QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#255932#7753. Energy Distributionucup-team133AC ✓5ms3808kbC++1710.1kb2023-11-18 17:32:532023-11-18 17:32:53

Judging History

你现在查看的是测评时间为 2023-11-18 17:32:53 的历史记录

  • [2024-10-31 10:23:16]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:AC
  • 用时:4ms
  • 内存:4076kb
  • [2024-10-31 10:22:30]
  • hack成功,自动添加数据
  • (/hack/1089)
  • [2023-11-18 17:32:53]
  • 评测
  • 测评结果:100
  • 用时:5ms
  • 内存:3808kb
  • [2023-11-18 17:32:53]
  • 提交

answer

#include <bits/stdc++.h>

using namespace std;

#define all(x) (x).begin(), (x).end()
using ll = long long;

template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
    os << "[";
    for (int i = 0; i < (int) v.size(); i++) {
        os << v[i] << (i + 1 == (int) v.size() ? "" : ", ");
    }
    os << "]";
    return os;
}


//#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl;
#define debug(...);


struct Simplex {
    bool infinity,      // which the problem is unbounded or not
    infeasible;     // which the problem is infeasible or not
    int n,              // the number of variables
    m;              // the number of constraints
    vector<double> x;   // optimal solution
    double opt;         // optimal value
    vector<int> index;  // indices of non-basis (< n) and basis (otherwise)
    int r, s;           // pivot row / column
    vector<vector<double>> tableau;

    /**
     * @brief Construct a new Simplex object
     *
     * @param A Coefficients of constraints
     * @param b Bounds of constraints
     * @param c Coefficients of objective function
     * @param mode choose pivot by smallest subscript rule if mode = 0, largest coefficient rule otherwise
     * @details Maximize cx s.t. Ax <= b and x >= 0
     */
    Simplex(const vector<vector<double>> &A, const vector<double> &b, const vector<double> &c) {
        infinity = infeasible = false;
        init(A, b, c);
        solve();
    }

private:
    static constexpr double EPS = 1e-10;

    inline int sgn(const double &x) { return x < -EPS ? -1 : x > EPS ? 1 : 0; }

    inline int compare(const double &a, const double &b) { return sgn(a - b); }

    inline bool equals(const double &a, const double &b) { return compare(a, b) == 0; }

    void init(const vector<vector<double>> &A, const vector<double> &b, const vector<double> &c) {
        m = A.size(), n = c.size();

        index.resize(n + 1 + m);
        iota(index.begin(), index.end(), 0);
        tableau.assign(m + 2, vector<double>(n + 2, 0));

        r = m;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) tableau[i][j] = -A[i][j];
            tableau[i][n] = 1;
            tableau[i][n + 1] = b[i];
            if (tableau[i][n + 1] < tableau[r][n + 1]) r = i;
        }
        for (int j = 0; j < n; j++) tableau[m][j] = c[j];
        tableau[m + 1][n] = -1;
    }

    void smallest_subscript_rule() {
        r = s = -1;
        for (int j = 0; j < n + 1; j++) {
            if (s < 0 or index[j] < index[s]) {
                if (compare(tableau[m + 1][j], 0) > 0 or
                    (equals(tableau[m + 1][j], 0) and compare(tableau[m][j], 0) > 0)) {
                    s = j;
                }
            }
        }
        if (s < 0) return;
        r = -1;
        for (int i = 0; i < m; i++) {
            if (compare(tableau[i][s], 0) >= 0) continue;
            if (r < 0)
                r = i;
            else if (compare(tableau[i][n + 1] / (-tableau[i][s]), tableau[r][n + 1] / (-tableau[r][s])) < 0)
                r = i;
            else if (equals(tableau[i][n + 1] / (-tableau[i][s]), tableau[r][n + 1] / (-tableau[r][s])) and
                     index[n + 1 + i] < index[n + 1 + r]) {
                r = i;
            }
        }
    }

