QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#257245#7754. Rolling For Daysucup-team133AC ✓261ms24692kbC++1728.4kb2023-11-19 01:41:502023-11-19 01:41:51

Judging History

你现在查看的是最新测评结果

  • [2023-11-19 01:41:51]
  • 评测
  • 测评结果:AC
  • 用时:261ms
  • 内存:24692kb
  • [2023-11-19 01:41:50]
  • 提交

answer

// -fsanitize=undefined,
//#define _GLIBCXX_DEBUG 


#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <random>
#include <stdio.h>
#include <fstream>
#include <functional>
#include <cassert>
#include <unordered_map>
#include <bitset>


#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast moduler by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    for (long long a : {2, 7, 61}) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

namespace internal {

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i < cnt2 - 2; i++) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
    }
    for (int ph = 1; ph <= h; ph++) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint now = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p] * now;
                a[i + offset] = l + r;
                a[i + offset + p] = l - r;
            }
            now *= sum_e[bsf(~(unsigned int)(s))];
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i < cnt2 - 2; i++) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
    }

    for (int ph = h; ph >= 1; ph--) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint inow = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p];
                a[i + offset] = l + r;
                a[i + offset + p] =
                    (unsigned long long)(mint::mod() + l.val() - r.val()) *
                    inow.val();
            }
            inow *= sum_ie[bsf(~(unsigned int)(s))];
        }
    }
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) {
        if (n < m) {
            std::swap(n, m);
            std::swap(a, b);
        }
        std::vector<mint> ans(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
        return ans;
    }
    int z = 1 << internal::ceil_pow2(n + m - 1);
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;
    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(move(a2), move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        // B = 2^63, -B <= x, r(real value) < B
        // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
        // r = c1[i] (mod MOD1)
        // focus on MOD1
        // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
        // r = x,
        //     x - M' + (0 or 2B),
        //     x - 2M' + (0, 2B or 4B),
        //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
        // (r - x) = 0, (0)
        //           - M' + (0 or 2B), (1)
        //           -2M' + (0 or 2B or 4B), (2)
        //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
        // we checked that
        //   ((1) mod MOD1) mod 5 = 2
        //   ((2) mod MOD1) mod 5 = 3
        //   ((3) mod MOD1) mod 5 = 4
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder


using namespace std;
using namespace atcoder;



#define rep(i,n) for (int i=0;i<n;i+=1)
#define rrep(i,n) for (int i=n-1;i>-1;i--)
#define pb push_back
#define all(x) (x).begin(), (x).end()

template<class T>
using vec = vector<T>;
template<class T>
using vvec = vec<vec<T>>;
template<class T>
using vvvec = vec<vvec<T>>;
using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;


template<class T>
bool chmin(T &a, T b){
  if (a>b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
bool chmax(T &a, T b){
  if (a<b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
T sum(vec<T> x){
  T res=0;
  for (auto e:x){
    res += e;
  }
  return res;
}

template<class T>
void printv(vec<T> x){
  for (auto e:x){
    cout<<e<<" ";
  }
  cout<<endl;
}

template<class T>
ostream& operator<<(ostream& os, const vec<T>& A){
  os << "[";
  rep(i,A.size()){
    os << A[i];
    if (i!=A.size()-1){
      os << ", ";
    }
  }
  os << "]" ;
  return os;
}

template<class T,class U>
ostream& operator<<(ostream& os, const pair<T,U>& A){
  os << "(" << A.first <<", " << A.second << ")";
  return os;
}

template<class T>
ostream& operator<<(ostream& os, const set<T>& S){
  os << "set{";
  for (auto a:S){
    os << a;
    auto it = S.find(a);
    it++;
    if (it!=S.end()){
      os << ", ";
    }
  }
  os << "}";
  return os;
}


using mint = modint998244353;

ostream& operator<<(ostream& os, const mint& a){
  os << a.val();
  return os;
}

const int M = 2000;
mint g1[M],g2[M],inverse[M];

void init_comb(){
  g1[0] = 1; g1[1] = 1;
  g2[0] = 1; g2[1] = 1;
  inverse[1] = 1;
  for (int n=2;n<M;n++){
    g1[n] = g1[n-1] * n;
    inverse[n] = (-inverse[998244353%n] * (998244353/n));
    assert (inverse[n] * n == mint(1));
    g2[n] = g2[n-1] * inverse[n];
  }
}

