QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#248143#7623. Coloring Tapeucup-team987#AC ✓1062ms4780kbC++2019.1kb2023-11-11 17:39:302023-11-12 17:57:48

Judging History

你现在查看的是最新测评结果

  • [2023-11-12 17:57:48]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:AC
  • 用时:1062ms
  • 内存:4780kb
  • [2023-11-11 17:39:30]
  • 评测
  • 测评结果:100
  • 用时:1112ms
  • 内存:4408kb
  • [2023-11-11 17:39:30]
  • 提交

answer

/**
 * date   : 2023-11-11 18:39:20
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//


// enumerate x : x \subset b
vector<int> enumerate_subset(int b) {
  vector<int> res;
  for (int i = b; i >= 0; --i) res.push_back(i &= b);
  return res;
};

// enumerate x : x \in {n} and x \superset b
vector<int> enumerate_superset(int b, int n) {
  vector<int> res;
  for (int i = b; i < (1 << n); i = (i + 1) | b) res.push_back(i);
  return res;
}

/**
 * @brief 下位集合/上位集合の列挙
 */


//


template <typename T>
void superset_zeta_transform(vector<T>& f) {
  int n = f.size();
  assert((n & (n - 1)) == 0);
  for (int i = 1; i < n; i <<= 1) {
    for (int j = 0; j < n; j++) {
      if ((j & i) == 0) {
        f[j] += f[j | i];
      }
    }
  }
}

template <typename T>
void superset_mobius_transform(vector<T>& f) {
  int n = f.size();
  assert((n & (n - 1)) == 0);
  for (int i = 1; i < n; i <<= 1) {
    for (int j = 0; j < n; j++) {
      if ((j & i) == 0) {
        f[j] -= f[j | i];
      }
    }
  }
}

template <typename T>
void subset_zeta_transform(vector<T>& f) {
  int n = f.size();
  assert((n & (n - 1)) == 0);
  for (int i = 1; i < n; i <<= 1) {
    for (int j = 0; j < n; j++) {
      if ((j & i) == 0) {
        f[j | i] += f[j];
      }
    }
  }
}

template <typename T>
void subset_mobius_transform(vector<T>& f) {
  int n = f.size();
  assert((n & (n - 1)) == 0);
  for (int i = 1; i < n; i <<= 1) {
    for (int j = 0; j < n; j++) {
      if ((j & i) == 0) {
        f[j | i] -= f[j];
      }
    }
  }
}

/**
 * @brief Zeta Transform / Moebius Transform
 */


//


template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};





using namespace std;

// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」
// を入れると倍速くらいになる
// mod を超えて前計算して 0 割りを踏むバグは対策済み
template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    if (MAX > 0) extend(MAX + 1);
  }

  void extend(int m = -1) {
    int n = f.size();
    if (m == -1) m = n * 2;
    m = min<int>(m, T::get_mod());
    if (n >= m) return;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};


//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;

using namespace Nyaan;

int diff[555][15][15][2];
int pre[15][15];

void q() {
  inl(N, M, RR);
  rep(i, RR) {
    ini(c, x, y, d);
    --c, --x, --y;
    if (x > y) swap(x, y);
    diff[c][x][y][d] = 1;
  }
  vm dp(PW(N));
  dp.back() = 1;

  rep1(m, M - 1) {
    // [l, r) を 1 色で塗る
    auto check = [&](int l, int r) -> bool {
      // diff = 1 制約
      reg(i, l, r) reg(j, i + 1, r) {
        if (diff[m][i][j][1]) return false;
      }
      // l 側
      rep(i, l) reg(j, l, N) {
        if (diff[m][i][j][0]) return false;
      }
      rep(i, r) reg(j, r, N) {
        if (diff[m][i][j][0]) return false;
      }
      return true;
    };
    // 空はダメ
    rep(i, N) pre[i][i] = false;
    // 非空
    rep(i, N) reg(j, i + 1, N + 1) { pre[i][j] = check(i, j); }

    trc(dp);
    auto dp2 = dp;
    superset_zeta_transform(dp2);
    trc(dp2);

    vm nx(1 << N);