    void solve() {
        vector<int> nonzero;
        for (s = n;;) {
            if (r < m) {
                swap(index[s], index[n + 1 + r]);
                tableau[r][s] = double(1) / tableau[r][s];
                nonzero.clear();
                for (int j = 0; j < n + 2; j++) {
                    if (j == s) continue;
                    tableau[r][j] *= -tableau[r][s];
                    if (!equals(tableau[r][j], 0)) nonzero.emplace_back(j);
                }
                for (int i = 0; i < m + 2; i++) {
                    if (i == r or equals(tableau[i][s], 0)) continue;
                    for (const auto &j: nonzero) tableau[i][j] += tableau[i][s] * tableau[r][j];
                    tableau[i][s] *= tableau[r][s];
                }
            }

            smallest_subscript_rule();
            if (s < 0) break;
            if (r < 0) {
                infinity = true;
                return;
            }
        }

        if (compare(tableau[m + 1][n + 1], 0) < 0) {
            infeasible = true;
            return;
        }
        x.assign(n, 0);
        for (int i = 0; i < m; i++) {
            if (index[n + 1 + i] < n) {
                x[index[n + 1 + i]] = tableau[i][n + 1];
            }
        }
        opt = tableau[m][n + 1];
    }
};

template<class T>
pair<T, int> gaussian(vector<vector<T>> &a, int last = 0) {
    int h = a.size();
    int w = a[0].size();
    T d = 1;
    int r = 0;
    for (int j = 0; j < w - last; j++) {
        int id = -1;
        for (int i = r; i < h; i++) {
            if (a[i][j] != T(0)) {
                id = i;
                break;
            }
        }
        if (id == -1) {
            d = 0;
            continue;
        }
        if (r != id) {
            d *= -1;
            swap(a[r], a[id]);
        }
        d *= a[r][j];
        for (int k = w - 1; k >= j; k--) {
            a[r][k] /= a[r][j];
        }
        for (int i = 0; i < h; i++) {
            if (i == r) continue;
            for (int k = w - 1; k >= j; k--) {
                a[i][k] -= a[r][k] * a[i][j];
            }
        }
        r++;
    }
    return {d, r};
}

template<typename T>
vector<vector<T>> linear(vector<vector<T>> &a, const vector<T> &b) {
    int h = a.size();
    int w = a[0].size();
    for (int i = 0; i < h; i++) a[i].emplace_back(b[i]);
    auto [det, rank] = gaussian(a, 1);
    for (int i = rank; i < h; i++) {
        if (a[i][w] != T(0)) {
            return vector<vector<T>>();
        }
    }
    vector<vector<T>> res(1, vector<T>(w));
    vector<int> p(w, -1);
    for (int i = 0, j = 0; i < rank and j < w; i++) {
        while (a[i][j] == T(0)) {
            j++;
        }
        res[0][j] = a[i][w];
        p[j] = i;
    }
    for (int j = 0; j < w; j++) {
        if (p[j] != -1) continue;
        vector<T> c(w);
        c[j] = 1;
        for (int k = 0; k < j; k++) {
            if (p[k] != -1) {
                c[k] = -a[p[k]][j];
            }
        }
        res.emplace_back(c);
    }
    return res;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n;
    cin >> n;
    vector W(n, vector<int>(n));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cin >> W[i][j];
        }
    }

    auto f = [&](const vector<int> &inv, const vector<double> &x) {
        double res = 0;
        for (int i = 0; i < n; i++) {
            if (inv[i] == -1) continue;
            for (int j = i + 1; j < n; j++) {
                if (inv[j] == -1) continue;
                res += x[inv[i]] * W[i][j] * x[inv[j]];
            }
        }
        return res;
    };
    double ans = 0;
    auto calc = [&](int mask) -> double {
        vector<vector<double>> C;
        vector<int> inv(n, -1);
        int t = 0;
        for (int i = 0; i < n; i++) {
            if ((mask >> i) & 1) {
                inv[i] = t++;
            }
        }
        debug(inv);
        debug(t);
        vector<vector<double>> A;
        {
            
