QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#263626#5421. Factories Once MoreKhNURE_KIVIWA 210ms38432kbC++2015.4kb2023-11-24 23:56:292023-11-24 23:56:29

Judging History

你现在查看的是最新测评结果

  • [2023-11-24 23:56:29]
  • 评测
  • 测评结果:WA
  • 用时:210ms
  • 内存:38432kb
  • [2023-11-24 23:56:29]
  • 提交

answer

//#pragma GCC optimize("Ofast", "unroll-loops")
//#pragma GCC target("sse", "sse2", "sse3", "ssse3", "sse4")
#ifdef LOCAL
#include <iostream>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <cstdint>
#include <cstring>
#include <string>
#include <cstdlib>
#include <vector>
#include <bitset>
#include <map>
#include <queue>
#include <ctime>
#include <stack>
#include <set>
#include <list>
#include <random>
#include <deque>
#include <functional>
#include <iomanip>
#include <sstream>
#include <fstream>
#include <complex>
#include <numeric>
#include <cassert>
#include <array>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <thread>
#else
#include <bits/stdc++.h>
#endif

#define all(a) a.begin(),a.end()
#define len(a) (int)(a.size())
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
#define fi first
#define se second

using namespace std;

typedef pair<int, int> pii;
typedef long long ll;
typedef long double ld;

template<typename T>
inline bool umin(T &a, T b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}

template<typename T>
inline bool umax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

#ifdef LOCAL
#define D for (bool _FLAG = true; _FLAG; _FLAG = false)
#define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl
template <class ...Ts> auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); }
#else
#define D while (false)
#define LOG(...)
#endif // LOCAL

const int max_n = 1e5 + 11, inf = 1000111222;


//struct point {
//    int x, y;
//};
//
//inline bool cmp (point a, point b) {
//    return a.x < b.x || a.x == b.x && a.y < b.y;
//}
//
//inline bool cw (point a, point b, point c) {
//    return a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y) < 0;
//}
//
//inline bool ccw (point a, point b, point c) {
//    return a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y) > 0;
//}
//
//void convex_hull (vector<point> & a) {
//    if (len(a) <= 1) {
//        return;
//    }
//    sort (a.begin(), a.end(), cmp);
//    point p1 = a[0],  p2 = a.back();
//    vector<point> up = {p1}, down = {p1};
//    for (int i = 1; i < len(a); i++) {
//        if (i == len(a) - 1 || cw (p1, a[i], p2)) {
//            while (len(up) >= 2 && !cw(up[len(up) - 2], up.back(), a[i])) {
//                up.pop_back();
//            }
//            up.pb(a[i]);
//        }
//        if (i == len(a) - 1 || ccw (p1, a[i], p2)) {
//            while (len(down) >= 2 && !ccw(down[len(down) - 2], down.back(), a[i])) {
//                down.pop_back();
//            }
//            down.pb(a[i]);
//        }
//    }
//    a = up;
////    for (int i = len(down) - 2; i > 0; i--) {
////        a.pb(down[i]);
////    }
//}
//
//
//
//int dp[max_n][max_n], n, k, cnt[max_n];
//
//ll area(const vector<point>& fig) {
//    ll res = 0;
//    for (unsigned i = 0; i < fig.size(); i++) {
//        point p = i ? fig[i - 1] : fig.back();
//        point q = fig[i];
//        res += (p.x - q.x) * (p.y + q.y);
//    }
//    return abs(res);
//}


//inline void dfs (int v, int p = -1) {
//    cnt[v] = 1;
//    for (auto [to, len] : edge[v]) {
//        if (to == p) {
//            continue;
//        }
//        dfs(to, v);
//        for (int i1 = k; i1 >= 0; i1--) {
//            for (int j = min(cnt[to], k - i1); j >= 0; j--) {
//                umax(dp[v][i1 + j], dp[to][j] + dp[v][i1] + len * j * (k - j));
//                if (i1 + j + 1 <= k) {
//                    umax(dp[v][i1 + j + 1], dp[to][j] + dp[v][i1] + len * j * (k - j));
//                }
//            }
//        }
//        cnt[v] += cnt[to];
//    }
//    vector <point> have;
////    LOG(cnt[v]);
//    for (int i = 0; i <= min(k, cnt[v]); i++) {
//        have.pb(point{i, dp[v][i]});
////        LOG(i, dp[v][i]);
//    }
//    auto h = have;
//    convex_hull(h);
////    LOG(len(have), len(h), area(have), area(h));
////    assert(area(have) == area(h));
//    if (area(have) != area(h)) {
//        exit(3);
//    }
//}

struct dsu {
public:
    int n;
    vector <int> p, cnt;

