QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#247546 | #7620. Yet Another Subsequence Problem | ucup-team987# | AC ✓ | 1ms | 3884kb | C++20 | 25.7kb | 2023-11-11 14:52:02 | 2023-11-11 14:52:03 |
Judging History
answer
/**
* date : 2023-11-11 15:51:55
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(vector<T> &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
using namespace std;
// x / y (x > 0, y > 0) を管理、デフォルトで 1 / 1
// 入力が互いに素でない場合は gcd を取って格納
// seq : (1, 1) から (x, y) へのパス。右の子が正/左の子が負
template <typename Int>
struct SternBrocotTreeNode {
using Node = SternBrocotTreeNode;
Int lx, ly, x, y, rx, ry;
vector<Int> seq;
SternBrocotTreeNode() : lx(0), ly(1), x(1), y(1), rx(1), ry(0) {}
SternBrocotTreeNode(Int X, Int Y) : SternBrocotTreeNode() {
assert(1 <= X && 1 <= Y);
Int g = gcd(X, Y);
X /= g, Y /= g;
while (min(X, Y) > 0) {
if (X > Y) {
int d = X / Y;
X -= d * Y;
go_right(d - (X == 0 ? 1 : 0));
} else {
int d = Y / X;
Y -= d * X;
go_left(d - (Y == 0 ? 1 : 0));
}
}
}
SternBrocotTreeNode(const pair<Int, Int> &xy)
: SternBrocotTreeNode(xy.first, xy.second) {}
SternBrocotTreeNode(const vector<Int> &_seq) : SternBrocotTreeNode() {
for (const Int &d : _seq) {
assert(d != 0);
if (d > 0) go_right(d);
if (d < 0) go_left(d);
}
assert(seq == _seq);
}
// pair<Int, Int> 型で分数を get
pair<Int, Int> get() const { return make_pair(x, y); }
// 区間の下限
pair<Int, Int> lower_bound() const { return make_pair(lx, ly); }
// 区間の上限
pair<Int, Int> upper_bound() const { return make_pair(rx, ry); }
// 根からの深さ
Int depth() const {
Int res = 0;
for (auto &s : seq) res += abs(s);
return res;
}
// 左の子に d 進む
void go_left(Int d = 1) {
if (d <= 0) return;
if (seq.empty() or seq.back() > 0) seq.push_back(0);
seq.back() -= d;
rx += lx * d, ry += ly * d;
x = rx + lx, y = ry + ly;
}
// 右の子に d 進む
void go_right(Int d = 1) {
if (d <= 0) return;
if (seq.empty() or seq.back() < 0) seq.push_back(0);
seq.back() += d;
lx += rx * d, ly += ry * d;
x = rx + lx, y = ry + ly;
}
// 親の方向に d 進む
// d 進めたら true, 進めなかったら false を返す
bool go_parent(Int d = 1) {
if (d <= 0) return true;
while (d) {
if (seq.empty()) return false;
Int d2 = min(d, abs(seq.back()));
if (seq.back() > 0) {
x -= rx * d2, y -= ry * d2;
lx = x - rx, ly = y - ry;
seq.back() -= d2;
} else {
x -= lx * d2, y -= ly * d2;
rx = x - lx, ry = y - ly;
seq.back() += d2;
}
d -= d2;
if (seq.back() == 0) seq.pop_back();
if (d2 == Int{0}) break;
}
return true;
}
// SBT 上の LCA
static Node lca(const Node &lhs, const Node &rhs) {
Node n;
for (int i = 0; i < min<int>(lhs.seq.size(), rhs.seq.size()); i++) {
Int val1 = lhs.seq[i], val2 = rhs.seq[i];
if ((val1 < 0) != (val2 < 0)) break;
if (val1 < 0) n.go_left(min(-val1, -val2));
if (val1 > 0) n.go_right(min(val1, val2));
if (val1 != val2) break;
}
return n;
}
friend ostream &operator<<(ostream &os, const Node &rhs) {
os << "\n";
os << "L : ( " << rhs.lx << ", " << rhs.ly << " )\n";
os << "M : ( " << rhs.x << ", " << rhs.y << " )\n";
os << "R : ( " << rhs.rx << ", " << rhs.ry << " )\n";
os << "seq : {";
for (auto &x : rhs.seq) os << x << ", ";
os << "} \n";
return os;
}
friend bool operator<(const Node &lhs, const Node &rhs) {
return lhs.x * rhs.y < rhs.x * lhs.y;
}
friend bool operator==(const Node &lhs, const Node &rhs) {
return lhs.x == rhs.x and lhs.y == rhs.y;
}
};
/**
* @brief Stern-Brocot Tree
*/
//
using namespace std;
// {rank, det(非正方行列の場合は未定義)} を返す
// 型が double や Rational でも動くはず?(未検証)
//
// pivot 候補 : [0, pivot_end)
template <typename T>
std::pair<int, T> GaussElimination(vector<vector<T>> &a, int pivot_end = -1,
bool diagonalize = false) {
int H = a.size(), W = a[0].size(), rank = 0;
if (pivot_end == -1) pivot_end = W;
T det = 1;
for (int j = 0; j < pivot_end; j++) {
