QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#257405#7748. Karshilov's Matching Problem IIucup-team987#Compile Error//C++2311.7kb2023-11-19 03:49:522023-11-19 03:49:52

Judging History

你现在查看的是最新测评结果

  • [2024-08-25 20:42:18]
  • hack成功,自动添加数据
  • (/hack/789)
  • [2023-11-19 03:49:52]
  • 评测
  • [2023-11-19 03:49:52]
  • 提交

answer

#if __INCLUDE_LEVEL__ == 0

#include __BASE_FILE__

namespace {

void solve() {
  int n, q;
  scan(n, q);
  string s;
  scan(s);
  string t;
  scan(t);
  vector<int64_t> w(n + 1);
  scan(w | drop(1));
  w | drop(1) += w;
  vector<pair<int, int>> queries(q);
  vector<vector<int>> query_indices(n);
  for (int id : rep(q)) {
    auto& [l, r] = queries[id];
    scan(l, r);
    --l;
    query_indices[l].push_back(id);
  }

  vector<int> a(n);
  {
    const auto z = atcoder::z_algorithm(s + "#" + t);
    for (int i : rep(n)) {
      a[i] = z[n + 1 + i];
    }
  }

  vector<int64_t> ans(q);
  vector<int64_t> sum(n + 1);
  for (int i : rev(rep(n))) {
    for (int j : rep(1, a[i])) {
      sum[i + j] += w[j];
    }
    for (int r : rep1(i + a[i], n)) {
      sum[r] += w[a[i]];
    }
    for (int id : query_indices[i]) {
      ans[id] = sum[queries[id].second];
    }
  }

  for (int id : rep(q)) {
    print(ans[id]);
  }
}

}  // namespace
CE

    int
    main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  solve();
}

#else  // __INCLUDE_LEVEL__

#include <bits/stdc++.h>

using namespace std;

namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
  int n = int(s.size());
  std::vector<int> sa(n);
  std::iota(sa.begin(), sa.end(), 0);
  std::sort(sa.begin(), sa.end(), [&](int l, int r) {
    if (l == r) return false;
    while (l < n && r < n) {
      if (s[l] != s[r]) return s[l] < s[r];
      l++;
      r++;
    }
    return l == n;
  });
  return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
  int n = int(s.size());
  std::vector<int> sa(n), rnk = s, tmp(n);
  std::iota(sa.begin(), sa.end(), 0);
  for (int k = 1; k < n; k *= 2) {
    auto cmp = [&](int x, int y) {
      if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
      int rx = x + k < n ? rnk[x + k] : -1;
      int ry = y + k < n ? rnk[y + k] : -1;
      return rx < ry;
    };
    std::sort(sa.begin(), sa.end(), cmp);
    tmp[sa[0]] = 0;
    for (int i = 1; i < n; i++) {
      tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
    }
    std::swap(tmp, rnk);
  }
  return sa;
}

template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
  int n = int(s.size());
  if (n == 0) return {};
  if (n == 1) return {0};
  if (n == 2) {
    if (s[0] < s[1]) {
      return {0, 1};
    } else {
      return {1, 0};
    }
  }
  if (n < THRESHOLD_NAIVE) {
    return sa_naive(s);
  }
  if (n < THRESHOLD_DOUBLING) {
    return sa_doubling(s);
  }

  std::vector<int> sa(n);
  std::vector<bool> ls(n);
  for (int i = n - 2; i >= 0; i--) {
    ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
  }
  std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
  for (int i = 0; i < n; i++) {
    if (!ls[i]) {
      sum_s[s[i]]++;
    } else {
      sum_l[s[i] + 1]++;
    }
  }
  for (int i = 0; i <= upper; i++) {
    sum_s[i] += sum_l[i];
    if (i < upper) sum_l[i + 1] += sum_s[i];
  }

  auto induce = [&](const std::vector<int>& lms) {
    std::fill(sa.begin(), sa.end(), -1);
    std::vector<int> buf(upper + 1);
    std::copy(sum_s.begin(), sum_s.end(), buf.begin());
    for (auto d : lms) {
      if (d == n) continue;
      sa[buf[s[d]]++] = d;
    }
    std::copy(sum_l.begin(), sum_l.end(), buf.begin());
    sa[buf[s[n - 1]]++] = n - 1;
    for (int i = 0; i < n; i++) {
      int v = sa[i];
      if (v >= 1 && !ls[v - 1]) {
        sa[buf[s[v - 1]]++] = v - 1;
      }
    }
    std::copy(sum_l.begin(), sum_l.end(), buf.begin());
    for (int i = n - 1; i >= 0; i--) {
      int v = sa[i];
      if (v >= 1 && ls[v - 1]) {
        sa[--buf[s[v - 1] + 1]] = v - 1;
      }
    }
  };