mint comb(int n,int r){
  if (r < 0 || n < r) return 0;
  return g1[n] * g2[r] * g2[n-r];
}



void solve(){

  int N,M;
  cin>>N>>M;
  vector<int> A(M),B(M);
  for (int i=0;i<M;i++) cin>>A[i];
  for (int i=0;i<M;i++) cin>>B[i];

  vector<int> C(M);
  for (int i=0;i<M;i++) C[i] = A[i]-B[i];
  swap(B,C);
  int need_sum = accumulate(all(C),0);
  int ALL_N = accumulate(all(A),0);

  vector<int> G(1<<M,accumulate(all(B),0));
  /*G[S]:i in {1,2,...,N}/Sに対するB[i]の和*/
  for (int S=0;S<(1<<M);S++){
    for (int i=0;i<M;i++){
      if ((S>>i) & 1) G[S] -= B[i];
    }
  }

  vector<int> F(1<<M,0);
  /*F[S]:i in S に対する C[i]の和*/
  for (int S=0;S<(1<<M);S++){
    for (int i=0;i<M;i++){
      if ((S>>i) & 1) F[S] += C[i];
    }
  }

  vector<int> H(1<<M,0);
  for (int S=0;S<(1<<M);S++){
    for (int i=0;i<M;i++){
      if ((S>>i) & 1) H[S] += B[i];
    }
  }

  vector<vector<mint>> dp_not_complete(1<<M);
  /*dp[S]:i in Sに対する x^k comb(a_i,k) for k in 0,1,2,...,C[i]-1の積*/
  dp_not_complete[0] = {1};
  for (int n=0;n<M;n++){
    vector<mint> f(A[n]+1,0);
    for (int k=0;k<C[n];k++){
      f[k] = comb(A[n],k);
    }
    for (int S=(1<<n);S<(1<<(n+1));S++){
      dp_not_complete[S] = convolution(dp_not_complete[S-(1<<n)],f);
    }
  }

  vector<vector<mint>> dp_complete(1<<M,vector<mint>(need_sum+1,0));
  /*
  dp[S][n]->dp[S+{k}][n'](n < n')
  comb(n'-F[S]-1,C[k]-1) * g2[G[S]+need_sum-n] * g1[G[S]+need_sum-n'] * g1[A[k]] * g2[B[k]]
  */

  int start_set = 0;
  for (int i=0;i<M;i++){
    if (C[i] == 0){
      start_set |= (1<<i);
    }
  }
  dp_complete[start_set][0] = 1;
  for (int S=0;S<(1<<M);S++){
    for (int k=0;k<M;k++){
      if ((S>>k) & 1) continue;
      vector<mint> tmp = {all(dp_complete[S])};
      
      for (int n=0;n<=need_sum;n++){
        tmp[n] *= g2[G[S]+need_sum-n];
      }
      
      for (int n=0;n<need_sum;n++){
        tmp[n+1] += tmp[n];
      }
      for (int n=1;n<=need_sum;n++){
        dp_complete[S^(1<<k)][n] += tmp[n-1] * g1[G[S]+need_sum-n] * g1[A[k]] * g2[B[k]] * comb(n-F[S]-1,C[k]-1);
      }
    }
  }

  for (int S=0;S<(1<<M);S++){
    for (int i=0;i<int(dp_not_complete[S].size());i++){
      dp_not_complete[S][i] *= g1[i];
    }
  }

  mint res = 0;
  for (int S=0;S<(1<<M)-1;S++){
    int not_complete_set = ((1<<M)-1) ^ S;
    mint tmp = 0;
    for (int j=0;j<int(dp_not_complete[not_complete_set].size());j++){
      dp_not_complete[not_complete_set][j] *= g1[G[S]+need_sum-(F[S]+j)] * (inverse[ALL_N-(F[S]+j)-H[S]] * (ALL_N-(F[S]+j)));
    }
    for (int j=int(dp_not_complete[not_complete_set].size())-2;0<=j;j--){
      dp_not_complete[not_complete_set][j] += dp_not_complete[not_complete_set][j+1];
    }

    for (int i=F[S];i<=need_sum;i++){
      int lower = i-F[S];
      res += dp_complete[S][i] * g2[G[S]+need_sum-i] * dp_not_complete[not_complete_set][lower];
    }
    //cout << S << endl;
    //cout << dp_complete[S] << " " << dp_not_complete[not_complete_set] << endl;
    //cout << tmp << endl;
  }  

  cout << res.val() << "\n";