int idx = -1;
for (int i = rank; i < H; i++) {
if (a[i][j] != T(0)) {
idx = i;
break;
}
}
if (idx == -1) {
det = 0;
continue;
}
if (rank != idx) det = -det, swap(a[rank], a[idx]);
det *= a[rank][j];
if (diagonalize && a[rank][j] != T(1)) {
T coeff = T(1) / a[rank][j];
for (int k = j; k < W; k++) a[rank][k] *= coeff;
}
int is = diagonalize ? 0 : rank + 1;
for (int i = is; i < H; i++) {
if (i == rank) continue;
if (a[i][j] != T(0)) {
T coeff = a[i][j] / a[rank][j];
for (int k = j; k < W; k++) a[i][k] -= a[rank][k] * coeff;
}
}
rank++;
}
return make_pair(rank, det);
}
template <typename mint>
vector<vector<mint>> inverse_matrix(const vector<vector<mint>>& a) {
int N = a.size();
assert(N > 0);
assert(N == (int)a[0].size());
vector<vector<mint>> m(N, vector<mint>(2 * N));
for (int i = 0; i < N; i++) {
copy(begin(a[i]), end(a[i]), begin(m[i]));
m[i][N + i] = 1;
}
auto [rank, det] = GaussElimination(m, N, true);
if (rank != N) return {};
vector<vector<mint>> b(N);
for (int i = 0; i < N; i++) {
copy(begin(m[i]) + N, end(m[i]), back_inserter(b[i]));
}
return b;
}
template <class T>
struct Matrix {
vector<vector<T> > A;
Matrix() = default;
Matrix(int n, int m) : A(n, vector<T>(m, T())) {}
Matrix(int n) : A(n, vector<T>(n, T())){};
int H() const { return A.size(); }
int W() const { return A[0].size(); }
int size() const { return A.size(); }
inline const vector<T> &operator[](int k) const { return A[k]; }
inline vector<T> &operator[](int k) { return A[k]; }
static Matrix I(int n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
int n = H(), m = W();
assert(n == B.H() && m == B.W());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
int n = H(), m = W();
assert(n == B.H() && m == B.W());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
int n = H(), m = B.W(), p = W();
assert(p == B.H());
vector<vector<T> > C(n, vector<T>(m, T{}));
for (int i = 0; i < n; i++)
for (int k = 0; k < p; k++)
for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(H());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
bool operator==(const Matrix &B) const {
assert(H() == B.H() && W() == B.W());
for (int i = 0; i < H(); i++)
for (int j = 0; j < W(); j++)
if (A[i][j] != B[i][j]) return false;
return true;
}
bool operator!=(const Matrix &B) const {
assert(H() == B.H() && W() == B.W());
for (int i = 0; i < H(); i++)
for (int j = 0; j < W(); j++)
if (A[i][j] != B[i][j]) return true;
return false;
}
Matrix inverse() const {
assert(H() == W());
Matrix B(H());
B.A = inverse_matrix(A);
return B;
}
friend ostream &operator<<(ostream &os, const Matrix &p) {
int n = p.H(), m = p.W();
for (int i = 0; i < n; i++) {
os << (i ? " " : "") << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() const {
Matrix B(*this);
assert(H() == W());
T ret = 1;
for (int i = 0; i < H(); i++) {
int idx = -1;
for (int j = i; j < W(); j++) {
if (B[j][i] != 0) {
idx = j;
break;
}
}
if (idx == -1) return 0;
if (i != idx) {
ret *= T(-1);
swap(B[i], B[idx]);
}
ret *= B[i][i];
T inv = T(1) / B[i][i];
for (int j = 0; j < W(); j++) {
B[i][j] *= inv;
}
for (int j = i + 1; j < H(); j++) {
T a = B[j][i];
if (a == 0) continue;
for (int k = i; k < W(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return ret;
}
};
/**
* @brief 行列ライブラリ
*/
//
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
static_assert(r * mod == 1, "this code has bugs.");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint operator+() const { return mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const {
int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
while (y > 0) {
t = x / y;
x -= t * y, u -= t * v;
tmp = x, x = y, y = tmp;
tmp = u, u = v, v = tmp;
}
return mint{u};
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