    inline void make_set (int v) {
        p[v] = v;
    }

    dsu (int n) : n(n) {
        p.resize(n);
        cnt.assign(n, 1);
        for (int i = 0; i < n; i++) {
            make_set(i);
        }
    }

    inline int get (int v) {
        if (p[v] == v) return v;
        return p[v] = get(p[v]); /// compressing path
    }

    inline bool unite (int a, int b) {
        a = get(a);
        b = get(b);
        if (a == b) return false;
        if (cnt[a] > cnt[b]) {
            swap(a, b);
        }
        p[a] = b;
        cnt[b] += cnt[a];
        return true;
    }
};

const int debug = 0;
vector <pii> edge[max_n];

mt19937 rng(228);
template<typename T = int>
inline T randll(T l = INT_MIN, T r = INT_MAX) {
    return uniform_int_distribution<T>(l, r)(rng);
}

inline ld randld(ld l = INT_MIN, ld r = INT_MAX) {
    return uniform_real_distribution<ld>(l, r)(rng);
}


vector <int> used;
inline int dfs (int v, int &center, int sz, int p = -1) {
    int cnt = 1;
    for (auto &i : edge[v]) {
        if (i.first != p && !used[i.first]) {
            cnt += dfs(i.first, center, sz, v);
        }
    }
    if (center == -1 && cnt + cnt > sz)
        center = v;
    return cnt;
}



struct point {
    ll x, y;
    point operator + (const point & p) const {
        return point{x + p.x, y + p.y};
    }
    point operator - (const point & p) const {
        return point{x - p.x, y - p.y};
    }
    ll cross(const point & p) const {
        return x * p.y - y * p.x;
    }
};

void reorder_polygon(vector<point> & P){
    size_t pos = 0;
    for(size_t i = 1; i < P.size(); i++){
        if(P[i].y < P[pos].y || (P[i].y == P[pos].y && P[i].x < P[pos].x))
            pos = i;
    }
    rotate(P.begin(), P.begin() + pos, P.end());
}

vector<point> minkowski(vector<point> P, vector<point> Q){
    // the first vertex must be the lowest
    reorder_polygon(P);
    reorder_polygon(Q);
    // we must ensure cyclic indexing
    P.push_back(P[0]);
    P.push_back(P[1]);
    Q.push_back(Q[0]);
    Q.push_back(Q[1]);
    // main part
    vector<point> result;
    size_t i = 0, j = 0;
    while(i < P.size() - 2 || j < Q.size() - 2){
//        LOG(i, j);
        result.push_back(P[i] + Q[j]);
        auto cross = (P[i + 1] - P[i]).cross(Q[j + 1] - Q[j]);
        if(cross >= 0 && i < P.size() - 2)
            ++i;
        if(cross <= 0 && j < Q.size() - 2)
            ++j;
    }
    return result;
}


//vector <ll> dp[max_n];
int n, k;

vector <int> GG;


//inline void convolve (int a, int b) {
//    vector <point> A(len(dp[a])), B(len(dp[b]));
//    for (int i = 0; i < len(dp[a]); i++) {
//        A[i] = point{ dp[a][i], i};
//    }
//    for (int i = 0; i < len(dp[b]); i++) {
//        B[i] = point{dp[b][i], i};
//    }
//    auto res = minkowski(A, B);
//    dp[a].resize(min(k + 1, len(A) + len(B) - 1));
//    int j = 1;
//    ll last = 0, val = 0;
//    if (res[0].y != 0 || res[0].x != 0) {
//        exit(47);
//    }
////    LOG("here");
////    for (auto &i : res) {
////        LOG(i.x, i.y);
////    }
//    for (int i = 1; i < len(res); i++) {
////        LOG(i);
////        LOG(res[i].y);
//        while (j < res[i].y && j < len(dp[a])) {
//            dp[a][j] = (j - last) * (res[i].x - val) + val * (res[i].y - last);
//            if (dp[a][j] % (res[i].y - last) != 0) {
//                exit(48);
//            }
//            dp[a][j] /= (res[i].y - last);
////            LOG(j, dp[a][j]);
//            ++j;
//        }
//        if (j < len(dp[a])) {
//            if (j != res[i].y) {
//                exit(49);
//            }
//            dp[a][j] = res[i].x;
//            ++j;
//        }
//        if (last > res[i].y) {
//            break;
//        }
//        last = res[i].y;
//        val = res[i].x;
//    }
//    LOG(len(res));
//    dp[b].clear();
////    LOG(j, len(dp[a]));
//    if (j != len(dp[a])) {
//        exit(50);
//    }
////    for (auto &kk : dp[a]) {
////        LOG(kk);
////    }
//}