  

}


int main(){
  ios::sync_with_stdio(false);
  std::cin.tie(nullptr);

  init_comb();

  int T;
  T = 1;
  while (T--){
    solve();
  }

  


  
}

这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 3820kb

input:

2 2
1 1
1 1

output:

2

result:

ok answer is '2'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3896kb

input:

4 2
2 2
2 1

output:

582309210

result:

ok answer is '582309210'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

5 5
1 1 1 1 1
0 0 0 0 1

output:

5

result:

ok answer is '5'

Test #4:

score: 0
Accepted
time: 0ms
memory: 3852kb

input:

4 4
1 1 1 1
1 1 1 0

output:

831870299

result:

ok answer is '831870299'

Test #5:

score: 0
Accepted
time: 0ms
memory: 3660kb

input:

5 2
4 1
2 1

output:

598946616

result:

ok answer is '598946616'

Test #6:

score: 0
Accepted
time: 0ms
memory: 3600kb

input:

5 2
3 2
3 1

output:

482484776

result:

ok answer is '482484776'

Test #7:

score: 0
Accepted
time: 0ms
memory: 3896kb

input:

5 5
1 1 1 1 1
0 1 1 1 0

output:

665496242

result:

ok answer is '665496242'

Test #8:

score: 0
Accepted
time: 0ms
memory: 3604kb

input:

3 3
1 1 1
1 1 0

output:

499122180

result:

ok answer is '499122180'

Test #9:

score: 0
Accepted
time: 0ms
memory: 3884kb

input:

5 5
1 1 1 1 1
1 0 1 1 1

output:

582309212

result:

ok answer is '582309212'

Test #10:

score: 0
Accepted
time: 0ms
memory: 3676kb

input:

3 2
2 1
2 0

output:

499122180

result:

ok answer is '499122180'

Test #11:

score: 0
Accepted
time: 0ms
memory: 3680kb

input:

20 5
1 6 7 2 4
0 1 3 1 4

output:

75028873

result:

ok answer is '75028873'

Test #12:

score: 0
Accepted
time: 0ms
memory: 3888kb

input:

15 5
4 2 3 4 2
2 1 1 2 1

output:

585494868

result:

ok answer is '585494868'

Test #13:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

20 4
5 4 3 8
1 2 2 3

output:

156108321

result:

ok answer is '156108321'

Test #14:

score: 0
Accepted
time: 0ms
memory: 3676kb

input:

15 2
6 9
2 8

output:

672033760

result:

ok answer is '672033760'

Test #15:

score: 0
Accepted
time: 4ms
memory: 4264kb

input:

20 12
1 2 1 1 2 4 1 3 2 1 1 1
1 0 0 1 0 0 1 0 2 0 1 1

output:

691640771

result:

ok answer is '691640771'

Test #16:

score: 0
Accepted
time: 4ms
memory: 4412kb

input:

19 12
1 1 1 2 1 2 2 1 2 4 1 1
1 1 0 1 1 0 1 1 0 2 1 0

output:

777326448

result:

ok answer is '777326448'

Test #17:

score: 0
Accepted
time: 0ms
memory: 3604kb

input:

20 2
19 1
1 1

output:

299473325

result:

ok answer is '299473325'

Test #18:

score: 0
Accepted
time: 0ms
memory: 3664kb

input:

19 2
14 5
10 1

output:

497380388

result:

ok answer is '497380388'

Test #19:

score: 0
Accepted
time: 0ms
memory: 3900kb

input:

100 5
10 25 6 19 40
0 2 4 5 11

output:

773338801

result:

ok answer is '773338801'

Test #20:

score: 0
Accepted
time: 0ms
memory: 3700kb

input:

64 5
1 12 13 33 5
1 0 1 20 0

output:

571823997

result:

ok answer is '571823997'

Test #21:

score: 0
Accepted
time: 0ms
memory: 3680kb

input:

100 4
15 38 24 23
0 20 0 1

output:

635309463

result:

ok answer is '635309463'

Test #22:

score: 0
Accepted
time: 0ms
memory: 3612kb

input:

88 5
15 25 9 19 20
8 15 9 18 17

output:

400310961

result:

ok answer is '400310961'

Test #23:

score: 0
Accepted
time: 11ms
memory: 4908kb

input:

100 12
2 2 13 9 13 7 2 1 6 15 17 13
0 0 5 7 10 7 0 1 0 0 4 4

output:

552732942

result:

ok answer is '552732942'

Test #24:

score: 0
Accepted
time: 11ms
memory: 4688kb

input:

59 12
7 6 3 5 4 6 5 2 5 6 5 5
4 5 2 5 3 6 0 2 1 0 3 3

output:

27023521

result:

ok answer is '27023521'

Test #25:

score: 0
Accepted
time: 0ms
memory: 3896kb

input:

100 3
10 60 30
0 28 21

output:

261595276

result:

ok answer is '261595276'

Test #26:

score: 0
Accepted
time: 0ms
memory: 3620kb

input:

84 2
39 45
4 23

output:

897695217

result:

ok answer is '897695217'

Test #27:

score: 0
Accepted
time: 2ms
memory: 4064kb

input:

1000 5
370 136 129 182 183
312 47 112 22 119

output:

705415872

result:

ok answer is '705415872'

Test #28:

score: 0
Accepted
time: 1ms
memory: 3676kb

input:

766 5
372 194 98 90 12
165 123 53 27 0

output:

870555094

result:

ok answer is '870555094'

Test #29:

score: 0
Accepted
time: 0ms
memory: 3720kb

input:

1000 2
374 626
175 591

output:

501708945

result:

ok answer is '501708945'

Test #30:

score: 0
Accepted
time: 0ms
memory: 3860kb

input:

701 1
701
413

output:

413

result:

ok answer is '413'

Test #31:

score: 0
Accepted
time: 239ms
memory: 23752kb

input:

1000 12
101 43 34 281 23 24 12 25 66 222 145 24
37 43 27 257 5 11 12 19 62 41 87 13

output:

265294941

result:

ok answer is '265294941'

Test #32:

score: 0
Accepted
time: 123ms
memory: 15552kb

input:

942 12
83 142 96 10 3 10 60 93 398 13 11 23
37 56 36 0 3 0 10 35 33 1 9 19

output:

956409637

result:

ok answer is '956409637'

Test #33:

score: 0
Accepted
time: 1ms
memory: 3672kb

input:

1000 4
473 65 438 24
79 61 327 24

output:

491224221

result:

ok answer is '491224221'

Test #34:

score: 0
Accepted
time: 1ms
memory: 3748kb

input:

870 4
320 17 182 351
145 0 181 4

output:

664946681

result:

ok answer is '664946681'

Test #35:

score: 0
Accepted
time: 216ms
memory: 24500kb

input:

1000 12
102 2 110 62 106 176 37 27 6 208 92 72
57 0 106 20 36 4 20 12 3 134 8 61

output:

3888811

result:

ok answer is '3888811'

Test #36:

score: 0
Accepted
time: 192ms
memory: 21676kb

input:

1000 12
1 44 209 187 27 71 127 139 134 22 20 19
0 19 153 113 27 29 82 74 37 19 20 9

output:

278584590

result:

ok answer is '278584590'

Test #37:

score: 0
Accepted
time: 187ms
memory: 20964kb

input:

1000 12
193 84 261 36 75 7 70 12 38 22 8 194
68 15 11 20 16 7 53 1 6 6 6 189

output:

704313398

result:

ok answer is '704313398'

Test #38:

score: 0
Accepted
time: 241ms
memory: 24692kb

input:

1000 12
171 135 21 74 115 3 4 122 32 70 224 29
71 120 20 66 61 2 1 102 28 0 201 3

output:

608268027

result:

ok answer is '608268027'

Test #39:

score: 0
Accepted
time: 261ms
memory: 22492kb

input:

1000 12
54 20 201 182 16 66 23 153 36 39 151 59
33 5 189 80 13 56 13 38 7 22 92 21

output:

795531860

result:

ok answer is '795531860'

Test #40:

score: 0
Accepted
time: 197ms
memory: 21884kb

input:

1000 12
218 16 12 152 67 64 65 3 90 263 44 6
107 2 2 143 11 28 53 2 55 106 39 5

output:

903827471

result:

ok answer is '903827471'

Extra Test:

score: 0
Extra Test Passed