using namespace std;
// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」
// を入れると倍速くらいになる
// mod を超えて前計算して 0 割りを踏むバグは対策済み
template <typename T>
struct Binomial {
vector<T> f, g, h;
Binomial(int MAX = 0) {
assert(T::get_mod() != 0 && "Binomial<mint>()");
f.resize(1, T{1});
g.resize(1, T{1});
h.resize(1, T{1});
if (MAX > 0) extend(MAX + 1);
}
void extend(int m = -1) {
int n = f.size();
if (m == -1) m = n * 2;
m = min<int>(m, T::get_mod());
if (n >= m) return;
f.resize(m);
g.resize(m);
h.resize(m);
for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
g[m - 1] = f[m - 1].inverse();
h[m - 1] = g[m - 1] * f[m - 2];
for (int i = m - 2; i >= n; i--) {
g[i] = g[i + 1] * T(i + 1);
h[i] = g[i] * f[i - 1];
}
}
T fac(int i) {
if (i < 0) return T(0);
while (i >= (int)f.size()) extend();
return f[i];
}
T finv(int i) {
if (i < 0) return T(0);
while (i >= (int)g.size()) extend();
return g[i];
}
T inv(int i) {
if (i < 0) return -inv(-i);
while (i >= (int)h.size()) extend();
return h[i];
}
T C(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r) * finv(r);
}
inline T operator()(int n, int r) { return C(n, r); }
template <typename I>
T multinomial(const vector<I>& r) {
static_assert(is_integral<I>::value == true);
int n = 0;
for (auto& x : r) {
if (x < 0) return T(0);
n += x;
}
T res = fac(n);
for (auto& x : r) res *= finv(x);
return res;
}
template <typename I>
T operator()(const vector<I>& r) {
return multinomial(r);
}
T C_naive(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
T ret = T(1);
r = min(r, n - r);
for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
return ret;
}
T P(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r);
}
// [x^r] 1 / (1-x)^n
T H(int n, int r) {
if (n < 0 || r < 0) return T(0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;
using namespace Nyaan;
std::string gen_string(int64_t a, int64_t b) {
std::string res;
int64_t ia = 0, ib = 0;
while (ia + ib < a + b) {
if ((__int128)ia * b <= (__int128)ib * a) {
res += '0';
ia++;
} else {
res += '1';
ib++;
}
}
return res;
}
using Mat = Matrix<mint>;
Mat calc(ll a, ll b) {
Matrix<mint> L(2), R(2);
L[0][0] = L[0][1] = L[1][1] = 1;
R[0][0] = R[1][0] = R[1][1] = 1;
// trc(L*R);
// trc(R*L*L*R*L*L*R*L);
// trc(L*R*R*L*R*R*L*R);
if (gcd(a, b) != 1) {
ll g = gcd(a, b);
auto m = calc(a / g, b / g);
return m ^ g;
}
if (a == 1) return L * (R ^ b);
if (b == 1) return L * R * (L ^ (a - 1));
SternBrocotTreeNode<ll> node(a, b);
auto seq = node.seq;
trc(seq);
if (seq[0] < 0) {
ll y = -seq[0];
Mat nL = L * (R ^ (y + 1));
Mat nR = L * (R ^ y);
L = nL, R = nR;
seq[0] = 0;
seq[1] -= 1;
} else {
ll y = seq[0];
Mat nL = L * R * (L ^ (y - 1));
Mat nR = L * R * (L ^ y);
L = nL, R = nR;
seq[0] = 0;
seq[1] += 1;
}
trc(seq);
trc(L);
trc(R);
each(x, seq) {
ll y = abs(ll(x));
if (x < 0) {
trc("a", y);
R = (L ^ y) * R;
} else if (x > 0) {
trc("b", y);
L = L * (R ^ y);
}
trc(L, R);
}
return L * R;
}
void q() {
inl(a, b);
auto m = calc(a, b);
mint ans = 0;
rep(i, 2) rep(j, 2) ans += m[i][j];
out(ans - 1);
}
void Nyaan::solve() {
trc(gen_string(3, 5));
trc(gen_string(9, 7));
trc(gen_string(3, 1));
trc(gen_string(1, 3));
trc(gen_string(27, 21));
int t = 1;
in(t);
while (t--) q();
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 3524kb
input:
6 1 1 3 5 4 7 8 20 4 10 27 21
output:
4 70 264 196417 609 667131122
result:
ok 6 numbers
Test #2:
score: 0
Accepted
time: 1ms
memory: 3636kb
input:
18 5 9 23 30 820 483 5739 9232 86494 55350 606 13336 2768848 1124639 47995594 66053082 1069395 7177 7801842511 4390103762 47882886553 82678306054 193410894 6189355686 51594638 19992922190 59 110 422735115778072 658356435030265 9125338158530266 5328357177709583 60743352262021049 95595862538791630 629...