    int oldb = 0;
    int nxtb = 0;
    int last_pos = 0;
    auto dfs = [&](auto rc, int i) -> void {
      if (i == N) {
        if (last_pos != N) return;
        trc(nxtb,oldb);
        nx[nxtb] += dp2[oldb];
        return;
      }
      int old_last = last_pos;
      // i を使わない
      rc(rc, i + 1);
      // i を使う
      int pos = i;
      if (last_pos > pos) {
        return;
      } else if (last_pos < pos) {
        // 上に行くべし
        if (pre[old_last][pos + 1]) {
          oldb ^= 1 << i;
          nxtb ^= 1 << old_last;
          last_pos = pos + 1;
          rc(rc, i + 1);

          last_pos = old_last;
          oldb ^= 1 << i;
          nxtb ^= 1 << old_last;
        }
      } else {
        assert(last_pos == pos);
        // 停滞 ~ 下に行く
        reg(pos2, pos, N) {
          if (pre[pos][pos2 + 1]) {
            oldb ^= 1 << i;
            nxtb ^= 1 << pos2;
            last_pos = pos2 + 1;
            rc(rc, i + 1);

            last_pos = old_last;
            oldb ^= 1 << i;
            nxtb ^= 1 << pos2;
          }
        }
      }
    };
    dfs(dfs, 0);

    dp = nx;
    trc(dp);
  }

  out(accumulate(all(dp), mint{}));
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3660kb

input:

3 5 3
3 2 3 0
4 1 2 0
5 1 3 0

output:

19

result:

ok 1 number(s): "19"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3828kb

input:

5 10 10
9 3 4 1
2 4 5 0
7 2 3 0
9 2 3 0
6 3 5 0
6 2 4 1
2 4 5 0
1 1 3 1
7 2 4 0
10 2 3 0

output:

1514

result:

ok 1 number(s): "1514"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3860kb

input:

5 10 20
8 4 5 0
2 2 5 1
8 4 5 0
10 3 5 0
7 1 3 1
1 2 4 1
6 3 5 1
10 3 5 0
4 1 5 1
7 3 4 1
2 2 4 1
8 3 4 0
9 3 5 0
5 2 5 1
9 4 5 0
9 1 2 0
6 1 5 1
8 3 5 0
2 2 4 1
8 3 5 0

output:

28131

result:

ok 1 number(s): "28131"

Test #4:

score: 0
Accepted
time: 2ms
memory: 3704kb

input:

10 100 200
95 5 7 0
7 4 6 1
62 9 10 0
32 5 8 1
31 2 6 1
75 7 9 1
1 4 7 1
18 7 10 1
75 1 8 1
87 6 9 1
44 7 8 1
68 6 9 1
95 4 6 0
34 1 2 1
70 1 6 1
31 5 9 1
15 6 10 1
48 5 8 1
51 3 7 1
39 5 9 1
23 2 3 1
7 8 9 1
84 7 10 1
13 4 9 1
18 3 6 1
59 9 10 0
31 8 10 1
6 7 9 1
76 3 10 1
41 5 6 0
33 3 4 1
96 1 10...

output:

655333622

result:

ok 1 number(s): "655333622"

Test #5:

score: 0
Accepted
time: 11ms
memory: 4136kb

input:

10 200 200
106 9 10 0
93 4 10 1
199 3 7 0
73 2 9 1
105 8 9 0
38 9 10 1
73 8 10 1
153 3 9 1
123 2 5 1
159 7 9 0
154 5 7 1
162 3 7 0
113 1 5 1
131 7 9 1
67 4 6 1
178 6 10 0
157 7 9 0
147 9 10 0
154 7 10 0
123 3 4 1
39 8 10 1
139 2 9 1
191 9 10 0
36 4 5 1
17 2 8 1
124 3 7 1
9 9 10 1
71 9 10 1
181 7 8 0...

output:

552037151

result:

ok 1 number(s): "552037151"

Test #6:

score: 0
Accepted
time: 17ms
memory: 4072kb

input:

10 300 200
252 1 5 0
48 9 10 1
18 9 10 1
233 9 10 0
195 2 9 1
125 2 5 1
263 7 9 1
24 1 6 1
258 2 10 1
272 8 10 1
76 5 7 1
147 1 7 1
93 9 10 1
30 6 9 1
10 1 10 1
56 2 10 1
93 8 9 1
206 6 9 1
65 1 9 1
226 3 5 0
88 7 8 1
151 3 4 1
292 9 10 0
129 2 3 1
292 9 10 0
180 7 10 1
4 5 10 1
10 9 10 1
151 4 7 1
...

