QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#259862#7754. Rolling For Daysucup-team987AC ✓420ms3972kbC++2017.1kb2023-11-21 15:24:272023-11-21 15:24:27

Judging History

你现在查看的是最新测评结果

  • [2023-11-21 15:24:27]
  • 评测
  • 测评结果:AC
  • 用时:420ms
  • 内存:3972kb
  • [2023-11-21 15:24:27]
  • 提交

answer

/**
 * date   : 2023-11-21 16:24:17
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//

/**/


template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};





using namespace std;

// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」
// を入れると倍速くらいになる
// mod を超えて前計算して 0 割りを踏むバグは対策済み
template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    if (MAX > 0) extend(MAX + 1);
  }

  void extend(int m = -1) {
    int n = f.size();
    if (m == -1) m = n * 2;
    m = min<int>(m, T::get_mod());
    if (n >= m) return;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};


//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;
/**/

/**
#include "math/bigint-all.hpp"

using mint = BigRational;
using vm = vector<mint>;
Binomial_rational<mint> C;
//*/

using namespace Nyaan;

void q() {
  ini(N, M);
  vi A(M), B(M);
  in(A, B);

  vm way(1 << M), dp(1 << M);
  
  int init = 0;
  rep(i, M) if(B[i] == 0) init += PW(i);
  way[init] = 1;

  // i 枚すでに確定
  rep(i, Sum(B)) {
    vm nway(1 << M), ndp(1 << M);
    // b が既にコンプしている
    rep(b, 1 << M) {
      // 当たりの種類のうち既に使われてるやつ
      int used = i;
      rep(j, M) if (gbit(b, j)) used -= B[j];
      if (used < 0) continue;
      // 当たりの種類のうち余っているやつ
      int atari = -used;
      rep(j, M) if (!gbit(b, j)) atari += A[j];
      assert(atari > 0);

      // 外れを引く分の寄与を足しておく
      {
        int hazure = 0;
        rep(j, M) if (gbit(b, j)) hazure += A[j] - B[j];
        dp[b] += way[b] * hazure * C.inv(atari);
      }


      nway[b] += way[b] * C.inv(atari);
      ndp[b] += dp[b] * C.inv(atari);
      rep(k, M) {
        if (gbit(b, k)) continue;
        // 今 種類 k が揃った
        mint coeff = 1;
        // used 個のうち B[k]-1 個をいい感じに選ぶ
        coeff *= C(used, B[k] - 1);
        // 種類 k から B[k] 個選ぶ
        coeff *= C.P(A[k], B[k]);

        nway[b + PW(k)] += way[b] * coeff * C.inv(atari);
        ndp[b + PW(k)] += dp[b] * coeff * C.inv(atari);
      }
    }
    swap(dp, ndp);
    swap(way, nway);

    trc(way);
    trc(dp);
  }

  out((dp.back() + Sum(B)));
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3888kb

input:

2 2
1 1
1 1

output:

2

result:

ok answer is '2'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3892kb

input:

4 2
2 2
2 1

output:

582309210

result:

ok answer is '582309210'

Test #3:

score: 0
Accepted
time: 1ms
memory: 3648kb

input:

5 5
1 1 1 1 1
0 0 0 0 1

output:

5

result:

ok answer is '5'

Test #4:

score: 0
Accepted
time: 0ms
memory: 3536kb

input:

4 4
1 1 1 1
1 1 1 0

output:

831870299

result:

ok answer is '831870299'

Test #5:

score: 0
Accepted
time: 0ms
memory: 3656kb

input:

5 2
4 1
2 1

output:

598946616

result:

ok answer is '598946616'

Test #6:

score: 0
Accepted
time: 0ms
memory: 3596kb

input:

5 2
3 2
3 1

output:

482484776

result:

ok answer is '482484776'

Test #7:

score: 0
Accepted
time: 0ms
memory: 3880kb

input:

5 5
1 1 1 1 1
0 1 1 1 0

output:

665496242

result:

ok answer is '665496242'

Test #8:

score: 0
Accepted
time: 0ms
memory: 3848kb

input:

3 3
1 1 1
1 1 0

output:

499122180

result:

ok answer is '499122180'

Test #9:

score: 0
Accepted
time: 0ms
memory: 3848kb

input:

5 5
1 1 1 1 1
1 0 1 1 1

output:

582309212

result:

ok answer is '582309212'

Test #10:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

3 2
2 1
2 0

output:

499122180

result:

ok answer is '499122180'

Test #11:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

20 5
1 6 7 2 4
0 1 3 1 4

output:

75028873

result:

ok answer is '75028873'

Test #12:

score: 0
Accepted
time: 0ms
memory: 3632kb

input:

15 5
4 2 3 4 2
2 1 1 2 1

output:

585494868

result:

ok answer is '585494868'

Test #13:

score: 0
Accepted
time: 0ms
memory: 3848kb

input:

20 4
5 4 3 8
1 2 2 3

output:

156108321

result:

ok answer is '156108321'

Test #14:

score: 0
Accepted
time: 0ms
memory: 3536kb

input:

15 2
6 9
2 8

output:

672033760

result:

ok answer is '672033760'

Test #15:

score: 0
Accepted
time: 5ms
memory: 3648kb

input:

20 12
1 2 1 1 2 4 1 3 2 1 1 1
1 0 0 1 0 0 1 0 2 0 1 1

output:

691640771

result:

ok answer is '691640771'

Test #16:

score: 0
Accepted
time: 6ms
memory: 3656kb

input:

19 12
1 1 1 2 1 2 2 1 2 4 1 1
1 1 0 1 1 0 1 1 0 2 1 0

output:

777326448

result:

ok answer is '777326448'

Test #17:

score: 0
Accepted
time: 0ms
memory: 3892kb

input:

20 2
19 1
1 1

output:

299473325

result:

ok answer is '299473325'

Test #18:

score: 0
Accepted
time: 0ms
memory: 3656kb

input:

19 2
14 5
10 1

output:

497380388

result:

ok answer is '497380388'

Test #19:

score: 0
Accepted
time: 0ms
memory: 3816kb

input:

100 5
10 25 6 19 40
0 2 4 5 11

output:

773338801

result:

ok answer is '773338801'

Test #20:

score: 0
Accepted
time: 0ms
memory: 3632kb

input:

64 5
1 12 13 33 5
1 0 1 20 0

output:

571823997

result:

ok answer is '571823997'

Test #21:

score: 0
Accepted
time: 0ms
memory: 3660kb

input:

100 4
15 38 24 23
0 20 0 1

output:

635309463

result:

ok answer is '635309463'

Test #22:

score: 0
Accepted
time: 0ms
memory: 3596kb

input:

88 5
15 25 9 19 20
8 15 9 18 17

output:

400310961

result:

ok answer is '400310961'

Test #23:

score: 0
Accepted
time: 24ms
memory: 3920kb

input:

100 12
2 2 13 9 13 7 2 1 6 15 17 13
0 0 5 7 10 7 0 1 0 0 4 4

output:

552732942

result:

ok answer is '552732942'

Test #24:

score: 0
Accepted
time: 22ms
memory: 3716kb

input:

59 12
7 6 3 5 4 6 5 2 5 6 5 5
4 5 2 5 3 6 0 2 1 0 3 3

output:

27023521

result:

ok answer is '27023521'

Test #25:

score: 0
Accepted
time: 0ms
memory: 3596kb

input:

100 3
10 60 30
0 28 21

output:

261595276

result:

ok answer is '261595276'

Test #26:

score: 0
Accepted
time: 0ms
memory: 3600kb

input:

84 2
39 45
4 23

output:

897695217

result:

ok answer is '897695217'

Test #27:

score: 0
Accepted
time: 1ms
memory: 3908kb

input:

1000 5
370 136 129 182 183
312 47 112 22 119

output:

705415872

result:

ok answer is '705415872'

Test #28:

score: 0
Accepted
time: 1ms
memory: 3652kb

input:

766 5
372 194 98 90 12
165 123 53 27 0

output:

870555094

result:

ok answer is '870555094'

Test #29:

score: 0
Accepted
time: 0ms
memory: 3552kb

input:

1000 2
374 626
175 591

output:

501708945

result:

ok answer is '501708945'

Test #30:

score: 0
Accepted
time: 0ms
memory: 3896kb

input:

701 1
701
413

output:

413

result:

ok answer is '413'

Test #31:

score: 0
Accepted
time: 385ms
memory: 3676kb

input:

1000 12
101 43 34 281 23 24 12 25 66 222 145 24
37 43 27 257 5 11 12 19 62 41 87 13

output:

265294941

result:

ok answer is '265294941'

Test #32:

score: 0
Accepted
time: 148ms
memory: 3972kb

input:

942 12
83 142 96 10 3 10 60 93 398 13 11 23
37 56 36 0 3 0 10 35 33 1 9 19

output:

956409637

result:

ok answer is '956409637'

Test #33:

score: 0
Accepted
time: 1ms
memory: 3676kb

input:

1000 4
473 65 438 24
79 61 327 24

output:

491224221

result:

ok answer is '491224221'

Test #34:

score: 0
Accepted
time: 1ms
memory: 3612kb

input:

870 4
320 17 182 351
145 0 181 4

output:

664946681

result:

ok answer is '664946681'

Test #35:

score: 0
Accepted
time: 287ms
memory: 3740kb

input:

1000 12
102 2 110 62 106 176 37 27 6 208 92 72
57 0 106 20 36 4 20 12 3 134 8 61

output:

3888811

result:

ok answer is '3888811'

Test #36:

score: 0
Accepted
time: 361ms
memory: 3620kb

input:

1000 12
1 44 209 187 27 71 127 139 134 22 20 19
0 19 153 113 27 29 82 74 37 19 20 9

output:

278584590

result:

ok answer is '278584590'

Test #37:

score: 0
Accepted
time: 250ms
memory: 3744kb

input:

1000 12
193 84 261 36 75 7 70 12 38 22 8 194
68 15 11 20 16 7 53 1 6 6 6 189

output:

704313398

result:

ok answer is '704313398'

Test #38:

score: 0
Accepted
time: 420ms
memory: 3972kb

input:

1000 12
171 135 21 74 115 3 4 122 32 70 224 29
71 120 20 66 61 2 1 102 28 0 201 3

output:

608268027

result:

ok answer is '608268027'

Test #39:

score: 0
Accepted
time: 358ms
memory: 3768kb

input:

1000 12
54 20 201 182 16 66 23 153 36 39 151 59
33 5 189 80 13 56 13 38 7 22 92 21

output:

795531860

result:

ok answer is '795531860'

Test #40:

score: 0
Accepted
time: 346ms
memory: 3972kb

input:

1000 12
218 16 12 152 67 64 65 3 90 263 44 6
107 2 2 143 11 28 53 2 55 106 39 5

output:

903827471

result:

ok answer is '903827471'

Extra Test:

score: 0
Extra Test Passed