output:
988 220693002 133474535 202371605 778839228 282057418 935955056 943144752 409056617 627433544 578769776 917438628 24364208 109943645 352575425 68058533 402004723 894026897
result:
ok 18 numbers
Test #3:
score: 0
Accepted
time: 0ms
memory: 3880kb
input:
9 7 6 4 7 1 1 1 1 2 1 8 5 4 7 4 7 8 8
output:
986 264 4 4 7 781 264 264 4180
result:
ok 9 numbers
Test #4:
score: 0
Accepted
time: 0ms
memory: 3812kb
input:
7 10 10 9 5 5 9 5 8 7 4 5 9 4 8
output:
28656 1100 988 702 294 988 361
result:
ok 7 numbers
Test #5:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
10 4 7 5 9 9 5 5 9 7 4 9 9 3 10 7 4 9 5 6 4
output:
264 988 1100 988 294 10945 253 294 1100 207
result:
ok 10 numbers
Test #6:
score: 0
Accepted
time: 0ms
memory: 3876kb
input:
9 77 47 65 37 96 59 74 45 96 61 66 47 53 73 41 72 47 64
output:
477691493 223541570 510016172 616252466 634241188 463620644 498542012 162791920 984013116
result:
ok 9 numbers
Test #7:
score: 0
Accepted
time: 0ms
memory: 3576kb
input:
8 41 69 86 51 44 88 47 66 71 44 47 77 44 44 9 17
output:
856129900 783572707 168948980 519731719 796410895 739386210 133340520 191860
result:
ok 8 numbers
Test #8:
score: 0
Accepted
time: 0ms
memory: 3528kb
input:
9 47 73 99 15 52 73 29 52 82 53 49 78 71 40 50 87 84 53
output:
769345491 690191730 757588716 658697918 61904949 629708093 220994184 297434348 28621139
result:
ok 9 numbers
Test #9:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
7 661 462 386 656 797 510 19 2 685 406 994 984 86 165
output:
108717767 243878739 146514460 348 433968238 266547073 518079889
result:
ok 7 numbers
Test #10:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
7 640 391 187 37 185 77 758 530 690 708 614 422 745 596
output:
568664902 101789251 757511817 887691770 177453450 32893736 437096982
result:
ok 7 numbers
Test #11:
score: 0
Accepted
time: 0ms
memory: 3596kb
input:
8 813 469 744 999 637 437 394 303 773 773 380 643 38 9 703 426
output:
454035451 338288113 916487884 221556201 179854568 52657041 26618143 962558445
result:
ok 8 numbers
Test #12:
score: 0
Accepted
time: 0ms
memory: 3852kb
input:
8 6855 4213 4112 6914 5778 2583 4988 8449 8090 8090 6519 4733 4434 6958 2 3
output:
427280974 44013214 375314206 144262561 427379094 372013990 839270931 18
result:
ok 8 numbers
Test #13:
score: 0
Accepted
time: 0ms
memory: 3584kb
input:
8 8409 5416 8107 4913 95 98 115 3 5013 7048 9328 5735 1680 5712 5197 7557
output:
894035672 40190853 343168705 190160 390361879 183351154 606244444 134913462
result:
ok 8 numbers
Test #14:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
9 5182 8121 3750 6458 8234 8234 4143 7423 4020 1789 4107 7290 6723 3999 4268 6070 7780 3890
output:
866885729 688535194 823578849 212358139 362917931 67863647 455387876 758964821 193741943
result:
ok 9 numbers
Test #15:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
7 61155 95200 45410 29617 52271 72405 65732 48477 24291 69219 67575 35139 79612 44714
output:
568124700 703486037 744399547 157090122 340253631 764313623 405183638
result:
ok 7 numbers
Test #16:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
9 58285 95000 61322 43451 62444 98391 63929 37316 11880 85320 55132 89028 46015 74851 95036 57832 97346 57569
output:
198194769 642221077 706321582 889996800 236557792 438005278 854653054 551428347 412917166
result:
ok 9 numbers
Test #17:
score: 0
Accepted
time: 0ms
memory: 3812kb
input:
9 70070 51175 1 3 97696 89440 76449 76449 39928 68508 53907 53907 48569 83915 64151 44772 423 4
output:
386957046 8 333547672 669126229 622003028 967849140 694422542 68403374 399271894
result:
ok 9 numbers
Test #18:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
7 791062 495727 446934 701097 575527 973782 601232 973330 1293 33622 654288 790598 582881 422021