output:

4494096

result:

ok 1 number(s): "4494096"

Test #7:

score: 0
Accepted
time: 27ms
memory: 4212kb

input:

10 500 300
210 4 7 1
341 8 9 0
371 2 5 0
21 4 10 1
370 8 9 0
368 1 6 0
395 7 9 0
287 6 10 1
299 3 7 1
379 1 9 1
164 4 10 1
390 7 9 0
455 6 9 0
208 8 10 1
402 3 10 0
112 8 10 1
279 3 10 1
180 7 10 1
456 2 6 0
121 5 6 1
312 5 7 0
335 8 10 0
318 2 10 1
497 8 10 0
108 8 9 0
247 3 6 1
155 5 6 1
308 1 2 0...

output:

705403853

result:

ok 1 number(s): "705403853"

Test #8:

score: 0
Accepted
time: 150ms
memory: 4344kb

input:

12 500 300
115 3 10 1
152 10 12 1
89 8 12 1
276 4 7 0
467 6 7 0
405 5 9 0
189 4 9 1
197 1 3 1
341 7 8 0
67 7 8 1
266 2 6 1
78 8 12 1
317 11 12 0
417 8 10 0
380 2 8 0
255 2 5 1
80 7 9 1
317 5 11 1
470 5 9 0
373 3 4 0
413 4 10 0
393 9 12 0
362 8 10 1
42 7 12 1
486 3 5 0
229 1 5 0
224 6 7 0
55 3 10 1
4...

output:

378086467

result:

ok 1 number(s): "378086467"

Test #9:

score: 0
Accepted
time: 138ms
memory: 4484kb

input:

12 500 500
54 11 12 1
325 10 11 0
83 2 3 1
148 3 10 1
165 3 11 1
16 11 12 1
363 8 10 1
78 11 12 1
258 4 12 1
237 8 11 1
403 2 10 1
354 1 9 1
234 4 7 1
454 9 11 0
160 11 12 1
393 1 3 0
375 9 11 0
494 1 3 0
200 6 12 1
414 11 12 0
217 9 10 0
92 5 9 1
172 5 6 1
110 8 12 1
339 4 12 1
429 2 4 0
29 10 11 1...

output:

948753642

result:

ok 1 number(s): "948753642"

Test #10:

score: 0
Accepted
time: 835ms
memory: 4780kb

input:

14 500 500
362 4 12 1
225 5 9 1
428 5 9 1
101 8 10 1
488 5 9 0
249 11 14 1
232 2 6 1
220 4 10 1
20 7 13 1
154 4 13 1
480 8 14 0
9 2 4 1
201 7 10 1
174 10 11 0
169 13 14 0
256 10 12 1
403 11 13 0
492 10 14 0
167 6 12 1
123 11 13 1
471 9 10 0
77 5 9 1
51 6 10 1
411 11 14 1
422 11 13 0
7 1 7 1
284 5 11...

output:

103280588

result:

ok 1 number(s): "103280588"

Test #11:

score: 0
Accepted
time: 1062ms
memory: 3752kb

input:

14 500 0

output:

750061283

result:

ok 1 number(s): "750061283"

Test #12:

score: 0
Accepted
time: 1052ms
memory: 3696kb

input:

14 495 0

output:

662120858

result:

ok 1 number(s): "662120858"

Test #13:

score: 0
Accepted
time: 1034ms
memory: 3648kb

input:

14 490 0

output:

456608006

result:

ok 1 number(s): "456608006"

Test #14:

score: 0
Accepted
time: 1062ms
memory: 4012kb

input:

14 500 5
123 7 12 1
24 13 14 1
170 6 13 1
304 2 8 1
475 10 11 0

output:

715116697

result:

ok 1 number(s): "715116697"

Test #15:

score: 0
Accepted
time: 1061ms
memory: 3900kb

input:

14 500 10
237 5 9 1
36 3 14 1
470 5 13 1
315 4 6 1
28 9 12 1
220 11 14 0
160 9 12 1
312 10 11 0
72 7 12 1
230 8 11 0

output:

434022866

result:

ok 1 number(s): "434022866"

Test #16:

score: 0
Accepted
time: 1054ms
memory: 3976kb

input:

