772772727727277277272772772727727277277272772727727727277277272772727727727277272772...

output:

486861605

result:

ok 1 number(s): "486861605"

Test #17:

score: 0
Accepted
time: 542ms
memory: 857696kb

input:

3000000
4554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554554545545545455454554554545545545455454554554545545455455454554554545545455455454554554545545455455454554545545545455455454554545545545455454554...

output:

450625621

result:

ok 1 number(s): "450625621"

Test #18:

score: 0
Accepted
time: 558ms
memory: 841820kb

input:

3000000
1181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181811811818118181181181811818118118181181181811818118118181181181811818118118181181811811818118118181181811811818118181181181811811818118181181181...

output:

649551870

result:

ok 1 number(s): "649551870"

Extra Test:

score: 0
Extra Test Passed