//inline int calc (int l, int r) {
//    if (l == r) {
//        return GG[r];
//    }
//    int x = (l + r) >> 1;
//    int L = calc(l, x);
//    int R = calc(x + 1, r);
//    convolve(R, L);
//    return R;
//}

int cnt[max_n];

mt19937 generator;

struct treap {
    int sz, value, prior;
    treap *left, *right;
    ll push_k,push_b;
    treap(int v) {
        value = v;
        sz = 1;
        prior = generator();
        left = NULL;
        right = NULL;
        push_k=0;
        push_b=0;
    }
};

treap* make_treap_leaf_copy(treap* v)
{
    assert(v->left==0);
    assert(v->right==0);
    treap *nt = new treap(v->value);
    return nt;
}

int get_size(treap *t) {
    if (t == NULL) {
        return 0;
    }
    return t->sz;
}

void update(treap *&t) {
    if (t == NULL) {
        return;
    }
    t->sz = 1 + get_size(t->left) + get_size(t->right);
}

void add_push(treap* t,ll k,ll b)
{
    assert(t!=0);
    t->value+=get_size(t->left)*k+b;
    t->push_k+=k;
    t->push_b+=b;
}

void make_push(treap *t)
{
//    assert(t!=0);
    if (!t) return;
    if (t->left){
        add_push(t->left,t->push_k,t->push_b);
    }
    if (t->right){
        add_push(t->right,t->push_k,t->push_b+(get_size(t->left)+1)*(t->push_k));
    }
    t->push_k = 0;
    t->push_b = 0;
}

treap *merge(treap *t1, treap *t2) {
    if (t1 == NULL) {
        return t2;
    }
    if (t2 == NULL) {
        return t1;
    }
    make_push(t1);
    make_push(t2);
    if (t1->prior <= t2->prior) {
        t2->left = merge(t1, t2->left);
        update(t2);
        return t2;
    } else {
        t1->right = merge(t1->right, t2);
        update(t1);
        return t1;
    }
}

void split_size(treap *our, int sz, treap *&l, treap *&r) {
    if (our == NULL) {
        l = NULL;
        r = NULL;
        return;
    }
    make_push(our);
    if (get_size(our->left) + 1 == sz) {
        l = our;
        r = our->right;
        l->right = NULL;
    } else {
        if (get_size(our->left) >= sz) {
            r = our;
            split_size(r->left, sz, l, r->left);
        } else {
            l = our;
            split_size(l->right, sz - get_size(l->left) - 1, l->right, r);
        }
    }
    update(l);
    make_push(l);
    update(r);
    make_push(r);
}

//void add(treap *&t, int x) {
//    treap *q = new treap(x);
//    t = merge(t, q);
//}

/// >= goes l, < goes r
void explicit_split(treap *our, int key, treap *&l, treap *&r) {
    if (our == NULL) {
        l = NULL;
        r = NULL;
        return;
    }
    make_push(our);
    if (our->value < key) {
        r = our;
        explicit_split(r->left, key, l, r->left);
    } else {
        l = our;
        explicit_split(l->right, key, l->right, r);
    }
    update(l);
    update(r);
    make_push(l);
    make_push(r);
}

typedef treap* barik_set;

void add_element(barik_set&t, int x) {
    treap *nt = new treap(x);
    treap *buf1, *buf2;
    explicit_split(t, x, buf1, buf2);
    t = merge(buf1, merge(nt, buf2));
}

//void explicit_erase(treap *&t, int x) {
//    treap *buf1, *buf2, *buf3, *buf4;
//    split(t, x, buf1, buf2);
//    split(buf2, x + 1, buf3, buf4);
//    t = merge(buf1, buf4);
//}

void do_naive_dfs_merge(barik_set &A,barik_set &B)
{
    if (!A){
        return;
    }
    make_push(A);
    add_element(B,A->value);
    do_naive_dfs_merge(A->left,B);
    do_naive_dfs_merge(A->right,B);
}

barik_set merge_two_sets(barik_set A,barik_set B)
{
    if (get_size(A)<get_size(B)){
        do_naive_dfs_merge(A,B);
        return B;
    }
    else{
        do_naive_dfs_merge(B,A);
        return A;
    }
}

void barik_push_kx_plus_b(barik_set &A,ll k,ll b)
{
    add_push(A,k,b);
}

void shift_right(barik_set& A)
{
    treap *buf1, *buf2;
    explicit_split(A, 0, buf1, buf2);
//    if (buf2!=0){
//        treap* t1,*t2;
//        split_size(buf2,1,t1,t2);
//        buf2=t2;
//    }
    {
//        assert(buf1!=0);
        treap* t1 = nullptr,*t2;
        add_element(t1, 0);
        buf1 = merge(buf1, t1);
    }
    A = merge(buf1, buf2);
}