            vector<double> b;
            for (int i = 0; i < n; i++) {
                if ((~mask >> i) & 1) continue;
                for (int j = 0; j < n; j++) {
                    if ((~mask >> j) & 1) continue;
                    if (W[i][j] == 0) continue;
                    vector<double> a(t);
                    a[inv[i]] = 1;
                    a[inv[j]] = 0;
                    for (int k = 0; k < n; k++) {
                        if (k == i or k == j) continue;
                        if ((~mask >> k) & 1) continue;
                        a[inv[k]] = 0.5 - (W[i][k] - W[j][k]) * 1.0 / (2 * W[i][j]);
                    }
                    A.emplace_back(a);
                    b.emplace_back(0.5);
                }
            }
            {
                vector<double> a(t, 1);
                A.emplace_back(a);
                b.emplace_back(1);
            }
            C = linear(A, b);
            debug(A);
            debug(b);
        }
        if (C.empty()){
          vector<double> fuck(t,0);
          for (int i=0;i<t;i++){
            fuck[i] = A[i].back();
            if (fuck[i] < 0) return 0;
          }
          return f(inv,fuck);
          
        };
        for (int i = 0; i < int(C.size()); i++) {
            debug(C[i]);
        }
        {
            double res = f(inv,C[0]);
            int len = C.size();
            if (len > 1) {
                vector<vector<double>> A;
                vector<double> b, c;
                for (int i = 0; i < t; i++) {
                    vector<double> a;
                    for (int j = 1; j < len; j++) a.emplace_back(-C[j][i]);
                    A.emplace_back(a);
                    b.emplace_back(C[0][i]);
                }
                for (int i = 1; i < len; i++) c.emplace_back(f(inv, C[i]));
                Simplex simplex(A, b, c);
                if (simplex.infeasible) return 0;
                vector<double> d = C[0];
                for (int i = 1; i < len; i++) {
                    for (int j = 0; j < t; j++) {
                        d[j] += simplex.x[i - 1] * C[i][j];
                    }
                }
                debug(d);
                res = f(inv, d);
            } else {
                for (int i = 0; i < t; i++) {
                    if (C[0][i] < 0) {
                        return 0;
                    }
                }
                res = f(inv, C[0]);
            }
            return res;
        }
    };
    for (int i = (1 << n) - 1; i > 0; i--) {
        debug(i);
        double res = calc(i);
        debug(res);
        ans = max(ans, res);
    }
    cout << fixed << setprecision(10);
    cout << ans << "\n";
    return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3640kb

input:

2
0 1
1 0

output:

0.2500000000

result:

ok found '0.2500000', expected '0.2500000', error '0.0000000'

Test #2:

score: 0
Accepted
time: 0ms
memory: 3724kb

input:

3
0 2 1
2 0 2
1 2 0

output:

0.5714285714

result:

ok found '0.5714286', expected '0.5714290', error '0.0000004'

Test #3:

score: 0
Accepted
time: 0ms
memory: 3776kb

input:

3
0 1 2
1 0 1
2 1 0

output:

0.5000000000

result:

ok found '0.5000000', expected '0.5000000', error '0.0000000'

Test #4:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

4
0 3 1 0
3 0 1 0
1 1 0 2
0 0 2 0

output:

0.7500000000

result:

ok found '0.7500000', expected '0.7500000', error '0.0000000'

Test #5:

score: 0
Accepted
time: 1ms
memory: 3608kb

input:

5
0 0 0 4 4
0 0 2 0 4
0 2 0 2 0
4 0 2 0 0
4 4 0 0 0

output:

1.0000000000

result:

ok found '1.0000000', expected '1.0000000', error '0.0000000'

Test #6:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

6
0 9 5 5 10 6
9 0 0 0 0 1
5 0 0 0 3 0
5 0 0 0 10 5
10 0 3 10 0 0
6 1 0 5 0 0

output:

2.8571428571

result:

ok found '2.8571429', expected '2.8571430', error '0.0000001'

Test #7:

score: 0
Accepted
time: 0ms
memory: 3712kb

input:

7
0 0 0 0 50 10 45
0 0 0 0 0 3 1
0 0 0 0 0 4 16
0 0 0 0 44 0 0
50 0 0 44 0 37 6
10 3 4 0 37 0 2
45 1 16 0 6 2 0

output:

12.5115848007

result:

ok found '12.5115848', expected '12.5115850', error '0.0000000'

Test #8:

score: 0
Accepted
time: 1ms
memory: 3668kb

input:

8
0 0 56 0 0 58 16 0
0 0 37 20 0 82 0 0
56 37 0 0 98 0 83 0
0 20 0 0 0 0 100 0
0 0 98 0 0 62 29 0
58 82 0 0 62 0 43 0
16 0 83 100 29 43 0 4
0 0 0 0 0 0 4 0

output:

25.0091178965

result:

ok found '25.0091179', expected '25.0091180', error '0.0000000'

Test #9:

score: 0
Accepted
time: 1ms
memory: 3800kb

input:

9
0 0 0 135 0 0 0 448 476
0 0 0 0 0 0 208 17 0
0 0 0 467 1 0 0 0 134
135 0 467 0 0 0 92 369 207
0 0 1 0 0 176 0 235 0
0 0 0 0 176 0 65 363 413
0 208 0 92 0 65 0 0 0
448 17 0 369 235 363 0 0 0
476 0 134 207 0 413 0 0 0

output:

119.0000000000

result:

ok found '119.0000000', expected '119.0000000', error '0.0000000'

Test #10:

score: 0
Accepted
time: 3ms
memory: 3740kb

input:

10
0 0 0 289 0 397 0 0 140 155
0 0 28 101 35 614 0 0 545 300
0 28 0 0 329 702 0 242 0 298
289 101 0 0 0 0 0 0 720 0
0 35 329 0 0 0 0 38 0 0
397 614 702 0 0 0 229 0 0 0
0 0 0 0 0 229 0 317 0 0
0 0 242 0 38 0 317 0 961 309
140 545 0 720 0 0 0 961 0 92
155 300 298 0 0 0 0 309 92 0

output:

240.2500000000

result:

ok found '240.2500000', expected '240.2500000', error '0.0000000'

Test #11:

score: 0
Accepted
time: 5ms
memory: 3808kb

input:

10
0 295 2 809 333 880 284 305 41 295
295 0 512 1000 281 153 42 550 962 930
2 512 0 727 709 969 665 973 301 410
809 1000 727 0 282 551 960 804 274 956
333 281 709 282 0 613 505 406 896 441
880 153 969 551 613 0 769 770 40 288
284 42 665 960 505 769 0 919 989 490
305 550 973 804 406 770 919 0 400 209...

output:

327.3736589667

result:

ok found '327.3736590', expected '327.3736590', error '0.0000000'

Test #12:

score: 0
Accepted
time: 5ms
memory: 3564kb

input:

10
0 403 2 164 0 399 279 156 109 472
403 0 292 279 100 326 153 124 103 426
2 292 0 0 58 87 0 177 324 334
164 279 0 0 256 188 0 257 467 23
0 100 58 256 0 453 75 21 0 309
399 326 87 188 453 0 0 319 395 434
279 153 0 0 75 0 0 342 431 72
156 124 177 257 21 319 342 0 265 0
109 103 324 467 0 395 431 265 0...

output:

155.3703581450

result:

ok found '155.3703581', expected '155.3703580', error '0.0000000'

Test #13:

score: 0
Accepted
time: 4ms
memory: 3720kb

input:

10
0 3 10 8 0 3 3 8 9 6
3 0 6 10 0 10 9 9 4 9
10 6 0 7 1 5 6 8 0 0
8 10 7 0 10 6 0 6 9 4
0 0 1 10 0 1 0 2 0 1
3 10 5 6 1 0 6 4 0 4
3 9 6 0 0 6 0 10 0 8
8 9 8 6 2 4 10 0 0 2
9 4 0 9 0 0 0 0 0 10
6 9 0 4 1 4 8 2 10 0

output:

3.1332737030

result:

ok found '3.1332737', expected '3.1332740', error '0.0000001'

Test #14:

score: 0
Accepted
time: 4ms
memory: 3744kb

input:

10
0 52 25 22 39 47 85 63 8 2
52 0 0 87 2 20 50 87 88 6
25 0 0 77 27 58 81 0 98 0
22 87 77 0 28 0 49 53 59 0
39 2 27 28 0 0 65 76 0 0
47 20 58 0 0 0 88 0 0 3
85 50 81 49 65 88 0 60 85 1
63 87 0 53 76 0 60 0 76 88
8 88 98 59 0 0 85 76 0 0
2 6 0 0 0 3 1 88 0 0

output:

29.5429468484

result:

ok found '29.5429468', expected '29.5429470', error '0.0000000'

Test #15:

score: 0
Accepted
time: 0ms
memory: 3724kb

input:

10
0 79 0 192 19 79 0 0 0 0
79 0 0 0 164 100 74 0 26 176
0 0 0 0 184 153 152 0 0 39
192 0 0 0 0 90 54 0 18 0
19 164 184 0 0 195 107 0 8 53
79 100 153 90 195 0 0 124 96 149
0 74 152 54 107 0 0 181 28 0
0 0 0 0 0 124 181 0 0 3
0 26 0 18 8 96 28 0 0 0
0 176 39 0 53 149 0 3 0 0

output:

59.3834104972

result:

ok found '59.3834105', expected '59.3834100', error '0.0000000'

Test #16:

score: 0
Accepted
time: 3ms
memory: 3640kb

input:

10
0 416 0 476 0 0 2 0 204 750
416 0 0 850 0 0 471 0 835 67
0 0 0 0 184 274 0 135 557 709
476 850 0 0 904 0 0 556 0 0
0 0 184 904 0 141 0 0 0 0
0 0 274 0 141 0 0 167 486 0
2 471 0 0 0 0 0 0 617 0
0 0 135 556 0 167 0 0 241 226
204 835 557 0 0 486 617 241 0 0
750 67 709 0 0 0 0 226 0 0

output:

226.0000000000

result:

ok found '226.0000000', expected '226.0000000', error '0.0000000'

Test #17:

score: 0
Accepted
time: 3ms
memory: 3624kb

input:

10
0 777 0 543 382 5 266 0 255 250
777 0 0 0 0 0 566 637 0 469
0 0 0 0 183 671 0 711 335 294
543 0 0 0 929 475 0 925 0 46
382 0 183 929 0 777 674 399 0 732
5 0 671 475 777 0 0 814 453 0
266 566 0 0 674 0 0 0 0 703
0 637 711 925 399 814 0 0 654 928
255 0 335 0 0 453 0 654 0 0
250 469 294 46 732 0 703...

output:

272.2710567423

result:

ok found '272.2710567', expected '272.2710570', error '0.0000000'

Test #18:

score: 0
Accepted
time: 3ms
memory: 3792kb

input:

10
0 1 0 0 0 0 4 0 0 0
1 0 0 2 3 0 5 0 0 0
0 0 0 1 0 0 0 0 0 0
0 2 1 0 0 2 3 0 0 3
0 3 0 0 0 0 0 0 0 1
0 0 0 2 0 0 4 0 0 0
4 5 0 3 0 4 0 0 3 0
0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 0 3 0 0 1
0 0 0 3 1 0 0 5 1 0

output:

1.2500000000

result:

ok found '1.2500000', expected '1.2500000', error '0.0000000'

Test #19:

score: 0
Accepted
time: 3ms
memory: 3636kb

input:

10
0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0

output:

0.2500000000

result:

ok found '0.2500000', expected '0.2500000', error '0.0000000'

Test #20:

score: 0
Accepted
time: 3ms
memory: 3652kb

input:

10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 622 0 0 0 0 0 0
0 0 622 0 0 0 0 0 0 585
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 982
0 0 0 0 0 0 0 0 0 0
0 0 0 585 0 0 0 982 0 0

output:

245.5000000000

result:

ok found '245.5000000', expected '245.5000000', error '0.0000000'

Test #21:

score: 0
Accepted
time: 3ms
memory: 3784kb

input:

10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

output:

0.0000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Extra Test:

score: 0
Extra Test Passed