output:
787234183 89769894 656957068 144699935 985638 436404539 589184034
result:
ok 7 numbers
Test #19:
score: 0
Accepted
time: 0ms
memory: 3652kb
input:
9 170761 370325 835313 538289 557394 885834 4 1370 457105 725030 170133 373897 606675 954589 478770 675786 529800 529800
output:
938892037 351941869 451634146 177505605 507054806 847951838 454269997 734099694 483445163
result:
ok 9 numbers
Test #20:
score: 0
Accepted
time: 0ms
memory: 3884kb
input:
9 971470 571018 729856 522877 712674 782955 527307 855805 1991 6 646650 479073 664436 461056 543147 736991 1027 2
output:
701913251 360490926 401476354 140864080 439953424 58245462 571144790 226876232 795156
result:
ok 9 numbers
Test #21:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
7 4220475 7200014 8946114 5607972 9217056 5889071 216495 8018 9263205 6175470 9381418 5709506 1305186 5438275
output:
416147761 504552270 531404017 597473622 227696082 526572165 932407358
result:
ok 7 numbers
Test #22:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
8 4735393 5463915 50137 654914 2203 4 2925479 5850958 5159591 8973433 7313341 4117661 5899 8 9318992 5940830
output:
830746100 701627501 861951012 734922707 586974926 54838635 54717862 962062441
result:
ok 8 numbers
Test #23:
score: 0
Accepted
time: 0ms
memory: 3584kb
input:
8 4808286 7533233 5427286 7627443 7049100 4420557 8918768 5668723 674651 626518 4540185 161190 1410422 8462532 7049224 4534562
output:
228187053 202526633 99774240 904698472 480292240 855142423 37675392 981266426
result:
ok 8 numbers
Test #24:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
10 33704480 11375262 63375993 63375993 12 13 58407009 98800752 10 7 381848 5348452 88342222 50792883 55352977 76210207 361275 3998109 58416656 94841469
output:
649109810 36477705 289153 752071377 5394 292760513 85444308 575684169 613771553 675962623
result:
ok 10 numbers
Test #25:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
7 34852528 49858286 62481622 49765513 75583113 25194371 3229939 804483 58329210 93597303 23508450 62689200 5 8
output:
391402413 137652286 768999263 472921885 836021626 100793612 702
result:
ok 7 numbers
Test #26:
score: 0
Accepted
time: 0ms
memory: 3876kb
input:
8 57310378 88790898 13 9147 1549494 24595 8452791 2087427 21621 172979 73536914 41674942 10163116 31757473 55581659 88587394
output:
41887077 681921806 26003660 68330985 630056979 227526752 694974420 566287628
result:
ok 8 numbers
Test #27:
score: 0
Accepted
time: 0ms
memory: 3616kb
input:
10 698700042 449659396 17 13 43899392 51200357 895050714 895050714 643725501 382794307 458560944 776109451 567286349 962689176 149158675 24522207 440485810 690959859 652728768 598334704
output:
703577031 2520080 194426181 120762097 456471628 53917573 344514670 705330170 462968000 697259102
result:
ok 10 numbers
Test #28:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
9 172917712 875395917 897335234 563015871 745518604 471032145 745253836 526187524 745397239 521218138 618365020 879980990 2609837 36375280 100674 7248541 405784272 696239702
output:
26528974 235341182 719622291 725483715 162432807 573688992 359069671 123532858 850989940
result:
ok 9 numbers
Test #29:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
8 19 16 919871160 979626570 652248464 796017040 513535282 890441475 587071118 935031010 566303476 566303476 853646878 518444900 54282 6459567
output:
31270230 469453648 140433663 633373156 490180087 832298148 445105898 409991300
result:
ok 8 numbers
Test #30:
score: 0
Accepted
time: 1ms
memory: 3656kb
input:
10 6316442971 3717676023 5707194159 9738462445 24455 10613497 4573236121 6647697858 4262400710 7167730777 270056596 1125156154 4585295484 4280782059 2130266613 431444507 7969708160 2789397856 6217859616 4582712819