  std::vector<int> lms_map(n + 1, -1);
  int m = 0;
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) {
      lms_map[i] = m++;
    }
  }
  std::vector<int> lms;
  lms.reserve(m);
  for (int i = 1; i < n; i++) {
    if (!ls[i - 1] && ls[i]) {
      lms.push_back(i);
    }
  }

  induce(lms);

  if (m) {
    std::vector<int> sorted_lms;
    sorted_lms.reserve(m);
    for (int v : sa) {
      if (lms_map[v] != -1) sorted_lms.push_back(v);
    }
    std::vector<int> rec_s(m);
    int rec_upper = 0;
    rec_s[lms_map[sorted_lms[0]]] = 0;
    for (int i = 1; i < m; i++) {
      int l = sorted_lms[i - 1], r = sorted_lms[i];
      int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
      int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
      bool same = true;
      if (end_l - l != end_r - r) {
        same = false;
      } else {
        while (l < end_l) {
          if (s[l] != s[r]) {
            break;
          }
          l++;
          r++;
        }
        if (l == n || s[l] != s[r]) same = false;
      }
      if (!same) rec_upper++;
      rec_s[lms_map[sorted_lms[i]]] = rec_upper;
    }

    auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

    for (int i = 0; i < m; i++) {
      sorted_lms[i] = lms[rec_sa[i]];
    }
    induce(sorted_lms);
  }
  return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
  assert(0 <= upper);
  for (int d : s) {
    assert(0 <= d && d <= upper);
  }
  auto sa = internal::sa_is(s, upper);
  return sa;
}

template <class T>
std::vector<int> suffix_array(const std::vector<T>& s) {
  int n = int(s.size());
  std::vector<int> idx(n);
  iota(idx.begin(), idx.end(), 0);
  sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
  std::vector<int> s2(n);
  int now = 0;
  for (int i = 0; i < n; i++) {
    if (i && s[idx[i - 1]] != s[idx[i]]) now++;
    s2[idx[i]] = now;
  }
  return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) {
    s2[i] = s[i];
  }
  return internal::sa_is(s2, 255);
}

template <class T>
std::vector<int> lcp_array(const std::vector<T>& s, const std::vector<int>& sa) {
  int n = int(s.size());
  assert(n >= 1);
  std::vector<int> rnk(n);
  for (int i = 0; i < n; i++) {
    rnk[sa[i]] = i;
  }
  std::vector<int> lcp(n - 1);
  int h = 0;
  for (int i = 0; i < n; i++) {
    if (h > 0) h--;
    if (rnk[i] == 0) continue;
    int j = sa[rnk[i] - 1];
    for (; j + h < n && i + h < n; h++) {
      if (s[j + h] != s[i + h]) break;
    }
    lcp[rnk[i] - 1] = h;
  }
  return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) {
    s2[i] = s[i];
  }
  return lcp_array(s2, sa);
}

template <class T>
std::vector<int> z_algorithm(const std::vector<T>& s) {
  int n = int(s.size());
  if (n == 0) return {};
  std::vector<int> z(n);
  z[0] = 0;
  for (int i = 1, j = 0; i < n; i++) {
    int& k = z[i];
    k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
    while (i + k < n && s[k] == s[i + k]) k++;
    if (j + z[j] < i + z[i]) j = i;
  }
  z[0] = n;
  return z;
}

std::vector<int> z_algorithm(const std::string& s) {
  int n = int(s.size());
  std::vector<int> s2(n);
  for (int i = 0; i < n; i++) {
    s2[i] = s[i];
  }
  return z_algorithm(s2);
}

}  // namespace atcoder

template <class T>
concept tuple_like = __is_tuple_like<T>::value && !ranges::range<T>;

template <class R>
concept nstr_range = ranges::range<R> && !convertible_to<R, string_view>;

namespace std {

istream& operator>>(istream& is, tuple_like auto&& t) {
  return apply([&is](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}

istream& operator>>(istream& is, nstr_range auto&& r) {
  for (auto&& e : r) {
    is >> e;
  }
  return is;
}

ostream& operator<<(ostream& os, tuple_like auto&& t) {
  auto f = [&os](auto&... xs) -> ostream& {
    [[maybe_unused]] auto sep = "";
    ((os << exchange(sep, " ") << xs), ...);
    return os;
  };
  return apply(f, t);
}

ostream& operator<<(ostream& os, nstr_range auto&& r) {
  auto sep = "";
  for (auto&& e : r) {
    os << exchange(sep, " ") << e;
  }
  return os;
}