14 500 15
339 5 10 1
326 4 7 1
421 12 14 0
225 13 14 1
307 1 3 0
285 2 4 0
33 8 10 1
226 2 3 0
478 13 14 1
347 5 11 1
138 5 13 1
141 9 14 1
417 2 8 1
172 6 11 1
222 7 14 1

output:

268520991

result:

ok 1 number(s): "268520991"

Test #17:

score: 0
Accepted
time: 1045ms
memory: 3764kb

input:

14 500 20
357 5 14 1
296 10 14 1
490 9 10 0
221 11 12 1
490 12 13 0
469 5 13 1
93 2 8 1
482 12 14 0
461 2 7 1
152 2 13 1
34 8 14 1
60 9 12 1
195 4 5 0
1 6 8 1
3 5 11 1
129 11 13 1
124 13 14 1
434 11 13 0
141 4 5 1
80 6 12 1

output:

691528902

result:

ok 1 number(s): "691528902"

Test #18:

score: 0
Accepted
time: 887ms
memory: 4092kb

input:

14 500 100
85 13 14 0
130 2 7 0
38 5 10 0
450 1 2 1
103 8 10 0
410 11 14 1
39 10 14 0
29 3 4 0
98 9 11 0
226 6 9 1
17 5 6 0
475 9 12 1
337 12 13 1
42 10 11 0
457 8 10 1
49 1 2 0
222 9 13 0
105 7 11 0
403 6 8 1
151 2 8 0
13 11 12 0
483 10 14 1
304 5 9 1
197 5 14 0
58 4 7 0
482 1 12 1
331 12 13 1
398 ...

output:

0

result:

ok 1 number(s): "0"

Test #19:

score: 0
Accepted
time: 742ms
memory: 4308kb

input:

14 498 200
457 10 13 0
163 6 10 0
23 2 5 0
109 5 8 0
113 12 14 0
294 10 12 0
1 10 14 0
451 1 2 0
275 1 13 0
345 10 14 0
171 2 9 0
392 8 11 0
184 13 14 0
328 10 11 0
84 10 13 0
238 6 12 0
306 6 13 0
56 8 14 0
404 10 14 0
90 3 10 0
446 12 14 0
303 9 11 0
71 11 12 0
362 10 13 0
405 13 14 1
258 4 13 0
1...

output:

0

result:

ok 1 number(s): "0"

Test #20:

score: 0
Accepted
time: 664ms
memory: 4644kb

input:

14 497 300
265 5 12 0
368 6 14 0
400 3 10 0
408 13 14 1
494 9 11 1
8 13 14 0
132 10 14 0
203 4 10 0
86 13 14 0
96 3 9 0
39 11 14 0
439 8 9 0
161 1 13 0
264 1 7 0
176 8 10 0
8 10 12 0
299 2 13 0
285 1 13 0
392 7 8 1
143 11 13 0
84 10 11 1
270 1 9 0
311 8 10 0
39 5 10 0
282 4 11 0
45 9 10 0
465 12 14 ...

output:

0

result:

ok 1 number(s): "0"

Test #21:

score: 0
Accepted
time: 527ms
memory: 4572kb

input:

14 499 500
349 7 10 0
440 11 13 0
391 5 11 0
461 8 10 1
172 12 14 0
139 5 10 0
79 3 4 0
456 10 11 0
276 11 14 0
484 5 6 1
178 11 13 0
295 8 11 0
384 3 8 0
112 9 11 0
170 3 7 0
490 12 14 1
243 7 9 0
360 4 7 0
302 10 12 0
266 5 8 0
350 8 12 0
282 7 12 0
480 7 11 1
312 10 13 0
356 13 14 0
277 4 5 0
245...

output:

0

result:

ok 1 number(s): "0"

Test #22:

score: 0
Accepted
time: 992ms
memory: 3692kb

input:

14 500 3
2 1 2 0
2 2 3 0
2 1 3 1

output:

0

result:

ok 1 number(s): "0"

Test #23:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

1 500 0

output:

1

result:

ok 1 number(s): "1"

Test #24:

score: 0
Accepted
time: 0ms
memory: 3588kb

input:

4 2 0

output:

17

result:

ok 1 number(s): "17"

Extra Test:

score: 0
Extra Test Passed