output:
41234471 962654143 239500287 741697872 114104471 165586759 197355975 854304368 867087760 128591444
result:
ok 10 numbers
Test #31:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
8 4579668169 6390539165 1041646110 571219849 30 251 9 9 4671515135 7856932100 263421185 13851483 8361459884 4180729942 5455444332 8540064262
output:
555952223 137938692 573810687 10945 282167728 941458093 592851385 879877624
result:
ok 8 numbers
Test #32:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
7 4885592557 6722279544 6698742570 1014720768 5505975848 9085332219 9195021843 5693284264 52988491 378489 8801634660 9771021260 349665 18
output:
246109181 474709504 729257738 320828184 298549274 81287162 154217944
result:
ok 7 numbers
Test #33:
score: 0
Accepted
time: 1ms
memory: 3620kb
input:
9 64432609580 38353880909 43807625765 59263947003 16320158182 19429679437 3847856792 274728700 553640 37 8879682145 2927369495 70346968232 41700514029 78758894183 44807115997 99602254960 34562248040
output:
964237626 724959622 537133394 209972620 263976854 512058860 262701845 742703578 438174844
result:
ok 9 numbers
Test #34:
score: 0
Accepted
time: 0ms
memory: 3640kb
input:
10 40119253121 66288164640 87505712174 51288074660 36048827526 64066054154 84252980684 54190876423 446147 25876536 782712637 196016118 35016479961 14221711055 39589874533 64576938855 50165886770 84481820121 36605810431 60492661182
output:
774798817 342376143 939918052 623589627 125781574 937656495 18553261 784387301 537170792 279832098
result:
ok 10 numbers
Test #35:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
9 42 40 9305645972 60486698818 64950411971 41558316739 11050148 265460532 58383838184 29191919092 94333382274 34262678535 47483707407 80698978968 87395094281 56380378602 23984822092 35077779619
output:
454830513 458761936 767782510 956566290 722459276 110904025 991606480 829618195 279144874
result:
ok 9 numbers
Test #36:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
9 781818031945 475948866708 914806537124 601935899892 752123782181 525298689728 635268595617 375679155313 686238431621 478304282979 971027462869 605128611953 336341016872 593492888684 588233640889 936771497917 500339021121 718878308977
output:
416541065 93850085 32575703 927476140 275854305 524817775 115843013 612101788 535274867
result:
ok 9 numbers
Test #37:
score: 0
Accepted
time: 0ms
memory: 3676kb
input:
10 8 18 432360698142 700098703686 731142155950 372514886160 782624421493 445035963546 628123403278 373498610938 983205526516 627208237664 200940478371 558110905836 898239160130 449119580065 942666344678 542710523805 1376288731 33033576253
output:
118497 764002054 697392180 940670421 70833149 514323255 247311517 34986622 571700178 783375859
result:
ok 10 numbers
Test #38:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
9 463465274957 803405678339 38 39 855122660445 570081773630 565818450403 956900498105 513488249872 938556306902 666312248900 292118350180 311702183821 113258251057 220618909658 104522149028 1795060337 37699752631
output:
698978987 540539945 202456189 653488242 428733485 136622482 213065878 954077526 775245985
result:
ok 9 numbers
Test #39:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
10 664415605784 78244547126 9379552519928 5883628925869 5542594105687 7672977178418 5178938460625 8730427811713 9973455090260 5841455591693 56 16 734079467418 855862349973 81114853384 2385556446 149237977189 4033376322 5449911732823 8549857410677
output:
80131507 963784310 187103659 334889378 172535468 739514608 650459522 521260897 290739918 73066424
result:
ok 10 numbers
Test #40:
score: 0
Accepted
time: 0ms
