QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#268596#6744. SquarezijinjunAC ✓93ms3424kbC++14952b2023-11-28 18:52:582023-11-28 18:52:58

Judging History

你现在查看的是最新测评结果

  • [2023-11-28 18:52:58]
  • 评测
  • 测评结果:AC
  • 用时:93ms
  • 内存:3424kb
  • [2023-11-28 18:52:58]
  • 提交

answer

#include <bits/stdc++.h>

#define int long long
using i64 = long long;
const i64 INF = 1e12;
using PII = std::pair<int, int>;

void solve () {
	
	auto find = [](i64 x) {
		int ret = (int)(sqrt(2.0 * x) + 1.5) - 1;
    	return PII{ret, x - ret * (ret - 1) / 2};
	};
	std::function <i64(PII, PII)> work1 = [](PII x, PII y) {
		i64 ret = y.first - x.first;
		x = {x.first + ret, x.second + ret};
		if(x.second >= y.second) return ret + x.second - y.second;
		return INF;
	};
	auto work2 = [&](PII x, PII y) {
		int ret = x.second;
		x = {x.first - 1, x.first - 1};
	    return ret + work1(x, y);
	};
	
	i64 x, y;
	std::cin >> x >> y;
	
	if (x > y) {
		std::cout << x - y << '\n';
	}
	else {
		i64 ans = 0;
		auto pos1 = find(x), pos2 = find(y);
		std::cout << std::min(work1(pos1, pos2), work2(pos1, pos2)) << "\n";
	}
}

signed main() {
	int T;
	std::cin >> T;
	while (T--) {
		solve ();
	}
	return 0;
}



Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3424kb

input:

2
5 1
1 5

output:

4
3

result:

ok 2 number(s): "4 3"

Test #2:

score: 0
Accepted
time: 93ms
memory: 3424kb

input:

100000
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 31
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
1 40
1 41
1 42
1 43
1 44
1 45
1 46
1 47
1 48
1 49
1 50
1 51
1 52
1 53
1 54
1 55
1 56
1 57
1 58
1 59
1 60
1 ...

output:

0
2
1
4
3
2
6
5
4
3
8
7
6
5
4
10
9
8
7
6
5
12
11
10
9
8
7
6
14
13
12
11
10
9
8
7
16
15
14
13
12
11
10
9
8
18
17
16
15
14
13
12
11
10
9
20
19
18
17
16
15
14
13
12
11
10
22
21
20
19
18
17
16
15
14
13
12
11
24
23
22
21
20
19
18
17
16
15
14
13
12
26
25
24
23
22
21
20
19
18
1
0
2
2
1
3
4
3
2
4
6
5
4
3
5
...

result:

ok 100000 numbers