#define DEF_INC_OR_DEC(op) \
  auto& operator op(tuple_like auto&& t) { \
    apply([](auto&... xs) { (op xs, ...); }, t); \
    return t; \
  } \
  auto& operator op(nstr_range auto&& r) { \
    for (auto&& e : r) { \
      op e; \
    } \
    return r; \
  }

DEF_INC_OR_DEC(++)
DEF_INC_OR_DEC(--)

#undef DEF_INC_OR_DEC

}  // namespace std

void scan(auto&&... xs) { cin >> tie(xs...); }
void print(auto&&... xs) { cout << tie(xs...) << '\n'; }

template <class>
constexpr int Dim = 0;

template <nstr_range R>
constexpr int Dim<R> = 1 + Dim<ranges::range_value_t<R>>;

template <class T>
struct DTypeImpl {
  using type = T;
};

template <nstr_range R>
struct DTypeImpl<R> {
  using type = DTypeImpl<ranges::range_value_t<R>>::type;
};

template <class T>
using DType = DTypeImpl<T>::type;

namespace std {

#define DEF_UNARY_OP(op) \
  template <nstr_range R> \
    requires requires(DType<R> e) { op e; } \
  auto operator op(R&& r) { \
    return r | views::transform([](auto&& e) { return op e; }); \
  }

DEF_UNARY_OP(+)
DEF_UNARY_OP(-)
DEF_UNARY_OP(~)

#undef DEF_UNARY_OP

#define DEF_BINARY_OP(op) \
  template <class R1, class R2> \
    requires(nstr_range<R1> || nstr_range<R2>) && \
            requires(DType<R1> e1, DType<R2> e2) { e1 op e2; } \
  auto operator op(R1&& r1, R2&& r2) { \
    if constexpr (Dim<R2> < Dim<R1>) { \
      if constexpr (is_lvalue_reference_v<R2>) { \
        return r1 | views::transform([&r2](auto&& e1) { return e1 op r2; }); \
      } else { \
        return r1 | views::transform([r2 = move(r2)](auto&& e1) { return e1 op r2; }); \
      } \
    } else if constexpr (Dim<R1> < Dim<R2>) { \
      if constexpr (is_lvalue_reference_v<R1>) { \
        return r2 | views::transform([&r1](auto&& e2) { return r1 op e2; }); \
      } else { \
        return r2 | views::transform([r1 = move(r1)](auto&& e2) { return r1 op e2; }); \
      } \
    } else { \
      return r1 | views::take(size(r2)) | \
             views::transform([i2 = begin(r2)](auto&& e1) mutable { return e1 op * i2++; }); \
    } \
  } \
  template <nstr_range R1, class R2> \
    requires(Dim<R2> <= Dim<R1>) && requires(DType<R1> e1, DType<R2> e2) { e1 op## = e2; } \
  R1& operator op##=(R1&& r1, R2&& r2) { \
    if constexpr (Dim<R2> < Dim<R1>) { \
      for (auto&& e1 : r1) { \
        e1 op## = r2; \
      } \
    } else { \
      auto i1 = begin(r1); \
      auto i2 = begin(r2); \
      const auto e1 = end(r1); \
      const auto e2 = end(r2); \
      for (; i1 != e1 && i2 != e2; ++i1, ++i2) { \
        *i1 op## = *i2; \
      } \
    } \
    return r1; \
  }

DEF_BINARY_OP(+)
DEF_BINARY_OP(-)
DEF_BINARY_OP(*)
DEF_BINARY_OP(/)
DEF_BINARY_OP(%)
DEF_BINARY_OP(^)
DEF_BINARY_OP(&)
DEF_BINARY_OP(|)

#undef DEF_BINARY_OP

}  // namespace std

template <class T>
T to_vector(T&& x) {
  return forward<T>(x);
}

template <ranges::range R>
auto to_vector(R&& r) {
  auto v =
      r | views::transform([]<class T>(T&& x) { return to_vector(forward<T>(x)); }) | views::common;
  return vector(v.begin(), v.end());
}

using views::drop;
using views::take;
inline constexpr auto rev = views::reverse;
inline constexpr auto len = ranges::ssize;
inline auto rep(int l, int r) { return views::iota(min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }

#endif  // __INCLUDE_LEVEL__

Details

answer.code:54:1: error: ‘CE’ does not name a type
   54 | CE
      | ^~