memory: 3680kb
input:
9 4447910179998 7097252627075 11399089176 330557089593 4963101702009 6793726551400 9979205795063 2021104971152 8479740266012 4867793261721 5327068 72 9239905637409 3079968545803 5184273848100 8876120459083 4837533534365 8691234741624
output:
124690384 411971946 3773843 405089576 443529567 637322508 781006103 829103982 660929697
result:
ok 9 numbers
Test #41:
score: 0
Accepted
time: 1ms
memory: 3844kb
input:
10 981637513297 2128588091470 4714283499093 7576728679499 7495055678038 7495055678038 8324310665462 4634084762443 5710689724566 9667653254620 4305789682432 370028800834 4093285674016 7134248902838 4493096814116 6169635573974 78 10 55424515696 9293998475773
output:
506907545 175724684 171366228 746665106 993105044 966210024 527864656 70007987 160324237 127232425
result:
ok 10 numbers
Test #42:
score: 0
Accepted
time: 0ms
memory: 3880kb
input:
10 88004137971000 91959380127000 74147231981246 74147231981246 39434756902483 61919587653594 93 111 44181560163067 77615449759899 82796371085733 47668478750195 8801626941360 2517933769615 53330889214706 53330889214706 6872395393805 4602050084977 24278311806726 7716362667254
output:
977270307 951456599 826623512 2716956 757672346 493402036 241574837 936696309 272341593 90420684
result:
ok 10 numbers
Test #43:
score: 0
Accepted
time: 0ms
memory: 3624kb
input:
8 83242392419334 48080013444098 60557700619416 47712127760752 57820551505863 92086606077309 9092143767558 15196561910087 2705177411814 13610421069535 71283624982920 64494708317880 117 10271169 53977647239742 91676524000459
output:
1403378 328258696 841064592 703406177 536145853 91621790 519284514 219786799
result:
ok 8 numbers
Test #44:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
9 39389615240500 69398774281131 72905550036336 40503083353520 19984637490744 55133565358987 43317040541741 29703946351399 7584546229545 29580701409037 70706903233184 17676725808296 42273197935142 74296418759049 38126570359084 67695095849554 36653327088976 79435973089152
output:
830555900 16837817 240174960 41408696 333831437 851450450 303679113 864417616 66107106
result:
ok 9 numbers
Test #45:
score: 0
Accepted
time: 0ms
memory: 3872kb
input:
10 379809845776040 87521399244044 438651055673092 602633375926797 304488978161392 435733420086439 390988132449818 627934429378498 620167443903906 620167443903906 634916243215561 373673239266171 860296562918704 548434445628832 887229473296772 374750355147012 852714718210047 504067355022314 6138666444...
output:
494725545 57499987 396878960 479604519 257643714 648034103 914472685 883871305 266811385 888604046
result:
ok 10 numbers
Test #46:
score: 0
Accepted
time: 0ms
memory: 3872kb
input:
7 470178883855020 770276128511483 540990885807603 736886350162357 894729244714352 523324079814330 707170196942262 494394608815844 66701980590 180275623 103065153255233 206130306510466 364016287617199 653998959536254
output:
554745842 419154174 499608916 606331369 865725799 935915163 901511310
result:
ok 7 numbers
Test #47:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
7 381987309708152 675552067008456 456848180019281 711058812075785 668756377240308 468530841380440 90583278 101 531087374826792 590097083140880 99400300 151 739189959164630 522004964125469
output:
612853842 868424710 803022893 735904331 219013483 663905630 340785460
result:
ok 7 numbers
Test #48:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
9 7278964640577131 5036038524182689 5035531063135477 8496714647795219 3504743347919327 908440116241519 4001761136302463 7108707873098478 5149128773287081 6960878819273718 2091457546116447 2772408864757968 4089418491669467 6882229257269958 7486935806713669 4249189240699508 4096171687987639 6528182391...