ll do_naive_dfs_sum(barik_set &A,int& k)
{
    if (!A || !k){
        return 0ll;
    }
    make_push(A);
    ll res=0;
    res+=do_naive_dfs_sum(A->left,k);
    if (k!=0){
        res+=A->value;
        k--;
    }
    res+=do_naive_dfs_sum(A->right,k);
    return res;
}

ll sum_first_k(barik_set A,int k)
{
    return do_naive_dfs_sum(A,k);
}

barik_set dp[max_n];

void print_into_cerr_dfs(barik_set A)
{
//    return;
    if (!A){
        return;
    }
    make_push(A);
    print_into_cerr_dfs(A->left);
    cerr<<A->value<<" ";
    print_into_cerr_dfs(A->right);
}

void print_into_cerr(barik_set A)
{
    return;
    cerr<<"barik set :: ";
    print_into_cerr_dfs(A);
    cerr<<"\n";
}

inline void dfs (int v, int p = -1) {
    LOG(v);
    cnt[v] = 1;
    for (auto [to, len] : edge[v]) {
        if (to == p) {
            continue;
        }
        dfs(to, v);
        LOG(to, v);
//        for (int j = 0; j < len(dp[to]); j++) {
//            dp[to][j] += len * 1ll * j * (k - j);
//        }
        ll B = k - 1;
        ll K = -2;
//        dp[to].add(K, B);
//        LOG(K * len, B * len);
        barik_push_kx_plus_b(dp[to], K * len, B * len);
//        gg.pb(to);
        cnt[v] += cnt[to];
//        dp[v].merge(dp[to]);
//        LOG(to, v, "finish 2");
        LOG("v");
        print_into_cerr(dp[v]);
        LOG("to");
        print_into_cerr(dp[to]);
        dp[v] = merge_two_sets(dp[v], dp[to]);
        LOG("merge");
        print_into_cerr(dp[v]);
//        LOG(to, v, "finish");
    }
    if (cnt[v] == 1) {
//        LOG("here");
        add_element(dp[v], 0);
//        LOG("here 2");
    }
    else {
//        dp[v].shift();
//        LOG("shift");
        shift_right(dp[v]);
//        LOG("shift 2");
    }
    LOG(v, "start");
    print_into_cerr(dp[v]);
}


int main() {
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);

    m1:
    n = 1e4;
    for (int i = 0; i <= n; i++) {
        edge[i].clear();
//        for (int j = 0; j <= n; j++) {
//            dp[i][j] = 0;
//        }
    }
    k = n;
    if (!debug) {
        cin >> n >> k;
    }
    used.resize(n);
    dsu t(n);
    LOG("here");
    for (int i = 1, u, v, w; i < n; i++) {
        if (!debug) {
            cin >> u >> v >> w;
            --u, --v;
        }
        else {
//            u = i, v = i - 1;
            w = randll(1, 100);
            u = randll(0, n - 1);
            v = randll(0, n - 1);
            while (!t.unite(u, v)) {
                u = randll(0, n - 1);
                v = randll(0, n - 1);
            }
        }
        edge[u].pb({v, w});
        edge[v].pb({u, w});
    }
    dfs(0);
    ll ans = 0;
    for (int i = 0; i < k; i++) {
        /// add a[i]
    }
    ans = sum_first_k(dp[0], k);
//    ans /= 2;
    cout << ans << '\n';
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 5804kb

input:

6 3
1 2 3
2 3 2
2 4 1
1 5 2
5 6 3

output:

22

result:

ok 1 number(s): "22"

Test #2:

score: 0
Accepted
time: 0ms
memory: 6552kb

input:

4 3
1 2 2
1 3 3
1 4 4

output:

18

result:

ok 1 number(s): "18"

Test #3:

score: 0
Accepted
time: 1ms
memory: 5768kb

input:

2 2
1 2 1

output:

1

result:

ok 1 number(s): "1"

Test #4:

score: -100
Wrong Answer
time: 210ms
memory: 38432kb

input:

100000 17
37253 35652 9892
56367 53643 1120
47896 49255 4547
93065 88999 1745
5251 6742 5031
49828 50972 8974
31548 46729 1032
56341 56287 4812
21896 22838 1682
82124 90557 7307
76289 76949 7028
33834 45380 6856
15499 15064 2265
10127 5251 9920
87208 93945 9487
68990 72637 6891
91640 85004 2259
4748...

output:

2132491886

result:

wrong answer 1st numbers differ - expected: '4915539756', found: '2132491886'