output:
159753087 823145506 415988363 321650474 845685709 370868935 530244877 481080936 486435045
result:
ok 9 numbers
Test #49:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
7 2981568349279052 5004729683287459 4710516817026196 6626670578994707 4420652801695349 6872117106725460 7913190870392468 4496531997279638 9408392358677399 5899957062193866 4845480860712968 8299164681657158 7176864078512575 4072685305091161
output:
513577770 874790062 693690725 856693027 144728819 636310511 858823486
result:
ok 7 numbers
Test #50:
score: 0
Accepted
time: 0ms
memory: 3876kb
input:
9 4609843367489973 6494849388585310 2662683783497 54141028044012 220 66 7978094550997632 465764726411120 4831845778179482 7704967672005717 1858824847081840 4600928427969440 4312532571180340 6699870146306909 7443819315244825 5148069685184036 3986650745730536 6924653723452418
output:
44527881 747989882 237394030 791480810 831466537 766671424 646474343 355291795 41195775
result:
ok 9 numbers
Test #51:
score: 0
Accepted
time: 0ms
memory: 3620kb
input:
10 74631988611653950 53175145961327164 39113496181147364 68783798144114737 98491424748008905 61839083206166778 22796886891413346 5789636071869432 15448770668179690 4484576920375217 68928032797478541 49047045827906431 64041954599445660 46696705316367757 69341190934830226 42014659757002891 135 2989033...
output:
812434737 452625441 246964248 143489794 764082574 812961125 441305635 761639412 73687805 175602050
result:
ok 10 numbers
Test #52:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
9 1860619861443977 5814190954668714 19148688346591948 3771789733219899 44982507955009338 91631034723167170 52005363420696535 90524088869172793 53657472882811901 91761921619759696 69226091147005337 69226091147005337 98083040180495760 32694346726831920 50388744715723106 68020766962294917 6711152089747...
output:
234381716 686944777 950767811 55468278 510496489 703607441 90191858 599482356 404342753
result:
ok 9 numbers
Test #53:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
8 84896632069432888 84896632069432888 47786253690874448 81846724266738367 51 311 13603527784538305 3331601869278349 50559850767795431 46163342005378437 85677907426591888 42838953713295944 96579975575545669 58726298062990702 157 206
output:
666279267 432152330 607419028 414765301 588312608 554053126 917706967 590495550
result:
ok 8 numbers
Test #54:
score: 0
Accepted
time: 0ms
memory: 3580kb
input:
10 15726548567341138 51095235389923804 423775743308062335 932306635277737137 369 195 236164566623548641 364821851120140572 234643903330305546 188203386170436204 653381702369609877 482753500599640357 435420851782343362 155681131813320662 897210644247422197 530992500016150476 718571782455602517 462176...
output:
540621337 50385551 191369362 772925846 473788152 507982557 426922137 981279928 52949238 66732324
result:
ok 10 numbers
Test #55:
score: 0
Accepted
time: 0ms
memory: 3576kb
input:
8 720196177480139001 960261569973518668 563773350230943132 892912432264063728 922418069031280380 922418069031280380 495 16208934030 11239790100 172 170018167870043828 115365387622762295 694390635921274643 401713963039835356 394423271132672246 700958138011726362
output:
755248091 179536092 711232439 825632889 202808306 451735892 423205785 143830548
result:
ok 8 numbers
Test #56:
score: 0
Accepted
time: 1ms
memory: 3580kb
input:
9 957708297856455900 559198252307722576 398143389593862338 630616095604539612 543298540816145108 932249475805872579 471714198907827019 772135645591304430 567925898317206525 398186303828144283 731348283443152697 537794271900611289 891419850006053161 527313479837391247 408598194994107944 6413445614173...
output:
827987814 291482335 563410446 56842844 844762867 650626206 149584084 43849985 519737738
result:
ok 9 numbers
Extra Test:
score: 0
Extra Test Passed